// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/websockets/websocket_channel.h"
#include <string.h>
#include <iostream>
#include <string>
#include <vector>
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/callback.h"
#include "base/location.h"
#include "base/memory/scoped_ptr.h"
#include "base/memory/scoped_vector.h"
#include "base/memory/weak_ptr.h"
#include "base/message_loop/message_loop.h"
#include "base/safe_numerics.h"
#include "base/strings/string_piece.h"
#include "net/base/net_errors.h"
#include "net/base/test_completion_callback.h"
#include "net/url_request/url_request_context.h"
#include "net/websockets/websocket_errors.h"
#include "net/websockets/websocket_event_interface.h"
#include "net/websockets/websocket_mux.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "url/gurl.h"
// Hacky macros to construct the body of a Close message from a code and a
// string, while ensuring the result is a compile-time constant string.
// Use like CLOSE_DATA(NORMAL_CLOSURE, "Explanation String")
#define CLOSE_DATA(code, string) WEBSOCKET_CLOSE_CODE_AS_STRING_##code string
#define WEBSOCKET_CLOSE_CODE_AS_STRING_NORMAL_CLOSURE "\x03\xe8"
#define WEBSOCKET_CLOSE_CODE_AS_STRING_GOING_AWAY "\x03\xe9"
#define WEBSOCKET_CLOSE_CODE_AS_STRING_PROTOCOL_ERROR "\x03\xea"
#define WEBSOCKET_CLOSE_CODE_AS_STRING_SERVER_ERROR "\x03\xf3"
namespace net {
// Printing helpers to allow GoogleMock to print frames. These are explicitly
// designed to look like the static initialisation format we use in these
// tests. They have to live in the net namespace in order to be found by
// GoogleMock; a nested anonymous namespace will not work.
std::ostream& operator<<(std::ostream& os, const WebSocketFrameHeader& header) {
return os << (header.final ? "FINAL_FRAME" : "NOT_FINAL_FRAME") << ", "
<< header.opcode << ", "
<< (header.masked ? "MASKED" : "NOT_MASKED");
}
std::ostream& operator<<(std::ostream& os, const WebSocketFrame& frame) {
os << "{" << frame.header << ", ";
if (frame.data) {
return os << "\"" << base::StringPiece(frame.data->data(),
frame.header.payload_length)
<< "\"}";
}
return os << "NULL}";
}
std::ostream& operator<<(std::ostream& os,
const ScopedVector<WebSocketFrame>& vector) {
os << "{";
bool first = true;
for (ScopedVector<WebSocketFrame>::const_iterator it = vector.begin();
it != vector.end();
++it) {
if (!first) {
os << ",\n";
} else {
first = false;
}
os << **it;
}
return os << "}";
}
std::ostream& operator<<(std::ostream& os,
const ScopedVector<WebSocketFrame>* vector) {
return os << '&' << *vector;
}
namespace {
using ::base::TimeDelta;
using ::testing::AnyNumber;
using ::testing::DefaultValue;
using ::testing::InSequence;
using ::testing::MockFunction;
using ::testing::Return;
using ::testing::SaveArg;
using ::testing::StrictMock;
using ::testing::_;
// A selection of characters that have traditionally been mangled in some
// environment or other, for testing 8-bit cleanliness.
const char kBinaryBlob[] = {'\n', '\r', // BACKWARDS CRNL
'\0', // nul
'\x7F', // DEL
'\x80', '\xFF', // NOT VALID UTF-8
'\x1A', // Control-Z, EOF on DOS
'\x03', // Control-C
'\x04', // EOT, special for Unix terms
'\x1B', // ESC, often special
'\b', // backspace
'\'', // single-quote, special in PHP
};
const size_t kBinaryBlobSize = arraysize(kBinaryBlob);
// The amount of quota a new connection gets by default.
// TODO(ricea): If kDefaultSendQuotaHighWaterMark changes, then this value will
// need to be updated.
const size_t kDefaultInitialQuota = 1 << 17;
// The amount of bytes we need to send after the initial connection to trigger a
// quota refresh. TODO(ricea): Change this if kDefaultSendQuotaHighWaterMark or
// kDefaultSendQuotaLowWaterMark change.
const size_t kDefaultQuotaRefreshTrigger = (1 << 16) + 1;
// TestTimeouts::tiny_timeout() is 100ms! I could run halfway around the world
// in that time! I would like my tests to run a bit quicker.
const int kVeryTinyTimeoutMillis = 1;
typedef WebSocketEventInterface::ChannelState ChannelState;
const ChannelState CHANNEL_ALIVE = WebSocketEventInterface::CHANNEL_ALIVE;
const ChannelState CHANNEL_DELETED = WebSocketEventInterface::CHANNEL_DELETED;
// This typedef mainly exists to avoid having to repeat the "NOLINT" incantation
// all over the place.
typedef MockFunction<void(int)> Checkpoint; // NOLINT
// This mock is for testing expectations about how the EventInterface is used.
class MockWebSocketEventInterface : public WebSocketEventInterface {
public:
MOCK_METHOD2(OnAddChannelResponse,
ChannelState(bool, const std::string&)); // NOLINT
MOCK_METHOD3(OnDataFrame,
ChannelState(bool,
WebSocketMessageType,
const std::vector<char>&)); // NOLINT
MOCK_METHOD1(OnFlowControl, ChannelState(int64)); // NOLINT
MOCK_METHOD0(OnClosingHandshake, ChannelState(void)); // NOLINT
MOCK_METHOD2(OnDropChannel,
ChannelState(uint16, const std::string&)); // NOLINT
};
// This fake EventInterface is for tests which need a WebSocketEventInterface
// implementation but are not verifying how it is used.
class FakeWebSocketEventInterface : public WebSocketEventInterface {
virtual ChannelState OnAddChannelResponse(
bool fail,
const std::string& selected_protocol) OVERRIDE {
return fail ? CHANNEL_DELETED : CHANNEL_ALIVE;
}
virtual ChannelState OnDataFrame(bool fin,
WebSocketMessageType type,
const std::vector<char>& data) OVERRIDE {
return CHANNEL_ALIVE;
}
virtual ChannelState OnFlowControl(int64 quota) OVERRIDE {
return CHANNEL_ALIVE;
}
virtual ChannelState OnClosingHandshake() OVERRIDE { return CHANNEL_ALIVE; }
virtual ChannelState OnDropChannel(uint16 code,
const std::string& reason) OVERRIDE {
return CHANNEL_DELETED;
}
};
// This fake WebSocketStream is for tests that require a WebSocketStream but are
// not testing the way it is used. It has minimal functionality to return
// the |protocol| and |extensions| that it was constructed with.
class FakeWebSocketStream : public WebSocketStream {
public:
// Constructs with empty protocol and extensions.
FakeWebSocketStream() {}
// Constructs with specified protocol and extensions.
FakeWebSocketStream(const std::string& protocol,
const std::string& extensions)
: protocol_(protocol), extensions_(extensions) {}
virtual int ReadFrames(ScopedVector<WebSocketFrame>* frames,
const CompletionCallback& callback) OVERRIDE {
return ERR_IO_PENDING;
}
virtual int WriteFrames(ScopedVector<WebSocketFrame>* frames,
const CompletionCallback& callback) OVERRIDE {
return ERR_IO_PENDING;
}
virtual void Close() OVERRIDE {}
// Returns the string passed to the constructor.
virtual std::string GetSubProtocol() const OVERRIDE { return protocol_; }
// Returns the string passed to the constructor.
virtual std::string GetExtensions() const OVERRIDE { return extensions_; }
private:
// The string to return from GetSubProtocol().
std::string protocol_;
// The string to return from GetExtensions().
std::string extensions_;
};
// To make the static initialisers easier to read, we use enums rather than
// bools.
enum IsFinal {
NOT_FINAL_FRAME,
FINAL_FRAME
};
enum IsMasked {
NOT_MASKED,
MASKED
};
// This is used to initialise a WebSocketFrame but is statically initialisable.
struct InitFrame {
IsFinal final;
// Reserved fields omitted for now. Add them if you need them.
WebSocketFrameHeader::OpCode opcode;
IsMasked masked;
// Will be used to create the IOBuffer member. Can be NULL for NULL data. Is a
// nul-terminated string for ease-of-use. |header.payload_length| is
// initialised from |strlen(data)|. This means it is not 8-bit clean, but this
// is not an issue for test data.
const char* const data;
};
// For GoogleMock
std::ostream& operator<<(std::ostream& os, const InitFrame& frame) {
os << "{" << (frame.final == FINAL_FRAME ? "FINAL_FRAME" : "NOT_FINAL_FRAME")
<< ", " << frame.opcode << ", "
<< (frame.masked == MASKED ? "MASKED" : "NOT_MASKED") << ", ";
if (frame.data) {
return os << "\"" << frame.data << "\"}";
}
return os << "NULL}";
}
template <size_t N>
std::ostream& operator<<(std::ostream& os, const InitFrame (&frames)[N]) {
os << "{";
bool first = true;
for (size_t i = 0; i < N; ++i) {
if (!first) {
os << ",\n";
} else {
first = false;
}
os << frames[i];
}
return os << "}";
}
// Convert a const array of InitFrame structs to the format used at
// runtime. Templated on the size of the array to save typing.
template <size_t N>
ScopedVector<WebSocketFrame> CreateFrameVector(
const InitFrame (&source_frames)[N]) {
ScopedVector<WebSocketFrame> result_frames;
result_frames.reserve(N);
for (size_t i = 0; i < N; ++i) {
const InitFrame& source_frame = source_frames[i];
scoped_ptr<WebSocketFrame> result_frame(
new WebSocketFrame(source_frame.opcode));
size_t frame_length = source_frame.data ? strlen(source_frame.data) : 0;
WebSocketFrameHeader& result_header = result_frame->header;
result_header.final = (source_frame.final == FINAL_FRAME);
result_header.masked = (source_frame.masked == MASKED);
result_header.payload_length = frame_length;
if (source_frame.data) {
result_frame->data = new IOBuffer(frame_length);
memcpy(result_frame->data->data(), source_frame.data, frame_length);
}
result_frames.push_back(result_frame.release());
}
return result_frames.Pass();
}
// A GoogleMock action which can be used to respond to call to ReadFrames with
// some frames. Use like ReadFrames(_, _).WillOnce(ReturnFrames(&frames));
// |frames| is an array of InitFrame. |frames| needs to be passed by pointer
// because otherwise it will be treated as a pointer and the array size
// information will be lost.
ACTION_P(ReturnFrames, source_frames) {
*arg0 = CreateFrameVector(*source_frames);
return OK;
}
// The implementation of a GoogleMock matcher which can be used to compare a
// ScopedVector<WebSocketFrame>* against an expectation defined as an array of
// InitFrame objects. Although it is possible to compose built-in GoogleMock
// matchers to check the contents of a WebSocketFrame, the results are so
// unreadable that it is better to use this matcher.
template <size_t N>
class EqualsFramesMatcher
: public ::testing::MatcherInterface<ScopedVector<WebSocketFrame>*> {
public:
EqualsFramesMatcher(const InitFrame (*expect_frames)[N])
: expect_frames_(expect_frames) {}
virtual bool MatchAndExplain(ScopedVector<WebSocketFrame>* actual_frames,
::testing::MatchResultListener* listener) const {
if (actual_frames->size() != N) {
*listener << "the vector size is " << actual_frames->size();
return false;
}
for (size_t i = 0; i < N; ++i) {
const WebSocketFrame& actual_frame = *(*actual_frames)[i];
const InitFrame& expected_frame = (*expect_frames_)[i];
if (actual_frame.header.final != (expected_frame.final == FINAL_FRAME)) {
*listener << "the frame is marked as "
<< (actual_frame.header.final ? "" : "not ") << "final";
return false;
}
if (actual_frame.header.opcode != expected_frame.opcode) {
*listener << "the opcode is " << actual_frame.header.opcode;
return false;
}
if (actual_frame.header.masked != (expected_frame.masked == MASKED)) {
*listener << "the frame is "
<< (actual_frame.header.masked ? "masked" : "not masked");
return false;
}
const size_t expected_length =
expected_frame.data ? strlen(expected_frame.data) : 0;
if (actual_frame.header.payload_length != expected_length) {
*listener << "the payload length is "
<< actual_frame.header.payload_length;
return false;
}
if (expected_length != 0 &&
memcmp(actual_frame.data->data(),
expected_frame.data,
actual_frame.header.payload_length) != 0) {
*listener << "the data content differs";
return false;
}
}
return true;
}
virtual void DescribeTo(std::ostream* os) const {
*os << "matches " << *expect_frames_;
}
virtual void DescribeNegationTo(std::ostream* os) const {
*os << "does not match " << *expect_frames_;
}
private:
const InitFrame (*expect_frames_)[N];
};
// The definition of EqualsFrames GoogleMock matcher. Unlike the ReturnFrames
// action, this can take the array by reference.
template <size_t N>
::testing::Matcher<ScopedVector<WebSocketFrame>*> EqualsFrames(
const InitFrame (&frames)[N]) {
return ::testing::MakeMatcher(new EqualsFramesMatcher<N>(&frames));
}
// TestClosure works like TestCompletionCallback, but doesn't take an argument.
class TestClosure {
public:
base::Closure closure() { return base::Bind(callback_.callback(), OK); }
void WaitForResult() { callback_.WaitForResult(); }
private:
// Delegate to TestCompletionCallback for the implementation.
TestCompletionCallback callback_;
};
// A GoogleMock action to run a Closure.
ACTION_P(InvokeClosure, closure) { closure.Run(); }
// A GoogleMock action to run a Closure and return CHANNEL_DELETED.
ACTION_P(InvokeClosureReturnDeleted, closure) {
closure.Run();
return WebSocketEventInterface::CHANNEL_DELETED;
}
// A FakeWebSocketStream whose ReadFrames() function returns data.
class ReadableFakeWebSocketStream : public FakeWebSocketStream {
public:
enum IsSync {
SYNC,
ASYNC
};
// After constructing the object, call PrepareReadFrames() once for each
// time you wish it to return from the test.
ReadableFakeWebSocketStream() : index_(0), read_frames_pending_(false) {}
// Check that all the prepared responses have been consumed.
virtual ~ReadableFakeWebSocketStream() {
CHECK(index_ >= responses_.size());
CHECK(!read_frames_pending_);
}
// Prepares a fake response. Fake responses will be returned from ReadFrames()
// in the same order they were prepared with PrepareReadFrames() and
// PrepareReadFramesError(). If |async| is ASYNC, then ReadFrames() will
// return ERR_IO_PENDING and the callback will be scheduled to run on the
// message loop. This requires the test case to run the message loop. If
// |async| is SYNC, the response will be returned synchronously. |error| is
// returned directly from ReadFrames() in the synchronous case, or passed to
// the callback in the asynchronous case. |frames| will be converted to a
// ScopedVector<WebSocketFrame> and copied to the pointer that was passed to
// ReadFrames().
template <size_t N>
void PrepareReadFrames(IsSync async,
int error,
const InitFrame (&frames)[N]) {
responses_.push_back(new Response(async, error, CreateFrameVector(frames)));
}
// An alternate version of PrepareReadFrames for when we need to construct
// the frames manually.
void PrepareRawReadFrames(IsSync async,
int error,
ScopedVector<WebSocketFrame> frames) {
responses_.push_back(new Response(async, error, frames.Pass()));
}
// Prepares a fake error response (ie. there is no data).
void PrepareReadFramesError(IsSync async, int error) {
responses_.push_back(
new Response(async, error, ScopedVector<WebSocketFrame>()));
}
virtual int ReadFrames(ScopedVector<WebSocketFrame>* frames,
const CompletionCallback& callback) OVERRIDE {
CHECK(!read_frames_pending_);
if (index_ >= responses_.size())
return ERR_IO_PENDING;
if (responses_[index_]->async == ASYNC) {
read_frames_pending_ = true;
base::MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&ReadableFakeWebSocketStream::DoCallback,
base::Unretained(this),
frames,
callback));
return ERR_IO_PENDING;
} else {
frames->swap(responses_[index_]->frames);
return responses_[index_++]->error;
}
}
private:
void DoCallback(ScopedVector<WebSocketFrame>* frames,
const CompletionCallback& callback) {
read_frames_pending_ = false;
frames->swap(responses_[index_]->frames);
callback.Run(responses_[index_++]->error);
return;
}
struct Response {
Response(IsSync async, int error, ScopedVector<WebSocketFrame> frames)
: async(async), error(error), frames(frames.Pass()) {}
IsSync async;
int error;
ScopedVector<WebSocketFrame> frames;
private:
// Bad things will happen if we attempt to copy or assign |frames|.
DISALLOW_COPY_AND_ASSIGN(Response);
};
ScopedVector<Response> responses_;
// The index into the responses_ array of the next response to be returned.
size_t index_;
// True when an async response from ReadFrames() is pending. This only applies
// to "real" async responses. Once all the prepared responses have been
// returned, ReadFrames() returns ERR_IO_PENDING but read_frames_pending_ is
// not set to true.
bool read_frames_pending_;
};
// A FakeWebSocketStream where writes always complete successfully and
// synchronously.
class WriteableFakeWebSocketStream : public FakeWebSocketStream {
public:
virtual int WriteFrames(ScopedVector<WebSocketFrame>* frames,
const CompletionCallback& callback) OVERRIDE {
return OK;
}
};
// A FakeWebSocketStream where writes always fail.
class UnWriteableFakeWebSocketStream : public FakeWebSocketStream {
public:
virtual int WriteFrames(ScopedVector<WebSocketFrame>* frames,
const CompletionCallback& callback) OVERRIDE {
return ERR_CONNECTION_RESET;
}
};
// A FakeWebSocketStream which echoes any frames written back. Clears the
// "masked" header bit, but makes no other checks for validity. Tests using this
// must run the MessageLoop to receive the callback(s). If a message with opcode
// Close is echoed, then an ERR_CONNECTION_CLOSED is returned in the next
// callback. The test must do something to cause WriteFrames() to be called,
// otherwise the ReadFrames() callback will never be called.
class EchoeyFakeWebSocketStream : public FakeWebSocketStream {
public:
EchoeyFakeWebSocketStream() : read_frames_(NULL), done_(false) {}
virtual int WriteFrames(ScopedVector<WebSocketFrame>* frames,
const CompletionCallback& callback) OVERRIDE {
// Users of WebSocketStream will not expect the ReadFrames() callback to be
// called from within WriteFrames(), so post it to the message loop instead.
stored_frames_.insert(stored_frames_.end(), frames->begin(), frames->end());
frames->weak_clear();
PostCallback();
return OK;
}
virtual int ReadFrames(ScopedVector<WebSocketFrame>* frames,
const CompletionCallback& callback) OVERRIDE {
read_callback_ = callback;
read_frames_ = frames;
if (done_)
PostCallback();
return ERR_IO_PENDING;
}
private:
void PostCallback() {
base::MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&EchoeyFakeWebSocketStream::DoCallback,
base::Unretained(this)));
}
void DoCallback() {
if (done_) {
read_callback_.Run(ERR_CONNECTION_CLOSED);
} else if (!stored_frames_.empty()) {
done_ = MoveFrames(read_frames_);
read_frames_ = NULL;
read_callback_.Run(OK);
}
}
// Copy the frames stored in stored_frames_ to |out|, while clearing the
// "masked" header bit. Returns true if a Close Frame was seen, false
// otherwise.
bool MoveFrames(ScopedVector<WebSocketFrame>* out) {
bool seen_close = false;
*out = stored_frames_.Pass();
for (ScopedVector<WebSocketFrame>::iterator it = out->begin();
it != out->end();
++it) {
WebSocketFrameHeader& header = (*it)->header;
header.masked = false;
if (header.opcode == WebSocketFrameHeader::kOpCodeClose)
seen_close = true;
}
return seen_close;
}
ScopedVector<WebSocketFrame> stored_frames_;
CompletionCallback read_callback_;
// Owned by the caller of ReadFrames().
ScopedVector<WebSocketFrame>* read_frames_;
// True if we should close the connection.
bool done_;
};
// A FakeWebSocketStream where writes trigger a connection reset.
// This differs from UnWriteableFakeWebSocketStream in that it is asynchronous
// and triggers ReadFrames to return a reset as well. Tests using this need to
// run the message loop. There are two tricky parts here:
// 1. Calling the write callback may call Close(), after which the read callback
// should not be called.
// 2. Calling either callback may delete the stream altogether.
class ResetOnWriteFakeWebSocketStream : public FakeWebSocketStream {
public:
ResetOnWriteFakeWebSocketStream() : closed_(false), weak_ptr_factory_(this) {}
virtual int WriteFrames(ScopedVector<WebSocketFrame>* frames,
const CompletionCallback& callback) OVERRIDE {
base::MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&ResetOnWriteFakeWebSocketStream::CallCallbackUnlessClosed,
weak_ptr_factory_.GetWeakPtr(),
callback,
ERR_CONNECTION_RESET));
base::MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&ResetOnWriteFakeWebSocketStream::CallCallbackUnlessClosed,
weak_ptr_factory_.GetWeakPtr(),
read_callback_,
ERR_CONNECTION_RESET));
return ERR_IO_PENDING;
}
virtual int ReadFrames(ScopedVector<WebSocketFrame>* frames,
const CompletionCallback& callback) OVERRIDE {
read_callback_ = callback;
return ERR_IO_PENDING;
}
virtual void Close() OVERRIDE { closed_ = true; }
private:
void CallCallbackUnlessClosed(const CompletionCallback& callback, int value) {
if (!closed_)
callback.Run(value);
}
CompletionCallback read_callback_;
bool closed_;
// An IO error can result in the socket being deleted, so we use weak pointers
// to ensure correct behaviour in that case.
base::WeakPtrFactory<ResetOnWriteFakeWebSocketStream> weak_ptr_factory_;
};
// This mock is for verifying that WebSocket protocol semantics are obeyed (to
// the extent that they are implemented in WebSocketCommon).
class MockWebSocketStream : public WebSocketStream {
public:
MOCK_METHOD2(ReadFrames,
int(ScopedVector<WebSocketFrame>* frames,
const CompletionCallback& callback));
MOCK_METHOD2(WriteFrames,
int(ScopedVector<WebSocketFrame>* frames,
const CompletionCallback& callback));
MOCK_METHOD0(Close, void());
MOCK_CONST_METHOD0(GetSubProtocol, std::string());
MOCK_CONST_METHOD0(GetExtensions, std::string());
MOCK_METHOD0(AsWebSocketStream, WebSocketStream*());
};
struct ArgumentCopyingWebSocketStreamCreator {
scoped_ptr<WebSocketStreamRequest> Create(
const GURL& socket_url,
const std::vector<std::string>& requested_subprotocols,
const GURL& origin,
URLRequestContext* url_request_context,
const BoundNetLog& net_log,
scoped_ptr<WebSocketStream::ConnectDelegate> connect_delegate) {
this->socket_url = socket_url;
this->requested_subprotocols = requested_subprotocols;
this->origin = origin;
this->url_request_context = url_request_context;
this->net_log = net_log;
this->connect_delegate = connect_delegate.Pass();
return make_scoped_ptr(new WebSocketStreamRequest);
}
GURL socket_url;
GURL origin;
std::vector<std::string> requested_subprotocols;
URLRequestContext* url_request_context;
BoundNetLog net_log;
scoped_ptr<WebSocketStream::ConnectDelegate> connect_delegate;
};
// Converts a std::string to a std::vector<char>. For test purposes, it is
// convenient to be able to specify data as a string, but the
// WebSocketEventInterface requires the vector<char> type.
std::vector<char> AsVector(const std::string& s) {
return std::vector<char>(s.begin(), s.end());
}
// Base class for all test fixtures.
class WebSocketChannelTest : public ::testing::Test {
protected:
WebSocketChannelTest() : stream_(new FakeWebSocketStream) {}
// Creates a new WebSocketChannel and connects it, using the settings stored
// in |connect_data_|.
void CreateChannelAndConnect() {
channel_.reset(new WebSocketChannel(CreateEventInterface(),
&connect_data_.url_request_context));
channel_->SendAddChannelRequestForTesting(
connect_data_.socket_url,
connect_data_.requested_subprotocols,
connect_data_.origin,
base::Bind(&ArgumentCopyingWebSocketStreamCreator::Create,
base::Unretained(&connect_data_.creator)));
}
// Same as CreateChannelAndConnect(), but calls the on_success callback as
// well. This method is virtual so that subclasses can also set the stream.
virtual void CreateChannelAndConnectSuccessfully() {
CreateChannelAndConnect();
connect_data_.creator.connect_delegate->OnSuccess(stream_.Pass());
}
// Returns a WebSocketEventInterface to be passed to the WebSocketChannel.
// This implementation returns a newly-created fake. Subclasses may return a
// mock instead.
virtual scoped_ptr<WebSocketEventInterface> CreateEventInterface() {
return scoped_ptr<WebSocketEventInterface>(new FakeWebSocketEventInterface);
}
// This method serves no other purpose than to provide a nice syntax for
// assigning to stream_. class T must be a subclass of WebSocketStream or you
// will have unpleasant compile errors.
template <class T>
void set_stream(scoped_ptr<T> stream) {
// Since the definition of "PassAs" depends on the type T, the C++ standard
// requires the "template" keyword to indicate that "PassAs" should be
// parsed as a template method.
stream_ = stream.template PassAs<WebSocketStream>();
}
// A struct containing the data that will be used to connect the channel.
// Grouped for readability.
struct ConnectData {
ConnectData() :
socket_url("ws://ws/"),
origin("http://ws/")
{}
// URLRequestContext object.
URLRequestContext url_request_context;
// URL to (pretend to) connect to.
GURL socket_url;
// Requested protocols for the request.
std::vector<std::string> requested_subprotocols;
// Origin of the request
GURL origin;
// A fake WebSocketStreamCreator that just records its arguments.
ArgumentCopyingWebSocketStreamCreator creator;
};
ConnectData connect_data_;
// The channel we are testing. Not initialised until SetChannel() is called.
scoped_ptr<WebSocketChannel> channel_;
// A mock or fake stream for tests that need one.
scoped_ptr<WebSocketStream> stream_;
};
// enum of WebSocketEventInterface calls. These are intended to be or'd together
// in order to instruct WebSocketChannelDeletingTest when it should fail.
enum EventInterfaceCall {
EVENT_ON_ADD_CHANNEL_RESPONSE = 0x1,
EVENT_ON_DATA_FRAME = 0x2,
EVENT_ON_FLOW_CONTROL = 0x4,
EVENT_ON_CLOSING_HANDSHAKE = 0x8,
EVENT_ON_DROP_CHANNEL = 0x10,
};
class WebSocketChannelDeletingTest : public WebSocketChannelTest {
public:
ChannelState DeleteIfDeleting(EventInterfaceCall call) {
if (deleting_ & call) {
channel_.reset();
return CHANNEL_DELETED;
} else {
return CHANNEL_ALIVE;
}
}
protected:
WebSocketChannelDeletingTest()
: deleting_(EVENT_ON_ADD_CHANNEL_RESPONSE | EVENT_ON_DATA_FRAME |
EVENT_ON_FLOW_CONTROL |
EVENT_ON_CLOSING_HANDSHAKE |
EVENT_ON_DROP_CHANNEL) {}
// Create a ChannelDeletingFakeWebSocketEventInterface. Defined out-of-line to
// avoid circular dependency.
virtual scoped_ptr<WebSocketEventInterface> CreateEventInterface() OVERRIDE;
// Tests can set deleting_ to a bitmap of EventInterfaceCall members that they
// want to cause Channel deletion. The default is for all calls to cause
// deletion.
int deleting_;
};
// A FakeWebSocketEventInterface that deletes the WebSocketChannel on failure to
// connect.
class ChannelDeletingFakeWebSocketEventInterface
: public FakeWebSocketEventInterface {
public:
ChannelDeletingFakeWebSocketEventInterface(
WebSocketChannelDeletingTest* fixture)
: fixture_(fixture) {}
virtual ChannelState OnAddChannelResponse(
bool fail,
const std::string& selected_protocol) OVERRIDE {
return fixture_->DeleteIfDeleting(EVENT_ON_ADD_CHANNEL_RESPONSE);
}
virtual ChannelState OnDataFrame(bool fin,
WebSocketMessageType type,
const std::vector<char>& data) OVERRIDE {
return fixture_->DeleteIfDeleting(EVENT_ON_DATA_FRAME);
}
virtual ChannelState OnFlowControl(int64 quota) OVERRIDE {
return fixture_->DeleteIfDeleting(EVENT_ON_FLOW_CONTROL);
}
virtual ChannelState OnClosingHandshake() OVERRIDE {
return fixture_->DeleteIfDeleting(EVENT_ON_CLOSING_HANDSHAKE);
}
virtual ChannelState OnDropChannel(uint16 code,
const std::string& reason) OVERRIDE {
return fixture_->DeleteIfDeleting(EVENT_ON_DROP_CHANNEL);
}
private:
// A pointer to the test fixture. Owned by the test harness; this object will
// be deleted before it is.
WebSocketChannelDeletingTest* fixture_;
};
scoped_ptr<WebSocketEventInterface>
WebSocketChannelDeletingTest::CreateEventInterface() {
return scoped_ptr<WebSocketEventInterface>(
new ChannelDeletingFakeWebSocketEventInterface(this));
}
// Base class for tests which verify that EventInterface methods are called
// appropriately.
class WebSocketChannelEventInterfaceTest : public WebSocketChannelTest {
protected:
WebSocketChannelEventInterfaceTest()
: event_interface_(new StrictMock<MockWebSocketEventInterface>) {
DefaultValue<ChannelState>::Set(CHANNEL_ALIVE);
ON_CALL(*event_interface_, OnAddChannelResponse(true, _))
.WillByDefault(Return(CHANNEL_DELETED));
ON_CALL(*event_interface_, OnDropChannel(_, _))
.WillByDefault(Return(CHANNEL_DELETED));
}
virtual ~WebSocketChannelEventInterfaceTest() {
DefaultValue<ChannelState>::Clear();
}
// Tests using this fixture must set expectations on the event_interface_ mock
// object before calling CreateChannelAndConnect() or
// CreateChannelAndConnectSuccessfully(). This will only work once per test
// case, but once should be enough.
virtual scoped_ptr<WebSocketEventInterface> CreateEventInterface() OVERRIDE {
return scoped_ptr<WebSocketEventInterface>(event_interface_.release());
}
scoped_ptr<MockWebSocketEventInterface> event_interface_;
};
// Base class for tests which verify that WebSocketStream methods are called
// appropriately by using a MockWebSocketStream.
class WebSocketChannelStreamTest : public WebSocketChannelTest {
protected:
WebSocketChannelStreamTest()
: mock_stream_(new StrictMock<MockWebSocketStream>) {}
virtual void CreateChannelAndConnectSuccessfully() OVERRIDE {
set_stream(mock_stream_.Pass());
WebSocketChannelTest::CreateChannelAndConnectSuccessfully();
}
scoped_ptr<MockWebSocketStream> mock_stream_;
};
// Simple test that everything that should be passed to the creator function is
// passed to the creator function.
TEST_F(WebSocketChannelTest, EverythingIsPassedToTheCreatorFunction) {
connect_data_.socket_url = GURL("ws://example.com/test");
connect_data_.origin = GURL("http://example.com/test");
connect_data_.requested_subprotocols.push_back("Sinbad");
CreateChannelAndConnect();
const ArgumentCopyingWebSocketStreamCreator& actual = connect_data_.creator;
EXPECT_EQ(&connect_data_.url_request_context, actual.url_request_context);
EXPECT_EQ(connect_data_.socket_url, actual.socket_url);
EXPECT_EQ(connect_data_.requested_subprotocols,
actual.requested_subprotocols);
EXPECT_EQ(connect_data_.origin, actual.origin);
}
// Verify that calling SendFlowControl before the connection is established does
// not cause a crash.
TEST_F(WebSocketChannelTest, SendFlowControlDuringHandshakeOkay) {
CreateChannelAndConnect();
ASSERT_TRUE(channel_);
channel_->SendFlowControl(65536);
}
// Any WebSocketEventInterface methods can delete the WebSocketChannel and
// return CHANNEL_DELETED. The WebSocketChannelDeletingTests are intended to
// verify that there are no use-after-free bugs when this happens. Problems will
// probably only be found when running under Address Sanitizer or a similar
// tool.
TEST_F(WebSocketChannelDeletingTest, OnAddChannelResponseFail) {
CreateChannelAndConnect();
EXPECT_TRUE(channel_);
connect_data_.creator.connect_delegate->OnFailure(
kWebSocketErrorNoStatusReceived);
EXPECT_EQ(NULL, channel_.get());
}
// Deletion is possible (due to IPC failure) even if the connect succeeds.
TEST_F(WebSocketChannelDeletingTest, OnAddChannelResponseSuccess) {
CreateChannelAndConnectSuccessfully();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, OnDataFrameSync) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, NOT_MASKED, "HELLO"}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
set_stream(stream.Pass());
deleting_ = EVENT_ON_DATA_FRAME;
CreateChannelAndConnectSuccessfully();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, OnDataFrameAsync) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, NOT_MASKED, "HELLO"}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames);
set_stream(stream.Pass());
deleting_ = EVENT_ON_DATA_FRAME;
CreateChannelAndConnectSuccessfully();
EXPECT_TRUE(channel_);
base::MessageLoop::current()->RunUntilIdle();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, OnFlowControlAfterConnect) {
deleting_ = EVENT_ON_FLOW_CONTROL;
CreateChannelAndConnectSuccessfully();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, OnFlowControlAfterSend) {
set_stream(make_scoped_ptr(new WriteableFakeWebSocketStream));
// Avoid deleting the channel yet.
deleting_ = EVENT_ON_DROP_CHANNEL;
CreateChannelAndConnectSuccessfully();
ASSERT_TRUE(channel_);
deleting_ = EVENT_ON_FLOW_CONTROL;
channel_->SendFrame(true,
WebSocketFrameHeader::kOpCodeText,
std::vector<char>(kDefaultInitialQuota, 'B'));
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, OnClosingHandshakeSync) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
NOT_MASKED, CLOSE_DATA(NORMAL_CLOSURE, "Success")}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
set_stream(stream.Pass());
deleting_ = EVENT_ON_CLOSING_HANDSHAKE;
CreateChannelAndConnectSuccessfully();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, OnClosingHandshakeAsync) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
NOT_MASKED, CLOSE_DATA(NORMAL_CLOSURE, "Success")}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames);
set_stream(stream.Pass());
deleting_ = EVENT_ON_CLOSING_HANDSHAKE;
CreateChannelAndConnectSuccessfully();
ASSERT_TRUE(channel_);
base::MessageLoop::current()->RunUntilIdle();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, OnDropChannelWriteError) {
set_stream(make_scoped_ptr(new UnWriteableFakeWebSocketStream));
deleting_ = EVENT_ON_DROP_CHANNEL;
CreateChannelAndConnectSuccessfully();
ASSERT_TRUE(channel_);
channel_->SendFrame(
true, WebSocketFrameHeader::kOpCodeText, AsVector("this will fail"));
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, OnDropChannelReadError) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
stream->PrepareReadFramesError(ReadableFakeWebSocketStream::ASYNC,
ERR_FAILED);
set_stream(stream.Pass());
deleting_ = EVENT_ON_DROP_CHANNEL;
CreateChannelAndConnectSuccessfully();
ASSERT_TRUE(channel_);
base::MessageLoop::current()->RunUntilIdle();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, FailChannelInSendFrame) {
set_stream(make_scoped_ptr(new WriteableFakeWebSocketStream));
deleting_ = EVENT_ON_DROP_CHANNEL;
CreateChannelAndConnectSuccessfully();
ASSERT_TRUE(channel_);
channel_->SendFrame(true,
WebSocketFrameHeader::kOpCodeText,
std::vector<char>(kDefaultInitialQuota * 2, 'T'));
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, FailChannelInOnReadDone) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
stream->PrepareReadFramesError(ReadableFakeWebSocketStream::ASYNC,
ERR_WS_PROTOCOL_ERROR);
set_stream(stream.Pass());
deleting_ = EVENT_ON_DROP_CHANNEL;
CreateChannelAndConnectSuccessfully();
ASSERT_TRUE(channel_);
base::MessageLoop::current()->RunUntilIdle();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, FailChannelDueToMaskedFrame) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, MASKED, "HELLO"}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
set_stream(stream.Pass());
deleting_ = EVENT_ON_DROP_CHANNEL;
CreateChannelAndConnectSuccessfully();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, FailChannelDueToBadControlFrame) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{NOT_FINAL_FRAME, WebSocketFrameHeader::kOpCodePong, NOT_MASKED, ""}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
set_stream(stream.Pass());
deleting_ = EVENT_ON_DROP_CHANNEL;
CreateChannelAndConnectSuccessfully();
EXPECT_EQ(NULL, channel_.get());
}
// Version of above test with NULL data.
TEST_F(WebSocketChannelDeletingTest, FailChannelDueToBadControlFrameNull) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{NOT_FINAL_FRAME, WebSocketFrameHeader::kOpCodePong, NOT_MASKED, NULL}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
set_stream(stream.Pass());
deleting_ = EVENT_ON_DROP_CHANNEL;
CreateChannelAndConnectSuccessfully();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, FailChannelDueToPongAfterClose) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose, NOT_MASKED,
CLOSE_DATA(NORMAL_CLOSURE, "Success")},
{FINAL_FRAME, WebSocketFrameHeader::kOpCodePong, NOT_MASKED, ""}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
set_stream(stream.Pass());
deleting_ = EVENT_ON_DROP_CHANNEL;
CreateChannelAndConnectSuccessfully();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, FailChannelDueToPongAfterCloseNull) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose, NOT_MASKED,
CLOSE_DATA(NORMAL_CLOSURE, "Success")},
{FINAL_FRAME, WebSocketFrameHeader::kOpCodePong, NOT_MASKED, NULL}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
set_stream(stream.Pass());
deleting_ = EVENT_ON_DROP_CHANNEL;
CreateChannelAndConnectSuccessfully();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, FailChannelDueToUnknownOpCode) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {{FINAL_FRAME, 0x7, NOT_MASKED, ""}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
set_stream(stream.Pass());
deleting_ = EVENT_ON_DROP_CHANNEL;
CreateChannelAndConnectSuccessfully();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelDeletingTest, FailChannelDueToUnknownOpCodeNull) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {{FINAL_FRAME, 0x7, NOT_MASKED, NULL}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
set_stream(stream.Pass());
deleting_ = EVENT_ON_DROP_CHANNEL;
CreateChannelAndConnectSuccessfully();
EXPECT_EQ(NULL, channel_.get());
}
TEST_F(WebSocketChannelEventInterfaceTest, ConnectSuccessReported) {
// false means success.
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, ""));
// OnFlowControl is always called immediately after connect to provide initial
// quota to the renderer.
EXPECT_CALL(*event_interface_, OnFlowControl(_));
CreateChannelAndConnect();
connect_data_.creator.connect_delegate->OnSuccess(stream_.Pass());
}
TEST_F(WebSocketChannelEventInterfaceTest, ConnectFailureReported) {
// true means failure.
EXPECT_CALL(*event_interface_, OnAddChannelResponse(true, ""));
CreateChannelAndConnect();
connect_data_.creator.connect_delegate->OnFailure(
kWebSocketErrorNoStatusReceived);
}
TEST_F(WebSocketChannelEventInterfaceTest, NonWebSocketSchemeRejected) {
EXPECT_CALL(*event_interface_, OnAddChannelResponse(true, ""));
connect_data_.socket_url = GURL("http://www.google.com/");
CreateChannelAndConnect();
}
TEST_F(WebSocketChannelEventInterfaceTest, ProtocolPassed) {
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, "Bob"));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
CreateChannelAndConnect();
connect_data_.creator.connect_delegate->OnSuccess(
scoped_ptr<WebSocketStream>(new FakeWebSocketStream("Bob", "")));
}
// The first frames from the server can arrive together with the handshake, in
// which case they will be available as soon as ReadFrames() is called the first
// time.
TEST_F(WebSocketChannelEventInterfaceTest, DataLeftFromHandshake) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, NOT_MASKED, "HELLO"}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
set_stream(stream.Pass());
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(
*event_interface_,
OnDataFrame(
true, WebSocketFrameHeader::kOpCodeText, AsVector("HELLO")));
}
CreateChannelAndConnectSuccessfully();
}
// A remote server could accept the handshake, but then immediately send a
// Close frame.
TEST_F(WebSocketChannelEventInterfaceTest, CloseAfterHandshake) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
NOT_MASKED, CLOSE_DATA(SERVER_ERROR, "Internal Server Error")}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
stream->PrepareReadFramesError(ReadableFakeWebSocketStream::SYNC,
ERR_CONNECTION_CLOSED);
set_stream(stream.Pass());
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_, OnClosingHandshake());
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorInternalServerError,
"Internal Server Error"));
}
CreateChannelAndConnectSuccessfully();
}
// A remote server could close the connection immediately after sending the
// handshake response (most likely a bug in the server).
TEST_F(WebSocketChannelEventInterfaceTest, ConnectionCloseAfterHandshake) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
stream->PrepareReadFramesError(ReadableFakeWebSocketStream::SYNC,
ERR_CONNECTION_CLOSED);
set_stream(stream.Pass());
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorAbnormalClosure, _));
}
CreateChannelAndConnectSuccessfully();
}
TEST_F(WebSocketChannelEventInterfaceTest, NormalAsyncRead) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, NOT_MASKED, "HELLO"}};
// We use this checkpoint object to verify that the callback isn't called
// until we expect it to be.
Checkpoint checkpoint;
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames);
set_stream(stream.Pass());
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(checkpoint, Call(1));
EXPECT_CALL(
*event_interface_,
OnDataFrame(
true, WebSocketFrameHeader::kOpCodeText, AsVector("HELLO")));
EXPECT_CALL(checkpoint, Call(2));
}
CreateChannelAndConnectSuccessfully();
checkpoint.Call(1);
base::MessageLoop::current()->RunUntilIdle();
checkpoint.Call(2);
}
// Extra data can arrive while a read is being processed, resulting in the next
// read completing synchronously.
TEST_F(WebSocketChannelEventInterfaceTest, AsyncThenSyncRead) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames1[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, NOT_MASKED, "HELLO"}};
static const InitFrame frames2[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, NOT_MASKED, "WORLD"}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames1);
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames2);
set_stream(stream.Pass());
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(
*event_interface_,
OnDataFrame(
true, WebSocketFrameHeader::kOpCodeText, AsVector("HELLO")));
EXPECT_CALL(
*event_interface_,
OnDataFrame(
true, WebSocketFrameHeader::kOpCodeText, AsVector("WORLD")));
}
CreateChannelAndConnectSuccessfully();
base::MessageLoop::current()->RunUntilIdle();
}
// Data frames are delivered the same regardless of how many reads they arrive
// as.
TEST_F(WebSocketChannelEventInterfaceTest, FragmentedMessage) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
// Here we have one message which arrived in five frames split across three
// reads. It may have been reframed on arrival, but this class doesn't care
// about that.
static const InitFrame frames1[] = {
{NOT_FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, NOT_MASKED, "THREE"},
{NOT_FINAL_FRAME, WebSocketFrameHeader::kOpCodeContinuation,
NOT_MASKED, " "}};
static const InitFrame frames2[] = {
{NOT_FINAL_FRAME, WebSocketFrameHeader::kOpCodeContinuation,
NOT_MASKED, "SMALL"}};
static const InitFrame frames3[] = {
{NOT_FINAL_FRAME, WebSocketFrameHeader::kOpCodeContinuation,
NOT_MASKED, " "},
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeContinuation,
NOT_MASKED, "FRAMES"}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames1);
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames2);
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames3);
set_stream(stream.Pass());
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(
*event_interface_,
OnDataFrame(
false, WebSocketFrameHeader::kOpCodeText, AsVector("THREE")));
EXPECT_CALL(
*event_interface_,
OnDataFrame(
false, WebSocketFrameHeader::kOpCodeContinuation, AsVector(" ")));
EXPECT_CALL(*event_interface_,
OnDataFrame(false,
WebSocketFrameHeader::kOpCodeContinuation,
AsVector("SMALL")));
EXPECT_CALL(
*event_interface_,
OnDataFrame(
false, WebSocketFrameHeader::kOpCodeContinuation, AsVector(" ")));
EXPECT_CALL(*event_interface_,
OnDataFrame(true,
WebSocketFrameHeader::kOpCodeContinuation,
AsVector("FRAMES")));
}
CreateChannelAndConnectSuccessfully();
base::MessageLoop::current()->RunUntilIdle();
}
// A message can consist of one frame with NULL payload.
TEST_F(WebSocketChannelEventInterfaceTest, NullMessage) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, NOT_MASKED, NULL}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
set_stream(stream.Pass());
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(
*event_interface_,
OnDataFrame(true, WebSocketFrameHeader::kOpCodeText, AsVector("")));
CreateChannelAndConnectSuccessfully();
}
// A control frame is not permitted to be split into multiple frames. RFC6455
// 5.5 "All control frames ... MUST NOT be fragmented."
TEST_F(WebSocketChannelEventInterfaceTest, MultiFrameControlMessageIsRejected) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{NOT_FINAL_FRAME, WebSocketFrameHeader::kOpCodePing, NOT_MASKED, "Pi"},
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeContinuation,
NOT_MASKED, "ng"}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames);
set_stream(stream.Pass());
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorProtocolError, _));
}
CreateChannelAndConnectSuccessfully();
base::MessageLoop::current()->RunUntilIdle();
}
// Connection closed by the remote host without a closing handshake.
TEST_F(WebSocketChannelEventInterfaceTest, AsyncAbnormalClosure) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
stream->PrepareReadFramesError(ReadableFakeWebSocketStream::ASYNC,
ERR_CONNECTION_CLOSED);
set_stream(stream.Pass());
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorAbnormalClosure, _));
}
CreateChannelAndConnectSuccessfully();
base::MessageLoop::current()->RunUntilIdle();
}
// A connection reset should produce the same event as an unexpected closure.
TEST_F(WebSocketChannelEventInterfaceTest, ConnectionReset) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
stream->PrepareReadFramesError(ReadableFakeWebSocketStream::ASYNC,
ERR_CONNECTION_RESET);
set_stream(stream.Pass());
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorAbnormalClosure, _));
}
CreateChannelAndConnectSuccessfully();
base::MessageLoop::current()->RunUntilIdle();
}
// RFC6455 5.1 "A client MUST close a connection if it detects a masked frame."
TEST_F(WebSocketChannelEventInterfaceTest, MaskedFramesAreRejected) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, MASKED, "HELLO"}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames);
set_stream(stream.Pass());
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorProtocolError, _));
}
CreateChannelAndConnectSuccessfully();
base::MessageLoop::current()->RunUntilIdle();
}
// RFC6455 5.2 "If an unknown opcode is received, the receiving endpoint MUST
// _Fail the WebSocket Connection_."
TEST_F(WebSocketChannelEventInterfaceTest, UnknownOpCodeIsRejected) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {{FINAL_FRAME, 4, NOT_MASKED, "HELLO"}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames);
set_stream(stream.Pass());
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorProtocolError, _));
}
CreateChannelAndConnectSuccessfully();
base::MessageLoop::current()->RunUntilIdle();
}
// RFC6455 5.4 "Control frames ... MAY be injected in the middle of a
// fragmented message."
TEST_F(WebSocketChannelEventInterfaceTest, ControlFrameInDataMessage) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
// We have one message of type Text split into two frames. In the middle is a
// control message of type Pong.
static const InitFrame frames1[] = {
{NOT_FINAL_FRAME, WebSocketFrameHeader::kOpCodeText,
NOT_MASKED, "SPLIT "}};
static const InitFrame frames2[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodePong, NOT_MASKED, ""}};
static const InitFrame frames3[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeContinuation,
NOT_MASKED, "MESSAGE"}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames1);
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames2);
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames3);
set_stream(stream.Pass());
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(
*event_interface_,
OnDataFrame(
false, WebSocketFrameHeader::kOpCodeText, AsVector("SPLIT ")));
EXPECT_CALL(*event_interface_,
OnDataFrame(true,
WebSocketFrameHeader::kOpCodeContinuation,
AsVector("MESSAGE")));
}
CreateChannelAndConnectSuccessfully();
base::MessageLoop::current()->RunUntilIdle();
}
// It seems redundant to repeat the entirety of the above test, so just test a
// Pong with NULL data.
TEST_F(WebSocketChannelEventInterfaceTest, PongWithNullData) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodePong, NOT_MASKED, NULL}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames);
set_stream(stream.Pass());
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
CreateChannelAndConnectSuccessfully();
base::MessageLoop::current()->RunUntilIdle();
}
// If a frame has an invalid header, then the connection is closed and
// subsequent frames must not trigger events.
TEST_F(WebSocketChannelEventInterfaceTest, FrameAfterInvalidFrame) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{NOT_FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, MASKED, "HELLO"},
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, NOT_MASKED, " WORLD"}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames);
set_stream(stream.Pass());
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorProtocolError, _));
}
CreateChannelAndConnectSuccessfully();
base::MessageLoop::current()->RunUntilIdle();
}
// If the renderer sends lots of small writes, we don't want to update the quota
// for each one.
TEST_F(WebSocketChannelEventInterfaceTest, SmallWriteDoesntUpdateQuota) {
set_stream(make_scoped_ptr(new WriteableFakeWebSocketStream));
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
}
CreateChannelAndConnectSuccessfully();
channel_->SendFrame(true, WebSocketFrameHeader::kOpCodeText, AsVector("B"));
}
// If we send enough to go below send_quota_low_water_mask_ we should get our
// quota refreshed.
TEST_F(WebSocketChannelEventInterfaceTest, LargeWriteUpdatesQuota) {
set_stream(make_scoped_ptr(new WriteableFakeWebSocketStream));
// We use this checkpoint object to verify that the quota update comes after
// the write.
Checkpoint checkpoint;
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(checkpoint, Call(1));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(checkpoint, Call(2));
}
CreateChannelAndConnectSuccessfully();
checkpoint.Call(1);
channel_->SendFrame(true,
WebSocketFrameHeader::kOpCodeText,
std::vector<char>(kDefaultInitialQuota, 'B'));
checkpoint.Call(2);
}
// Verify that our quota actually is refreshed when we are told it is.
TEST_F(WebSocketChannelEventInterfaceTest, QuotaReallyIsRefreshed) {
set_stream(make_scoped_ptr(new WriteableFakeWebSocketStream));
Checkpoint checkpoint;
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(checkpoint, Call(1));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(checkpoint, Call(2));
// If quota was not really refreshed, we would get an OnDropChannel()
// message.
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(checkpoint, Call(3));
}
CreateChannelAndConnectSuccessfully();
checkpoint.Call(1);
channel_->SendFrame(true,
WebSocketFrameHeader::kOpCodeText,
std::vector<char>(kDefaultQuotaRefreshTrigger, 'D'));
checkpoint.Call(2);
// We should have received more quota at this point.
channel_->SendFrame(true,
WebSocketFrameHeader::kOpCodeText,
std::vector<char>(kDefaultQuotaRefreshTrigger, 'E'));
checkpoint.Call(3);
}
// If we send more than the available quota then the connection will be closed
// with an error.
TEST_F(WebSocketChannelEventInterfaceTest, WriteOverQuotaIsRejected) {
set_stream(make_scoped_ptr(new WriteableFakeWebSocketStream));
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(kDefaultInitialQuota));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketMuxErrorSendQuotaViolation, _));
}
CreateChannelAndConnectSuccessfully();
channel_->SendFrame(true,
WebSocketFrameHeader::kOpCodeText,
std::vector<char>(kDefaultInitialQuota + 1, 'C'));
}
// If a write fails, the channel is dropped.
TEST_F(WebSocketChannelEventInterfaceTest, FailedWrite) {
set_stream(make_scoped_ptr(new UnWriteableFakeWebSocketStream));
Checkpoint checkpoint;
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(checkpoint, Call(1));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorAbnormalClosure, _));
EXPECT_CALL(checkpoint, Call(2));
}
CreateChannelAndConnectSuccessfully();
checkpoint.Call(1);
channel_->SendFrame(true, WebSocketFrameHeader::kOpCodeText, AsVector("H"));
checkpoint.Call(2);
}
// OnDropChannel() is called exactly once when StartClosingHandshake() is used.
TEST_F(WebSocketChannelEventInterfaceTest, SendCloseDropsChannel) {
set_stream(make_scoped_ptr(new EchoeyFakeWebSocketStream));
{
InSequence s;
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketNormalClosure, "Fred"));
}
CreateChannelAndConnectSuccessfully();
channel_->StartClosingHandshake(kWebSocketNormalClosure, "Fred");
base::MessageLoop::current()->RunUntilIdle();
}
// OnDropChannel() is only called once when a write() on the socket triggers a
// connection reset.
TEST_F(WebSocketChannelEventInterfaceTest, OnDropChannelCalledOnce) {
set_stream(make_scoped_ptr(new ResetOnWriteFakeWebSocketStream));
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorAbnormalClosure, "Abnormal Closure"))
.Times(1);
CreateChannelAndConnectSuccessfully();
channel_->SendFrame(true, WebSocketFrameHeader::kOpCodeText, AsVector("yt?"));
base::MessageLoop::current()->RunUntilIdle();
}
// When the remote server sends a Close frame with an empty payload,
// WebSocketChannel should report code 1005, kWebSocketErrorNoStatusReceived.
TEST_F(WebSocketChannelEventInterfaceTest, CloseWithNoPayloadGivesStatus1005) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose, NOT_MASKED, ""}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
stream->PrepareReadFramesError(ReadableFakeWebSocketStream::SYNC,
ERR_CONNECTION_CLOSED);
set_stream(stream.Pass());
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_, OnClosingHandshake());
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorNoStatusReceived, _));
CreateChannelAndConnectSuccessfully();
}
// A version of the above test with NULL payload.
TEST_F(WebSocketChannelEventInterfaceTest,
CloseWithNullPayloadGivesStatus1005) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose, NOT_MASKED, NULL}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::SYNC, OK, frames);
stream->PrepareReadFramesError(ReadableFakeWebSocketStream::SYNC,
ERR_CONNECTION_CLOSED);
set_stream(stream.Pass());
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_, OnClosingHandshake());
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorNoStatusReceived, _));
CreateChannelAndConnectSuccessfully();
}
// If ReadFrames() returns ERR_WS_PROTOCOL_ERROR, then
// kWebSocketErrorProtocolError must be sent to the renderer.
TEST_F(WebSocketChannelEventInterfaceTest, SyncProtocolErrorGivesStatus1002) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
stream->PrepareReadFramesError(ReadableFakeWebSocketStream::SYNC,
ERR_WS_PROTOCOL_ERROR);
set_stream(stream.Pass());
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorProtocolError, _));
CreateChannelAndConnectSuccessfully();
}
// Async version of above test.
TEST_F(WebSocketChannelEventInterfaceTest, AsyncProtocolErrorGivesStatus1002) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
stream->PrepareReadFramesError(ReadableFakeWebSocketStream::ASYNC,
ERR_WS_PROTOCOL_ERROR);
set_stream(stream.Pass());
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorProtocolError, _));
CreateChannelAndConnectSuccessfully();
base::MessageLoop::current()->RunUntilIdle();
}
// The closing handshake times out and sends an OnDropChannel event if no
// response to the client Close message is received.
TEST_F(WebSocketChannelEventInterfaceTest,
ClientInitiatedClosingHandshakeTimesOut) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
stream->PrepareReadFramesError(ReadableFakeWebSocketStream::SYNC,
ERR_IO_PENDING);
set_stream(stream.Pass());
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
// This checkpoint object verifies that the OnDropChannel message comes after
// the timeout.
Checkpoint checkpoint;
TestClosure completion;
{
InSequence s;
EXPECT_CALL(checkpoint, Call(1));
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorAbnormalClosure, _))
.WillOnce(InvokeClosureReturnDeleted(completion.closure()));
}
CreateChannelAndConnectSuccessfully();
// OneShotTimer is not very friendly to testing; there is no apparent way to
// set an expectation on it. Instead the tests need to infer that the timeout
// was fired by the behaviour of the WebSocketChannel object.
channel_->SetClosingHandshakeTimeoutForTesting(
TimeDelta::FromMilliseconds(kVeryTinyTimeoutMillis));
channel_->StartClosingHandshake(kWebSocketNormalClosure, "");
checkpoint.Call(1);
completion.WaitForResult();
}
// The closing handshake times out and sends an OnDropChannel event if a Close
// message is received but the connection isn't closed by the remote host.
TEST_F(WebSocketChannelEventInterfaceTest,
ServerInitiatedClosingHandshakeTimesOut) {
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
NOT_MASKED, CLOSE_DATA(NORMAL_CLOSURE, "OK")}};
stream->PrepareReadFrames(ReadableFakeWebSocketStream::ASYNC, OK, frames);
set_stream(stream.Pass());
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
Checkpoint checkpoint;
TestClosure completion;
{
InSequence s;
EXPECT_CALL(checkpoint, Call(1));
EXPECT_CALL(*event_interface_, OnClosingHandshake());
EXPECT_CALL(*event_interface_,
OnDropChannel(kWebSocketErrorAbnormalClosure, _))
.WillOnce(InvokeClosureReturnDeleted(completion.closure()));
}
CreateChannelAndConnectSuccessfully();
channel_->SetClosingHandshakeTimeoutForTesting(
TimeDelta::FromMilliseconds(kVeryTinyTimeoutMillis));
checkpoint.Call(1);
completion.WaitForResult();
}
// RFC6455 5.1 "a client MUST mask all frames that it sends to the server".
// WebSocketChannel actually only sets the mask bit in the header, it doesn't
// perform masking itself (not all transports actually use masking).
TEST_F(WebSocketChannelStreamTest, SentFramesAreMasked) {
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText,
MASKED, "NEEDS MASKING"}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _)).WillOnce(Return(ERR_IO_PENDING));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
CreateChannelAndConnectSuccessfully();
channel_->SendFrame(
true, WebSocketFrameHeader::kOpCodeText, AsVector("NEEDS MASKING"));
}
// RFC6455 5.5.1 "The application MUST NOT send any more data frames after
// sending a Close frame."
TEST_F(WebSocketChannelStreamTest, NothingIsSentAfterClose) {
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
MASKED, CLOSE_DATA(NORMAL_CLOSURE, "Success")}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _)).WillOnce(Return(ERR_IO_PENDING));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
CreateChannelAndConnectSuccessfully();
channel_->StartClosingHandshake(1000, "Success");
channel_->SendFrame(
true, WebSocketFrameHeader::kOpCodeText, AsVector("SHOULD BE IGNORED"));
}
// RFC6455 5.5.1 "If an endpoint receives a Close frame and did not previously
// send a Close frame, the endpoint MUST send a Close frame in response."
TEST_F(WebSocketChannelStreamTest, CloseIsEchoedBack) {
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
NOT_MASKED, CLOSE_DATA(NORMAL_CLOSURE, "Close")}};
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
MASKED, CLOSE_DATA(NORMAL_CLOSURE, "Close")}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(ReturnFrames(&frames))
.WillRepeatedly(Return(ERR_IO_PENDING));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
CreateChannelAndConnectSuccessfully();
}
// The converse of the above case; after sending a Close frame, we should not
// send another one.
TEST_F(WebSocketChannelStreamTest, CloseOnlySentOnce) {
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
MASKED, CLOSE_DATA(NORMAL_CLOSURE, "Close")}};
static const InitFrame frames_init[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
NOT_MASKED, CLOSE_DATA(NORMAL_CLOSURE, "Close")}};
// We store the parameters that were passed to ReadFrames() so that we can
// call them explicitly later.
CompletionCallback read_callback;
ScopedVector<WebSocketFrame>* frames = NULL;
// Use a checkpoint to make the ordering of events clearer.
Checkpoint checkpoint;
{
InSequence s;
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(DoAll(SaveArg<0>(&frames),
SaveArg<1>(&read_callback),
Return(ERR_IO_PENDING)));
EXPECT_CALL(checkpoint, Call(1));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
EXPECT_CALL(checkpoint, Call(2));
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(Return(ERR_IO_PENDING));
EXPECT_CALL(checkpoint, Call(3));
// WriteFrames() must not be called again. GoogleMock will ensure that the
// test fails if it is.
}
CreateChannelAndConnectSuccessfully();
checkpoint.Call(1);
channel_->StartClosingHandshake(kWebSocketNormalClosure, "Close");
checkpoint.Call(2);
*frames = CreateFrameVector(frames_init);
read_callback.Run(OK);
checkpoint.Call(3);
}
// Invalid close status codes should not be sent on the network.
TEST_F(WebSocketChannelStreamTest, InvalidCloseStatusCodeNotSent) {
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
MASKED, CLOSE_DATA(SERVER_ERROR, "Internal Error")}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(Return(ERR_IO_PENDING));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _));
CreateChannelAndConnectSuccessfully();
channel_->StartClosingHandshake(999, "");
}
// A Close frame with a reason longer than 123 bytes cannot be sent on the
// network.
TEST_F(WebSocketChannelStreamTest, LongCloseReasonNotSent) {
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
MASKED, CLOSE_DATA(SERVER_ERROR, "Internal Error")}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(Return(ERR_IO_PENDING));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _));
CreateChannelAndConnectSuccessfully();
channel_->StartClosingHandshake(1000, std::string(124, 'A'));
}
// We generate code 1005, kWebSocketErrorNoStatusReceived, when there is no
// status in the Close message from the other side. Code 1005 is not allowed to
// appear on the wire, so we should not echo it back. See test
// CloseWithNoPayloadGivesStatus1005, above, for confirmation that code 1005 is
// correctly generated internally.
TEST_F(WebSocketChannelStreamTest, Code1005IsNotEchoed) {
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose, NOT_MASKED, ""}};
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose, MASKED, ""}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(ReturnFrames(&frames))
.WillRepeatedly(Return(ERR_IO_PENDING));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
CreateChannelAndConnectSuccessfully();
}
TEST_F(WebSocketChannelStreamTest, Code1005IsNotEchoedNull) {
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose, NOT_MASKED, NULL}};
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose, MASKED, ""}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(ReturnFrames(&frames))
.WillRepeatedly(Return(ERR_IO_PENDING));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
CreateChannelAndConnectSuccessfully();
}
// RFC6455 5.5.2 "Upon receipt of a Ping frame, an endpoint MUST send a Pong
// frame in response"
// 5.5.3 "A Pong frame sent in response to a Ping frame must have identical
// "Application data" as found in the message body of the Ping frame being
// replied to."
TEST_F(WebSocketChannelStreamTest, PingRepliedWithPong) {
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodePing,
NOT_MASKED, "Application data"}};
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodePong,
MASKED, "Application data"}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(ReturnFrames(&frames))
.WillRepeatedly(Return(ERR_IO_PENDING));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
CreateChannelAndConnectSuccessfully();
}
// A ping with a NULL payload should be responded to with a Pong with an empty
// payload.
TEST_F(WebSocketChannelStreamTest, NullPingRepliedWithEmptyPong) {
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodePing, NOT_MASKED, NULL}};
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodePong, MASKED, ""}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(ReturnFrames(&frames))
.WillRepeatedly(Return(ERR_IO_PENDING));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
CreateChannelAndConnectSuccessfully();
}
TEST_F(WebSocketChannelStreamTest, PongInTheMiddleOfDataMessage) {
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodePing,
NOT_MASKED, "Application data"}};
static const InitFrame expected1[] = {
{NOT_FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, MASKED, "Hello "}};
static const InitFrame expected2[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodePong,
MASKED, "Application data"}};
static const InitFrame expected3[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeContinuation,
MASKED, "World"}};
ScopedVector<WebSocketFrame>* read_frames;
CompletionCallback read_callback;
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(DoAll(SaveArg<0>(&read_frames),
SaveArg<1>(&read_callback),
Return(ERR_IO_PENDING)))
.WillRepeatedly(Return(ERR_IO_PENDING));
{
InSequence s;
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected1), _))
.WillOnce(Return(OK));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected2), _))
.WillOnce(Return(OK));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected3), _))
.WillOnce(Return(OK));
}
CreateChannelAndConnectSuccessfully();
channel_->SendFrame(
false, WebSocketFrameHeader::kOpCodeText, AsVector("Hello "));
*read_frames = CreateFrameVector(frames);
read_callback.Run(OK);
channel_->SendFrame(
true, WebSocketFrameHeader::kOpCodeContinuation, AsVector("World"));
}
// WriteFrames() may not be called until the previous write has completed.
// WebSocketChannel must buffer writes that happen in the meantime.
TEST_F(WebSocketChannelStreamTest, WriteFramesOneAtATime) {
static const InitFrame expected1[] = {
{NOT_FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, MASKED, "Hello "}};
static const InitFrame expected2[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, MASKED, "World"}};
CompletionCallback write_callback;
Checkpoint checkpoint;
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _)).WillOnce(Return(ERR_IO_PENDING));
{
InSequence s;
EXPECT_CALL(checkpoint, Call(1));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected1), _))
.WillOnce(DoAll(SaveArg<1>(&write_callback), Return(ERR_IO_PENDING)));
EXPECT_CALL(checkpoint, Call(2));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected2), _))
.WillOnce(Return(ERR_IO_PENDING));
EXPECT_CALL(checkpoint, Call(3));
}
CreateChannelAndConnectSuccessfully();
checkpoint.Call(1);
channel_->SendFrame(
false, WebSocketFrameHeader::kOpCodeText, AsVector("Hello "));
channel_->SendFrame(
true, WebSocketFrameHeader::kOpCodeText, AsVector("World"));
checkpoint.Call(2);
write_callback.Run(OK);
checkpoint.Call(3);
}
// WebSocketChannel must buffer frames while it is waiting for a write to
// complete, and then send them in a single batch. The batching behaviour is
// important to get good throughput in the "many small messages" case.
TEST_F(WebSocketChannelStreamTest, WaitingMessagesAreBatched) {
static const char input_letters[] = "Hello";
static const InitFrame expected1[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, MASKED, "H"}};
static const InitFrame expected2[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, MASKED, "e"},
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, MASKED, "l"},
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, MASKED, "l"},
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeText, MASKED, "o"}};
CompletionCallback write_callback;
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _)).WillOnce(Return(ERR_IO_PENDING));
{
InSequence s;
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected1), _))
.WillOnce(DoAll(SaveArg<1>(&write_callback), Return(ERR_IO_PENDING)));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected2), _))
.WillOnce(Return(ERR_IO_PENDING));
}
CreateChannelAndConnectSuccessfully();
for (size_t i = 0; i < strlen(input_letters); ++i) {
channel_->SendFrame(true,
WebSocketFrameHeader::kOpCodeText,
std::vector<char>(1, input_letters[i]));
}
write_callback.Run(OK);
}
// When the renderer sends more on a channel than it has quota for, then we send
// a kWebSocketMuxErrorSendQuotaViolation status code (from the draft websocket
// mux specification) back to the renderer. This should not be sent to the
// remote server, which may not even implement the mux specification, and could
// even be using a different extension which uses that code to mean something
// else.
TEST_F(WebSocketChannelStreamTest, MuxErrorIsNotSentToStream) {
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
MASKED, CLOSE_DATA(GOING_AWAY, "Internal Error")}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _)).WillOnce(Return(ERR_IO_PENDING));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
EXPECT_CALL(*mock_stream_, Close());
CreateChannelAndConnectSuccessfully();
channel_->SendFrame(true,
WebSocketFrameHeader::kOpCodeText,
std::vector<char>(kDefaultInitialQuota + 1, 'C'));
}
// For convenience, most of these tests use Text frames. However, the WebSocket
// protocol also has Binary frames and those need to be 8-bit clean. For the
// sake of completeness, this test verifies that they are.
TEST_F(WebSocketChannelStreamTest, WrittenBinaryFramesAre8BitClean) {
ScopedVector<WebSocketFrame>* frames = NULL;
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _)).WillOnce(Return(ERR_IO_PENDING));
EXPECT_CALL(*mock_stream_, WriteFrames(_, _))
.WillOnce(DoAll(SaveArg<0>(&frames), Return(ERR_IO_PENDING)));
CreateChannelAndConnectSuccessfully();
channel_->SendFrame(
true,
WebSocketFrameHeader::kOpCodeBinary,
std::vector<char>(kBinaryBlob, kBinaryBlob + kBinaryBlobSize));
ASSERT_TRUE(frames != NULL);
ASSERT_EQ(1U, frames->size());
const WebSocketFrame* out_frame = (*frames)[0];
EXPECT_EQ(kBinaryBlobSize, out_frame->header.payload_length);
ASSERT_TRUE(out_frame->data);
EXPECT_EQ(0, memcmp(kBinaryBlob, out_frame->data->data(), kBinaryBlobSize));
}
// Test the read path for 8-bit cleanliness as well.
TEST_F(WebSocketChannelEventInterfaceTest, ReadBinaryFramesAre8BitClean) {
scoped_ptr<WebSocketFrame> frame(
new WebSocketFrame(WebSocketFrameHeader::kOpCodeBinary));
WebSocketFrameHeader& frame_header = frame->header;
frame_header.final = true;
frame_header.payload_length = kBinaryBlobSize;
frame->data = new IOBuffer(kBinaryBlobSize);
memcpy(frame->data->data(), kBinaryBlob, kBinaryBlobSize);
ScopedVector<WebSocketFrame> frames;
frames.push_back(frame.release());
scoped_ptr<ReadableFakeWebSocketStream> stream(
new ReadableFakeWebSocketStream);
stream->PrepareRawReadFrames(
ReadableFakeWebSocketStream::SYNC, OK, frames.Pass());
set_stream(stream.Pass());
EXPECT_CALL(*event_interface_, OnAddChannelResponse(false, _));
EXPECT_CALL(*event_interface_, OnFlowControl(_));
EXPECT_CALL(*event_interface_,
OnDataFrame(true,
WebSocketFrameHeader::kOpCodeBinary,
std::vector<char>(kBinaryBlob,
kBinaryBlob + kBinaryBlobSize)));
CreateChannelAndConnectSuccessfully();
}
// If we receive another frame after Close, it is not valid. It is not
// completely clear what behaviour is required from the standard in this case,
// but the current implementation fails the connection. Since a Close has
// already been sent, this just means closing the connection.
TEST_F(WebSocketChannelStreamTest, PingAfterCloseIsRejected) {
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
NOT_MASKED, CLOSE_DATA(NORMAL_CLOSURE, "OK")},
{FINAL_FRAME, WebSocketFrameHeader::kOpCodePing,
NOT_MASKED, "Ping body"}};
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
MASKED, CLOSE_DATA(NORMAL_CLOSURE, "OK")}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(ReturnFrames(&frames))
.WillRepeatedly(Return(ERR_IO_PENDING));
{
// We only need to verify the relative order of WriteFrames() and
// Close(). The current implementation calls WriteFrames() for the Close
// frame before calling ReadFrames() again, but that is an implementation
// detail and better not to consider required behaviour.
InSequence s;
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
EXPECT_CALL(*mock_stream_, Close()).Times(1);
}
CreateChannelAndConnectSuccessfully();
}
// A protocol error from the remote server should result in a close frame with
// status 1002, followed by the connection closing.
TEST_F(WebSocketChannelStreamTest, ProtocolError) {
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
MASKED, CLOSE_DATA(PROTOCOL_ERROR, "WebSocket Protocol Error")}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(Return(ERR_WS_PROTOCOL_ERROR));
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
EXPECT_CALL(*mock_stream_, Close());
CreateChannelAndConnectSuccessfully();
}
// Set the closing handshake timeout to a very tiny value before connecting.
class WebSocketChannelStreamTimeoutTest : public WebSocketChannelStreamTest {
protected:
WebSocketChannelStreamTimeoutTest() {}
virtual void CreateChannelAndConnectSuccessfully() OVERRIDE {
set_stream(mock_stream_.Pass());
CreateChannelAndConnect();
channel_->SetClosingHandshakeTimeoutForTesting(
TimeDelta::FromMilliseconds(kVeryTinyTimeoutMillis));
connect_data_.creator.connect_delegate->OnSuccess(stream_.Pass());
}
};
// In this case the server initiates the closing handshake with a Close
// message. WebSocketChannel responds with a matching Close message, and waits
// for the server to close the TCP/IP connection. The server never closes the
// connection, so the closing handshake times out and WebSocketChannel closes
// the connection itself.
TEST_F(WebSocketChannelStreamTimeoutTest, ServerInitiatedCloseTimesOut) {
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
NOT_MASKED, CLOSE_DATA(NORMAL_CLOSURE, "OK")}};
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
MASKED, CLOSE_DATA(NORMAL_CLOSURE, "OK")}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(ReturnFrames(&frames))
.WillRepeatedly(Return(ERR_IO_PENDING));
Checkpoint checkpoint;
TestClosure completion;
{
InSequence s;
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
EXPECT_CALL(checkpoint, Call(1));
EXPECT_CALL(*mock_stream_, Close())
.WillOnce(InvokeClosure(completion.closure()));
}
CreateChannelAndConnectSuccessfully();
checkpoint.Call(1);
completion.WaitForResult();
}
// In this case the client initiates the closing handshake by sending a Close
// message. WebSocketChannel waits for a Close message in response from the
// server. The server never responds to the Close message, so the closing
// handshake times out and WebSocketChannel closes the connection.
TEST_F(WebSocketChannelStreamTimeoutTest, ClientInitiatedCloseTimesOut) {
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
MASKED, CLOSE_DATA(NORMAL_CLOSURE, "OK")}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillRepeatedly(Return(ERR_IO_PENDING));
TestClosure completion;
{
InSequence s;
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
EXPECT_CALL(*mock_stream_, Close())
.WillOnce(InvokeClosure(completion.closure()));
}
CreateChannelAndConnectSuccessfully();
channel_->StartClosingHandshake(kWebSocketNormalClosure, "OK");
completion.WaitForResult();
}
// In this case the client initiates the closing handshake and the server
// responds with a matching Close message. WebSocketChannel waits for the server
// to close the TCP/IP connection, but it never does. The closing handshake
// times out and WebSocketChannel closes the connection.
TEST_F(WebSocketChannelStreamTimeoutTest, ConnectionCloseTimesOut) {
static const InitFrame expected[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
MASKED, CLOSE_DATA(NORMAL_CLOSURE, "OK")}};
static const InitFrame frames[] = {
{FINAL_FRAME, WebSocketFrameHeader::kOpCodeClose,
NOT_MASKED, CLOSE_DATA(NORMAL_CLOSURE, "OK")}};
EXPECT_CALL(*mock_stream_, GetSubProtocol()).Times(AnyNumber());
TestClosure completion;
ScopedVector<WebSocketFrame>* read_frames = NULL;
CompletionCallback read_callback;
{
InSequence s;
// Copy the arguments to ReadFrames so that the test can call the callback
// after it has send the close message.
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(DoAll(SaveArg<0>(&read_frames),
SaveArg<1>(&read_callback),
Return(ERR_IO_PENDING)));
// The first real event that happens is the client sending the Close
// message.
EXPECT_CALL(*mock_stream_, WriteFrames(EqualsFrames(expected), _))
.WillOnce(Return(OK));
// The |read_frames| callback is called (from this test case) at this
// point. ReadFrames is called again by WebSocketChannel, waiting for
// ERR_CONNECTION_CLOSED.
EXPECT_CALL(*mock_stream_, ReadFrames(_, _))
.WillOnce(Return(ERR_IO_PENDING));
// The timeout happens and so WebSocketChannel closes the stream.
EXPECT_CALL(*mock_stream_, Close())
.WillOnce(InvokeClosure(completion.closure()));
}
CreateChannelAndConnectSuccessfully();
channel_->StartClosingHandshake(kWebSocketNormalClosure, "OK");
ASSERT_TRUE(read_frames);
// Provide the "Close" message from the server.
*read_frames = CreateFrameVector(frames);
read_callback.Run(OK);
completion.WaitForResult();
}
} // namespace
} // namespace net