/* vim: set ts=8 sw=8 noexpandtab: */
// qcms
// Copyright (C) 2009 Mozilla Foundation
// Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <math.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h> //memset
#include "qcmsint.h"
/* It might be worth having a unified limit on content controlled
* allocation per profile. This would remove the need for many
* of the arbitrary limits that we used */
typedef uint32_t be32;
typedef uint16_t be16;
#if 0
not used yet
/* __builtin_bswap isn't available in older gccs
* so open code it for now */
static be32 cpu_to_be32(int32_t v)
{
#ifdef IS_LITTLE_ENDIAN
return ((v & 0xff) << 24) | ((v & 0xff00) << 8) | ((v & 0xff0000) >> 8) | ((v & 0xff000000) >> 24);
//return __builtin_bswap32(v);
return v;
#endif
}
#endif
static uint32_t be32_to_cpu(be32 v)
{
#ifdef IS_LITTLE_ENDIAN
return ((v & 0xff) << 24) | ((v & 0xff00) << 8) | ((v & 0xff0000) >> 8) | ((v & 0xff000000) >> 24);
//return __builtin_bswap32(v);
#else
return v;
#endif
}
static uint16_t be16_to_cpu(be16 v)
{
#ifdef IS_LITTLE_ENDIAN
return ((v & 0xff) << 8) | ((v & 0xff00) >> 8);
#else
return v;
#endif
}
/* a wrapper around the memory that we are going to parse
* into a qcms_profile */
struct mem_source
{
const unsigned char *buf;
size_t size;
qcms_bool valid;
const char *invalid_reason;
};
static void invalid_source(struct mem_source *mem, const char *reason)
{
mem->valid = false;
mem->invalid_reason = reason;
}
static uint32_t read_u32(struct mem_source *mem, size_t offset)
{
/* Subtract from mem->size instead of the more intuitive adding to offset.
* This avoids overflowing offset. The subtraction is safe because
* mem->size is guaranteed to be > 4 */
if (offset > mem->size - 4) {
invalid_source(mem, "Invalid offset");
return 0;
} else {
be32 k;
memcpy(&k, mem->buf + offset, sizeof(k));
return be32_to_cpu(k);
}
}
static uint16_t read_u16(struct mem_source *mem, size_t offset)
{
if (offset > mem->size - 2) {
invalid_source(mem, "Invalid offset");
return 0;
} else {
be16 k;
memcpy(&k, mem->buf + offset, sizeof(k));
return be16_to_cpu(k);
}
}
static uint8_t read_u8(struct mem_source *mem, size_t offset)
{
if (offset > mem->size - 1) {
invalid_source(mem, "Invalid offset");
return 0;
} else {
return *(uint8_t*)(mem->buf + offset);
}
}
static s15Fixed16Number read_s15Fixed16Number(struct mem_source *mem, size_t offset)
{
return read_u32(mem, offset);
}
static uInt8Number read_uInt8Number(struct mem_source *mem, size_t offset)
{
return read_u8(mem, offset);
}
static uInt16Number read_uInt16Number(struct mem_source *mem, size_t offset)
{
return read_u16(mem, offset);
}
#define BAD_VALUE_PROFILE NULL
#define INVALID_PROFILE NULL
#define NO_MEM_PROFILE NULL
/* An arbitrary 4MB limit on profile size */
#define MAX_PROFILE_SIZE 1024*1024*4
#define MAX_TAG_COUNT 1024
static void check_CMM_type_signature(struct mem_source *src)
{
//uint32_t CMM_type_signature = read_u32(src, 4);
//TODO: do the check?
}
static void check_profile_version(struct mem_source *src)
{
/*
uint8_t major_revision = read_u8(src, 8 + 0);
uint8_t minor_revision = read_u8(src, 8 + 1);
*/
uint8_t reserved1 = read_u8(src, 8 + 2);
uint8_t reserved2 = read_u8(src, 8 + 3);
/* Checking the version doesn't buy us anything
if (major_revision != 0x4) {
if (major_revision > 0x2)
invalid_source(src, "Unsupported major revision");
if (minor_revision > 0x40)
invalid_source(src, "Unsupported minor revision");
}
*/
if (reserved1 != 0 || reserved2 != 0)
invalid_source(src, "Invalid reserved bytes");
}
#define INPUT_DEVICE_PROFILE 0x73636e72 // 'scnr'
#define DISPLAY_DEVICE_PROFILE 0x6d6e7472 // 'mntr'
#define OUTPUT_DEVICE_PROFILE 0x70727472 // 'prtr'
#define DEVICE_LINK_PROFILE 0x6c696e6b // 'link'
#define COLOR_SPACE_PROFILE 0x73706163 // 'spac'
#define ABSTRACT_PROFILE 0x61627374 // 'abst'
#define NAMED_COLOR_PROFILE 0x6e6d636c // 'nmcl'
static void read_class_signature(qcms_profile *profile, struct mem_source *mem)
{
profile->class = read_u32(mem, 12);
switch (profile->class) {
case DISPLAY_DEVICE_PROFILE:
case INPUT_DEVICE_PROFILE:
case OUTPUT_DEVICE_PROFILE:
case COLOR_SPACE_PROFILE:
break;
default:
invalid_source(mem, "Invalid Profile/Device Class signature");
}
}
static void read_color_space(qcms_profile *profile, struct mem_source *mem)
{
profile->color_space = read_u32(mem, 16);
switch (profile->color_space) {
case RGB_SIGNATURE:
case GRAY_SIGNATURE:
break;
default:
invalid_source(mem, "Unsupported colorspace");
}
}
static void read_pcs(qcms_profile *profile, struct mem_source *mem)
{
profile->pcs = read_u32(mem, 20);
switch (profile->pcs) {
case XYZ_SIGNATURE:
case LAB_SIGNATURE:
break;
default:
invalid_source(mem, "Unsupported pcs");
}
}
struct tag
{
uint32_t signature;
uint32_t offset;
uint32_t size;
};
struct tag_index {
uint32_t count;
struct tag *tags;
};
static struct tag_index read_tag_table(qcms_profile *profile, struct mem_source *mem)
{
struct tag_index index = {0, NULL};
unsigned int i;
index.count = read_u32(mem, 128);
if (index.count > MAX_TAG_COUNT) {
invalid_source(mem, "max number of tags exceeded");
return index;
}
index.tags = malloc(sizeof(struct tag)*index.count);
if (index.tags) {
for (i = 0; i < index.count; i++) {
index.tags[i].signature = read_u32(mem, 128 + 4 + 4*i*3);
index.tags[i].offset = read_u32(mem, 128 + 4 + 4*i*3 + 4);
index.tags[i].size = read_u32(mem, 128 + 4 + 4*i*3 + 8);
}
}
return index;
}
// Checks a profile for obvious inconsistencies and returns
// true if the profile looks bogus and should probably be
// ignored.
qcms_bool qcms_profile_is_bogus(qcms_profile *profile)
{
float sum[3], target[3], tolerance[3];
float rX, rY, rZ, gX, gY, gZ, bX, bY, bZ;
bool negative;
unsigned i;
// We currently only check the bogosity of RGB profiles
if (profile->color_space != RGB_SIGNATURE)
return false;
if (qcms_supports_iccv4 && (profile->A2B0 || profile->B2A0))
return false;
rX = s15Fixed16Number_to_float(profile->redColorant.X);
rY = s15Fixed16Number_to_float(profile->redColorant.Y);
rZ = s15Fixed16Number_to_float(profile->redColorant.Z);
gX = s15Fixed16Number_to_float(profile->greenColorant.X);
gY = s15Fixed16Number_to_float(profile->greenColorant.Y);
gZ = s15Fixed16Number_to_float(profile->greenColorant.Z);
bX = s15Fixed16Number_to_float(profile->blueColorant.X);
bY = s15Fixed16Number_to_float(profile->blueColorant.Y);
bZ = s15Fixed16Number_to_float(profile->blueColorant.Z);
// Check if any of the XYZ values are negative (see mozilla bug 498245)
// CIEXYZ tristimulus values cannot be negative according to the spec.
negative =
(rX < 0) || (rY < 0) || (rZ < 0) ||
(gX < 0) || (gY < 0) || (gZ < 0) ||
(bX < 0) || (bY < 0) || (bZ < 0);
if (negative)
return true;
// Sum the values; they should add up to something close to white
sum[0] = rX + gX + bX;
sum[1] = rY + gY + bY;
sum[2] = rZ + gZ + bZ;
#if defined (_MSC_VER)
#pragma warning(push)
/* Disable double to float truncation warning 4305 */
#pragma warning(disable:4305)
#endif
// Build our target vector (see mozilla bug 460629)
target[0] = 0.96420;
target[1] = 1.00000;
target[2] = 0.82491;
// Our tolerance vector - Recommended by Chris Murphy based on
// conversion from the LAB space criterion of no more than 3 in any one
// channel. This is similar to, but slightly more tolerant than Adobe's
// criterion.
tolerance[0] = 0.02;
tolerance[1] = 0.02;
tolerance[2] = 0.04;
#if defined (_MSC_VER)
/* Restore warnings */
#pragma warning(pop)
#endif
// Compare with our tolerance
for (i = 0; i < 3; ++i) {
if (!(((sum[i] - tolerance[i]) <= target[i]) &&
((sum[i] + tolerance[i]) >= target[i])))
return true;
}
// All Good
return false;
}
#define TAG_bXYZ 0x6258595a
#define TAG_gXYZ 0x6758595a
#define TAG_rXYZ 0x7258595a
#define TAG_rTRC 0x72545243
#define TAG_bTRC 0x62545243
#define TAG_gTRC 0x67545243
#define TAG_kTRC 0x6b545243
#define TAG_A2B0 0x41324230
#define TAG_B2A0 0x42324130
#define TAG_CHAD 0x63686164
static struct tag *find_tag(struct tag_index index, uint32_t tag_id)
{
unsigned int i;
struct tag *tag = NULL;
for (i = 0; i < index.count; i++) {
if (index.tags[i].signature == tag_id) {
return &index.tags[i];
}
}
return tag;
}
#define XYZ_TYPE 0x58595a20 // 'XYZ '
#define CURVE_TYPE 0x63757276 // 'curv'
#define PARAMETRIC_CURVE_TYPE 0x70617261 // 'para'
#define LUT16_TYPE 0x6d667432 // 'mft2'
#define LUT8_TYPE 0x6d667431 // 'mft1'
#define LUT_MAB_TYPE 0x6d414220 // 'mAB '
#define LUT_MBA_TYPE 0x6d424120 // 'mBA '
#define CHROMATIC_TYPE 0x73663332 // 'sf32'
static struct matrix read_tag_s15Fixed16ArrayType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
{
struct tag *tag = find_tag(index, tag_id);
struct matrix matrix;
if (tag) {
uint8_t i;
uint32_t offset = tag->offset;
uint32_t type = read_u32(src, offset);
// Check mandatory type signature for s16Fixed16ArrayType
if (type != CHROMATIC_TYPE) {
invalid_source(src, "unexpected type, expected 'sf32'");
}
for (i = 0; i < 9; i++) {
matrix.m[i/3][i%3] = s15Fixed16Number_to_float(read_s15Fixed16Number(src, offset+8+i*4));
}
matrix.invalid = false;
} else {
matrix.invalid = true;
invalid_source(src, "missing sf32tag");
}
return matrix;
}
static struct XYZNumber read_tag_XYZType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
{
struct XYZNumber num = {0, 0, 0};
struct tag *tag = find_tag(index, tag_id);
if (tag) {
uint32_t offset = tag->offset;
uint32_t type = read_u32(src, offset);
if (type != XYZ_TYPE)
invalid_source(src, "unexpected type, expected XYZ");
num.X = read_s15Fixed16Number(src, offset+8);
num.Y = read_s15Fixed16Number(src, offset+12);
num.Z = read_s15Fixed16Number(src, offset+16);
} else {
invalid_source(src, "missing xyztag");
}
return num;
}
// Read the tag at a given offset rather then the tag_index.
// This method is used when reading mAB tags where nested curveType are
// present that are not part of the tag_index.
static struct curveType *read_curveType(struct mem_source *src, uint32_t offset, uint32_t *len)
{
static const uint32_t COUNT_TO_LENGTH[5] = {1, 3, 4, 5, 7};
struct curveType *curve = NULL;
uint32_t type = read_u32(src, offset);
uint32_t count;
int i;
if (type != CURVE_TYPE && type != PARAMETRIC_CURVE_TYPE) {
invalid_source(src, "unexpected type, expected CURV or PARA");
return NULL;
}
if (type == CURVE_TYPE) {
count = read_u32(src, offset+8);
#define MAX_CURVE_ENTRIES 40000 //arbitrary
if (count > MAX_CURVE_ENTRIES) {
invalid_source(src, "curve size too large");
return NULL;
}
curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*count);
if (!curve)
return NULL;
curve->count = count;
curve->type = type;
for (i=0; i<count; i++) {
curve->data[i] = read_u16(src, offset + 12 + i*2);
}
*len = 12 + count * 2;
} else { //PARAMETRIC_CURVE_TYPE
count = read_u16(src, offset+8);
if (count > 4) {
invalid_source(src, "parametric function type not supported.");
return NULL;
}
curve = malloc(sizeof(struct curveType));
if (!curve)
return NULL;
curve->count = count;
curve->type = type;
for (i=0; i < COUNT_TO_LENGTH[count]; i++) {
curve->parameter[i] = s15Fixed16Number_to_float(read_s15Fixed16Number(src, offset + 12 + i*4));
}
*len = 12 + COUNT_TO_LENGTH[count] * 4;
if ((count == 1 || count == 2)) {
/* we have a type 1 or type 2 function that has a division by 'a' */
float a = curve->parameter[1];
if (a == 0.f)
invalid_source(src, "parametricCurve definition causes division by zero.");
}
}
return curve;
}
static struct curveType *read_tag_curveType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
{
struct tag *tag = find_tag(index, tag_id);
struct curveType *curve = NULL;
if (tag) {
uint32_t len;
return read_curveType(src, tag->offset, &len);
} else {
invalid_source(src, "missing curvetag");
}
return curve;
}
#define MAX_CLUT_SIZE 500000 // arbitrary
#define MAX_CHANNELS 10 // arbitrary
static void read_nested_curveType(struct mem_source *src, struct curveType *(*curveArray)[MAX_CHANNELS], uint8_t num_channels, uint32_t curve_offset)
{
uint32_t channel_offset = 0;
int i;
for (i = 0; i < num_channels; i++) {
uint32_t tag_len;
(*curveArray)[i] = read_curveType(src, curve_offset + channel_offset, &tag_len);
if (!(*curveArray)[i]) {
invalid_source(src, "invalid nested curveType curve");
}
channel_offset += tag_len;
// 4 byte aligned
if ((tag_len % 4) != 0)
channel_offset += 4 - (tag_len % 4);
}
}
static void mAB_release(struct lutmABType *lut)
{
uint8_t i;
for (i = 0; i < lut->num_in_channels; i++){
free(lut->a_curves[i]);
}
for (i = 0; i < lut->num_out_channels; i++){
free(lut->b_curves[i]);
free(lut->m_curves[i]);
}
free(lut);
}
/* See section 10.10 for specs */
static struct lutmABType *read_tag_lutmABType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
{
struct tag *tag = find_tag(index, tag_id);
uint32_t offset = tag->offset;
uint32_t a_curve_offset, b_curve_offset, m_curve_offset;
uint32_t matrix_offset;
uint32_t clut_offset;
uint32_t clut_size = 1;
uint8_t clut_precision;
uint32_t type = read_u32(src, offset);
uint8_t num_in_channels, num_out_channels;
struct lutmABType *lut;
int i;
if (type != LUT_MAB_TYPE && type != LUT_MBA_TYPE) {
return NULL;
}
num_in_channels = read_u8(src, offset + 8);
num_out_channels = read_u8(src, offset + 8);
if (num_in_channels > MAX_CHANNELS || num_out_channels > MAX_CHANNELS)
return NULL;
// We require 3in/out channels since we only support RGB->XYZ (or RGB->LAB)
// XXX: If we remove this restriction make sure that the number of channels
// is less or equal to the maximum number of mAB curves in qcmsint.h
// also check for clut_size overflow.
if (num_in_channels != 3 || num_out_channels != 3)
return NULL;
// some of this data is optional and is denoted by a zero offset
// we also use this to track their existance
a_curve_offset = read_u32(src, offset + 28);
clut_offset = read_u32(src, offset + 24);
m_curve_offset = read_u32(src, offset + 20);
matrix_offset = read_u32(src, offset + 16);
b_curve_offset = read_u32(src, offset + 12);
// Convert offsets relative to the tag to relative to the profile
// preserve zero for optional fields
if (a_curve_offset)
a_curve_offset += offset;
if (clut_offset)
clut_offset += offset;
if (m_curve_offset)
m_curve_offset += offset;
if (matrix_offset)
matrix_offset += offset;
if (b_curve_offset)
b_curve_offset += offset;
if (clut_offset) {
assert (num_in_channels == 3);
// clut_size can not overflow since lg(256^num_in_channels) = 24 bits.
for (i = 0; i < num_in_channels; i++) {
clut_size *= read_u8(src, clut_offset + i);
}
} else {
clut_size = 0;
}
// 24bits * 3 won't overflow either
clut_size = clut_size * num_out_channels;
if (clut_size > MAX_CLUT_SIZE)
return NULL;
lut = malloc(sizeof(struct lutmABType) + (clut_size) * sizeof(float));
if (!lut)
return NULL;
// we'll fill in the rest below
memset(lut, 0, sizeof(struct lutmABType));
lut->clut_table = &lut->clut_table_data[0];
for (i = 0; i < num_in_channels; i++) {
lut->num_grid_points[i] = read_u8(src, clut_offset + i);
}
// Reverse the processing of transformation elements for mBA type.
lut->reversed = (type == LUT_MBA_TYPE);
lut->num_in_channels = num_in_channels;
lut->num_out_channels = num_out_channels;
if (matrix_offset) {
// read the matrix if we have it
lut->e00 = read_s15Fixed16Number(src, matrix_offset+4*0);
lut->e01 = read_s15Fixed16Number(src, matrix_offset+4*1);
lut->e02 = read_s15Fixed16Number(src, matrix_offset+4*2);
lut->e10 = read_s15Fixed16Number(src, matrix_offset+4*3);
lut->e11 = read_s15Fixed16Number(src, matrix_offset+4*4);
lut->e12 = read_s15Fixed16Number(src, matrix_offset+4*5);
lut->e20 = read_s15Fixed16Number(src, matrix_offset+4*6);
lut->e21 = read_s15Fixed16Number(src, matrix_offset+4*7);
lut->e22 = read_s15Fixed16Number(src, matrix_offset+4*8);
lut->e03 = read_s15Fixed16Number(src, matrix_offset+4*9);
lut->e13 = read_s15Fixed16Number(src, matrix_offset+4*10);
lut->e23 = read_s15Fixed16Number(src, matrix_offset+4*11);
}
if (a_curve_offset) {
read_nested_curveType(src, &lut->a_curves, num_in_channels, a_curve_offset);
}
if (m_curve_offset) {
read_nested_curveType(src, &lut->m_curves, num_out_channels, m_curve_offset);
}
if (b_curve_offset) {
read_nested_curveType(src, &lut->b_curves, num_out_channels, b_curve_offset);
} else {
invalid_source(src, "B curves required");
}
if (clut_offset) {
clut_precision = read_u8(src, clut_offset + 16);
if (clut_precision == 1) {
for (i = 0; i < clut_size; i++) {
lut->clut_table[i] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + 20 + i*1));
}
} else if (clut_precision == 2) {
for (i = 0; i < clut_size; i++) {
lut->clut_table[i] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + 20 + i*2));
}
} else {
invalid_source(src, "Invalid clut precision");
}
}
if (!src->valid) {
mAB_release(lut);
return NULL;
}
return lut;
}
static struct lutType *read_tag_lutType(struct mem_source *src, struct tag_index index, uint32_t tag_id)
{
struct tag *tag = find_tag(index, tag_id);
uint32_t offset = tag->offset;
uint32_t type = read_u32(src, offset);
uint16_t num_input_table_entries;
uint16_t num_output_table_entries;
uint8_t in_chan, grid_points, out_chan;
size_t clut_offset, output_offset;
uint32_t clut_size;
size_t entry_size;
struct lutType *lut;
int i;
/* I'm not sure why the spec specifies a fixed number of entries for LUT8 tables even though
* they have room for the num_entries fields */
if (type == LUT8_TYPE) {
num_input_table_entries = 256;
num_output_table_entries = 256;
entry_size = 1;
} else if (type == LUT16_TYPE) {
num_input_table_entries = read_u16(src, offset + 48);
num_output_table_entries = read_u16(src, offset + 50);
entry_size = 2;
} else {
assert(0); // the caller checks that this doesn't happen
invalid_source(src, "Unexpected lut type");
return NULL;
}
in_chan = read_u8(src, offset + 8);
out_chan = read_u8(src, offset + 9);
grid_points = read_u8(src, offset + 10);
clut_size = pow(grid_points, in_chan);
if (clut_size > MAX_CLUT_SIZE) {
return NULL;
}
if (in_chan != 3 || out_chan != 3) {
return NULL;
}
lut = malloc(sizeof(struct lutType) + (num_input_table_entries * in_chan + clut_size*out_chan + num_output_table_entries * out_chan)*sizeof(float));
if (!lut) {
return NULL;
}
/* compute the offsets of tables */
lut->input_table = &lut->table_data[0];
lut->clut_table = &lut->table_data[in_chan*num_input_table_entries];
lut->output_table = &lut->table_data[in_chan*num_input_table_entries + clut_size*out_chan];
lut->num_input_table_entries = num_input_table_entries;
lut->num_output_table_entries = num_output_table_entries;
lut->num_input_channels = read_u8(src, offset + 8);
lut->num_output_channels = read_u8(src, offset + 9);
lut->num_clut_grid_points = read_u8(src, offset + 10);
lut->e00 = read_s15Fixed16Number(src, offset+12);
lut->e01 = read_s15Fixed16Number(src, offset+16);
lut->e02 = read_s15Fixed16Number(src, offset+20);
lut->e10 = read_s15Fixed16Number(src, offset+24);
lut->e11 = read_s15Fixed16Number(src, offset+28);
lut->e12 = read_s15Fixed16Number(src, offset+32);
lut->e20 = read_s15Fixed16Number(src, offset+36);
lut->e21 = read_s15Fixed16Number(src, offset+40);
lut->e22 = read_s15Fixed16Number(src, offset+44);
for (i = 0; i < lut->num_input_table_entries * in_chan; i++) {
if (type == LUT8_TYPE) {
lut->input_table[i] = uInt8Number_to_float(read_uInt8Number(src, offset + 52 + i * entry_size));
} else {
lut->input_table[i] = uInt16Number_to_float(read_uInt16Number(src, offset + 52 + i * entry_size));
}
}
clut_offset = offset + 52 + lut->num_input_table_entries * in_chan * entry_size;
for (i = 0; i < clut_size * out_chan; i+=3) {
if (type == LUT8_TYPE) {
lut->clut_table[i+0] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 0));
lut->clut_table[i+1] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 1));
lut->clut_table[i+2] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 2));
} else {
lut->clut_table[i+0] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 0));
lut->clut_table[i+1] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 2));
lut->clut_table[i+2] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 4));
}
}
output_offset = clut_offset + clut_size * out_chan * entry_size;
for (i = 0; i < lut->num_output_table_entries * out_chan; i++) {
if (type == LUT8_TYPE) {
lut->output_table[i] = uInt8Number_to_float(read_uInt8Number(src, output_offset + i*entry_size));
} else {
lut->output_table[i] = uInt16Number_to_float(read_uInt16Number(src, output_offset + i*entry_size));
}
}
return lut;
}
static void read_rendering_intent(qcms_profile *profile, struct mem_source *src)
{
profile->rendering_intent = read_u32(src, 64);
switch (profile->rendering_intent) {
case QCMS_INTENT_PERCEPTUAL:
case QCMS_INTENT_SATURATION:
case QCMS_INTENT_RELATIVE_COLORIMETRIC:
case QCMS_INTENT_ABSOLUTE_COLORIMETRIC:
break;
default:
invalid_source(src, "unknown rendering intent");
}
}
qcms_profile *qcms_profile_create(void)
{
return calloc(sizeof(qcms_profile), 1);
}
/* build sRGB gamma table */
/* based on cmsBuildParametricGamma() */
static uint16_t *build_sRGB_gamma_table(int num_entries)
{
int i;
/* taken from lcms: Build_sRGBGamma() */
double gamma = 2.4;
double a = 1./1.055;
double b = 0.055/1.055;
double c = 1./12.92;
double d = 0.04045;
uint16_t *table = malloc(sizeof(uint16_t) * num_entries);
if (!table)
return NULL;
for (i=0; i<num_entries; i++) {
double x = (double)i / (num_entries-1);
double y, output;
// IEC 61966-2.1 (sRGB)
// Y = (aX + b)^Gamma | X >= d
// Y = cX | X < d
if (x >= d) {
double e = (a*x + b);
if (e > 0)
y = pow(e, gamma);
else
y = 0;
} else {
y = c*x;
}
// Saturate -- this could likely move to a separate function
output = y * 65535. + .5;
if (output > 65535.)
output = 65535;
if (output < 0)
output = 0;
table[i] = (uint16_t)floor(output);
}
return table;
}
static struct curveType *curve_from_table(uint16_t *table, int num_entries)
{
struct curveType *curve;
int i;
curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*num_entries);
if (!curve)
return NULL;
curve->type = CURVE_TYPE;
curve->count = num_entries;
for (i = 0; i < num_entries; i++) {
curve->data[i] = table[i];
}
return curve;
}
static uint16_t float_to_u8Fixed8Number(float a)
{
if (a > (255.f + 255.f/256))
return 0xffff;
else if (a < 0.f)
return 0;
else
return floor(a*256.f + .5f);
}
static struct curveType *curve_from_gamma(float gamma)
{
struct curveType *curve;
int num_entries = 1;
curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*num_entries);
if (!curve)
return NULL;
curve->count = num_entries;
curve->data[0] = float_to_u8Fixed8Number(gamma);
return curve;
}
//XXX: it would be nice if we had a way of ensuring
// everything in a profile was initialized regardless of how it was created
//XXX: should this also be taking a black_point?
/* similar to CGColorSpaceCreateCalibratedRGB */
qcms_profile* qcms_profile_create_rgb_with_gamma(
qcms_CIE_xyY white_point,
qcms_CIE_xyYTRIPLE primaries,
float gamma)
{
qcms_profile* profile = qcms_profile_create();
if (!profile)
return NO_MEM_PROFILE;
//XXX: should store the whitepoint
if (!set_rgb_colorants(profile, white_point, primaries)) {
qcms_profile_release(profile);
return INVALID_PROFILE;
}
profile->redTRC = curve_from_gamma(gamma);
profile->blueTRC = curve_from_gamma(gamma);
profile->greenTRC = curve_from_gamma(gamma);
if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC) {
qcms_profile_release(profile);
return NO_MEM_PROFILE;
}
profile->class = DISPLAY_DEVICE_PROFILE;
profile->rendering_intent = QCMS_INTENT_PERCEPTUAL;
profile->color_space = RGB_SIGNATURE;
return profile;
}
qcms_profile* qcms_profile_create_rgb_with_table(
qcms_CIE_xyY white_point,
qcms_CIE_xyYTRIPLE primaries,
uint16_t *table, int num_entries)
{
qcms_profile* profile = qcms_profile_create();
if (!profile)
return NO_MEM_PROFILE;
//XXX: should store the whitepoint
if (!set_rgb_colorants(profile, white_point, primaries)) {
qcms_profile_release(profile);
return INVALID_PROFILE;
}
profile->redTRC = curve_from_table(table, num_entries);
profile->blueTRC = curve_from_table(table, num_entries);
profile->greenTRC = curve_from_table(table, num_entries);
if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC) {
qcms_profile_release(profile);
return NO_MEM_PROFILE;
}
profile->class = DISPLAY_DEVICE_PROFILE;
profile->rendering_intent = QCMS_INTENT_PERCEPTUAL;
profile->color_space = RGB_SIGNATURE;
return profile;
}
/* from lcms: cmsWhitePointFromTemp */
/* tempK must be >= 4000. and <= 25000.
* similar to argyll: icx_DTEMP2XYZ() */
static qcms_CIE_xyY white_point_from_temp(int temp_K)
{
qcms_CIE_xyY white_point;
double x, y;
double T, T2, T3;
// double M1, M2;
// No optimization provided.
T = temp_K;
T2 = T*T; // Square
T3 = T2*T; // Cube
// For correlated color temperature (T) between 4000K and 7000K:
if (T >= 4000. && T <= 7000.) {
x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063;
} else {
// or for correlated color temperature (T) between 7000K and 25000K:
if (T > 7000.0 && T <= 25000.0) {
x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040;
} else {
assert(0 && "invalid temp");
}
}
// Obtain y(x)
y = -3.000*(x*x) + 2.870*x - 0.275;
// wave factors (not used, but here for futures extensions)
// M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y);
// M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y);
// Fill white_point struct
white_point.x = x;
white_point.y = y;
white_point.Y = 1.0;
return white_point;
}
qcms_profile* qcms_profile_sRGB(void)
{
qcms_profile *profile;
uint16_t *table;
qcms_CIE_xyYTRIPLE Rec709Primaries = {
{0.6400, 0.3300, 1.0},
{0.3000, 0.6000, 1.0},
{0.1500, 0.0600, 1.0}
};
qcms_CIE_xyY D65;
D65 = white_point_from_temp(6504);
table = build_sRGB_gamma_table(1024);
if (!table)
return NO_MEM_PROFILE;
profile = qcms_profile_create_rgb_with_table(D65, Rec709Primaries, table, 1024);
free(table);
return profile;
}
/* qcms_profile_from_memory does not hold a reference to the memory passed in */
qcms_profile* qcms_profile_from_memory(const void *mem, size_t size)
{
uint32_t length;
struct mem_source source;
struct mem_source *src = &source;
struct tag_index index;
qcms_profile *profile;
source.buf = mem;
source.size = size;
source.valid = true;
length = read_u32(src, 0);
if (length <= size) {
// shrink the area that we can read if appropriate
source.size = length;
} else {
return INVALID_PROFILE;
}
/* ensure that the profile size is sane so it's easier to reason about */
if (source.size <= 64 || source.size >= MAX_PROFILE_SIZE)
return INVALID_PROFILE;
profile = qcms_profile_create();
if (!profile)
return NO_MEM_PROFILE;
check_CMM_type_signature(src);
check_profile_version(src);
read_class_signature(profile, src);
read_rendering_intent(profile, src);
read_color_space(profile, src);
read_pcs(profile, src);
//TODO read rest of profile stuff
if (!src->valid)
goto invalid_profile;
index = read_tag_table(profile, src);
if (!src->valid || !index.tags)
goto invalid_tag_table;
if (find_tag(index, TAG_CHAD)) {
profile->chromaticAdaption = read_tag_s15Fixed16ArrayType(src, index, TAG_CHAD);
} else {
profile->chromaticAdaption.invalid = true; //Signal the data is not present
}
if (profile->class == DISPLAY_DEVICE_PROFILE || profile->class == INPUT_DEVICE_PROFILE ||
profile->class == OUTPUT_DEVICE_PROFILE || profile->class == COLOR_SPACE_PROFILE) {
if (profile->color_space == RGB_SIGNATURE) {
if (find_tag(index, TAG_A2B0)) {
if (read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT8_TYPE ||
read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT16_TYPE) {
profile->A2B0 = read_tag_lutType(src, index, TAG_A2B0);
} else if (read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT_MAB_TYPE) {
profile->mAB = read_tag_lutmABType(src, index, TAG_A2B0);
}
}
if (find_tag(index, TAG_B2A0)) {
if (read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT8_TYPE ||
read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT16_TYPE) {
profile->B2A0 = read_tag_lutType(src, index, TAG_B2A0);
} else if (read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT_MBA_TYPE) {
profile->mBA = read_tag_lutmABType(src, index, TAG_B2A0);
}
}
if (find_tag(index, TAG_rXYZ) || !qcms_supports_iccv4) {
profile->redColorant = read_tag_XYZType(src, index, TAG_rXYZ);
profile->greenColorant = read_tag_XYZType(src, index, TAG_gXYZ);
profile->blueColorant = read_tag_XYZType(src, index, TAG_bXYZ);
}
if (!src->valid)
goto invalid_tag_table;
if (find_tag(index, TAG_rTRC) || !qcms_supports_iccv4) {
profile->redTRC = read_tag_curveType(src, index, TAG_rTRC);
profile->greenTRC = read_tag_curveType(src, index, TAG_gTRC);
profile->blueTRC = read_tag_curveType(src, index, TAG_bTRC);
if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC)
goto invalid_tag_table;
}
} else if (profile->color_space == GRAY_SIGNATURE) {
profile->grayTRC = read_tag_curveType(src, index, TAG_kTRC);
if (!profile->grayTRC)
goto invalid_tag_table;
} else {
assert(0 && "read_color_space protects against entering here");
goto invalid_tag_table;
}
} else {
goto invalid_tag_table;
}
if (!src->valid)
goto invalid_tag_table;
free(index.tags);
return profile;
invalid_tag_table:
free(index.tags);
invalid_profile:
qcms_profile_release(profile);
return INVALID_PROFILE;
}
qcms_intent qcms_profile_get_rendering_intent(qcms_profile *profile)
{
return profile->rendering_intent;
}
icColorSpaceSignature
qcms_profile_get_color_space(qcms_profile *profile)
{
return profile->color_space;
}
static void lut_release(struct lutType *lut)
{
free(lut);
}
void qcms_profile_release(qcms_profile *profile)
{
if (profile->output_table_r)
precache_release(profile->output_table_r);
if (profile->output_table_g)
precache_release(profile->output_table_g);
if (profile->output_table_b)
precache_release(profile->output_table_b);
if (profile->A2B0)
lut_release(profile->A2B0);
if (profile->B2A0)
lut_release(profile->B2A0);
if (profile->mAB)
mAB_release(profile->mAB);
if (profile->mBA)
mAB_release(profile->mBA);
free(profile->redTRC);
free(profile->blueTRC);
free(profile->greenTRC);
free(profile->grayTRC);
free(profile);
}
#include <stdio.h>
qcms_profile* qcms_profile_from_file(FILE *file)
{
uint32_t length, remaining_length;
qcms_profile *profile;
size_t read_length;
be32 length_be;
void *data;
if (fread(&length_be, 1, sizeof(length_be), file) != sizeof(length_be))
return BAD_VALUE_PROFILE;
length = be32_to_cpu(length_be);
if (length > MAX_PROFILE_SIZE || length < sizeof(length_be))
return BAD_VALUE_PROFILE;
/* allocate room for the entire profile */
data = malloc(length);
if (!data)
return NO_MEM_PROFILE;
/* copy in length to the front so that the buffer will contain the entire profile */
*((be32*)data) = length_be;
remaining_length = length - sizeof(length_be);
/* read the rest profile */
read_length = fread((unsigned char*)data + sizeof(length_be), 1, remaining_length, file);
if (read_length != remaining_length) {
free(data);
return INVALID_PROFILE;
}
profile = qcms_profile_from_memory(data, length);
free(data);
return profile;
}
qcms_profile* qcms_profile_from_path(const char *path)
{
qcms_profile *profile = NULL;
FILE *file = fopen(path, "rb");
if (file) {
profile = qcms_profile_from_file(file);
fclose(file);
}
return profile;
}
#ifdef _WIN32
/* Unicode path version */
qcms_profile* qcms_profile_from_unicode_path(const wchar_t *path)
{
qcms_profile *profile = NULL;
FILE *file = _wfopen(path, L"rb");
if (file) {
profile = qcms_profile_from_file(file);
fclose(file);
}
return profile;
}
#endif