// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <string>
#include "base/basictypes.h"
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/hash.h"
#include "base/strings/string_util.h"
#include "base/test/perf_time_logger.h"
#include "base/test/test_file_util.h"
#include "base/threading/thread.h"
#include "base/timer/timer.h"
#include "net/base/cache_type.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/base/test_completion_callback.h"
#include "net/disk_cache/backend_impl.h"
#include "net/disk_cache/block_files.h"
#include "net/disk_cache/disk_cache.h"
#include "net/disk_cache/disk_cache_test_base.h"
#include "net/disk_cache/disk_cache_test_util.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/platform_test.h"
using base::Time;
namespace {
struct TestEntry {
std::string key;
int data_len;
};
typedef std::vector<TestEntry> TestEntries;
const int kMaxSize = 16 * 1024 - 1;
// Creates num_entries on the cache, and writes 200 bytes of metadata and up
// to kMaxSize of data to each entry.
bool TimeWrite(int num_entries, disk_cache::Backend* cache,
TestEntries* entries) {
const int kSize1 = 200;
scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kMaxSize));
CacheTestFillBuffer(buffer1->data(), kSize1, false);
CacheTestFillBuffer(buffer2->data(), kMaxSize, false);
int expected = 0;
MessageLoopHelper helper;
CallbackTest callback(&helper, true);
base::PerfTimeLogger timer("Write disk cache entries");
for (int i = 0; i < num_entries; i++) {
TestEntry entry;
entry.key = GenerateKey(true);
entry.data_len = rand() % kMaxSize;
entries->push_back(entry);
disk_cache::Entry* cache_entry;
net::TestCompletionCallback cb;
int rv = cache->CreateEntry(entry.key, &cache_entry, cb.callback());
if (net::OK != cb.GetResult(rv))
break;
int ret = cache_entry->WriteData(
0, 0, buffer1.get(), kSize1,
base::Bind(&CallbackTest::Run, base::Unretained(&callback)), false);
if (net::ERR_IO_PENDING == ret)
expected++;
else if (kSize1 != ret)
break;
ret = cache_entry->WriteData(
1, 0, buffer2.get(), entry.data_len,
base::Bind(&CallbackTest::Run, base::Unretained(&callback)), false);
if (net::ERR_IO_PENDING == ret)
expected++;
else if (entry.data_len != ret)
break;
cache_entry->Close();
}
helper.WaitUntilCacheIoFinished(expected);
timer.Done();
return (expected == helper.callbacks_called());
}
// Reads the data and metadata from each entry listed on |entries|.
bool TimeRead(int num_entries, disk_cache::Backend* cache,
const TestEntries& entries, bool cold) {
const int kSize1 = 200;
scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kMaxSize));
CacheTestFillBuffer(buffer1->data(), kSize1, false);
CacheTestFillBuffer(buffer2->data(), kMaxSize, false);
int expected = 0;
MessageLoopHelper helper;
CallbackTest callback(&helper, true);
const char* message = cold ? "Read disk cache entries (cold)" :
"Read disk cache entries (warm)";
base::PerfTimeLogger timer(message);
for (int i = 0; i < num_entries; i++) {
disk_cache::Entry* cache_entry;
net::TestCompletionCallback cb;
int rv = cache->OpenEntry(entries[i].key, &cache_entry, cb.callback());
if (net::OK != cb.GetResult(rv))
break;
int ret = cache_entry->ReadData(
0, 0, buffer1.get(), kSize1,
base::Bind(&CallbackTest::Run, base::Unretained(&callback)));
if (net::ERR_IO_PENDING == ret)
expected++;
else if (kSize1 != ret)
break;
ret = cache_entry->ReadData(
1, 0, buffer2.get(), entries[i].data_len,
base::Bind(&CallbackTest::Run, base::Unretained(&callback)));
if (net::ERR_IO_PENDING == ret)
expected++;
else if (entries[i].data_len != ret)
break;
cache_entry->Close();
}
helper.WaitUntilCacheIoFinished(expected);
timer.Done();
return (expected == helper.callbacks_called());
}
int BlockSize() {
// We can use form 1 to 4 blocks.
return (rand() & 0x3) + 1;
}
} // namespace
TEST_F(DiskCacheTest, Hash) {
int seed = static_cast<int>(Time::Now().ToInternalValue());
srand(seed);
base::PerfTimeLogger timer("Hash disk cache keys");
for (int i = 0; i < 300000; i++) {
std::string key = GenerateKey(true);
base::Hash(key);
}
timer.Done();
}
TEST_F(DiskCacheTest, CacheBackendPerformance) {
base::Thread cache_thread("CacheThread");
ASSERT_TRUE(cache_thread.StartWithOptions(
base::Thread::Options(base::MessageLoop::TYPE_IO, 0)));
ASSERT_TRUE(CleanupCacheDir());
net::TestCompletionCallback cb;
scoped_ptr<disk_cache::Backend> cache;
int rv = disk_cache::CreateCacheBackend(
net::DISK_CACHE, net::CACHE_BACKEND_BLOCKFILE, cache_path_, 0, false,
cache_thread.message_loop_proxy().get(), NULL, &cache, cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
int seed = static_cast<int>(Time::Now().ToInternalValue());
srand(seed);
TestEntries entries;
int num_entries = 1000;
EXPECT_TRUE(TimeWrite(num_entries, cache.get(), &entries));
base::MessageLoop::current()->RunUntilIdle();
cache.reset();
ASSERT_TRUE(file_util::EvictFileFromSystemCache(
cache_path_.AppendASCII("index")));
ASSERT_TRUE(file_util::EvictFileFromSystemCache(
cache_path_.AppendASCII("data_0")));
ASSERT_TRUE(file_util::EvictFileFromSystemCache(
cache_path_.AppendASCII("data_1")));
ASSERT_TRUE(file_util::EvictFileFromSystemCache(
cache_path_.AppendASCII("data_2")));
ASSERT_TRUE(file_util::EvictFileFromSystemCache(
cache_path_.AppendASCII("data_3")));
rv = disk_cache::CreateCacheBackend(
net::DISK_CACHE, net::CACHE_BACKEND_BLOCKFILE, cache_path_, 0, false,
cache_thread.message_loop_proxy().get(), NULL, &cache, cb.callback());
ASSERT_EQ(net::OK, cb.GetResult(rv));
EXPECT_TRUE(TimeRead(num_entries, cache.get(), entries, true));
EXPECT_TRUE(TimeRead(num_entries, cache.get(), entries, false));
base::MessageLoop::current()->RunUntilIdle();
}
// Creating and deleting "entries" on a block-file is something quite frequent
// (after all, almost everything is stored on block files). The operation is
// almost free when the file is empty, but can be expensive if the file gets
// fragmented, or if we have multiple files. This test measures that scenario,
// by using multiple, highly fragmented files.
TEST_F(DiskCacheTest, BlockFilesPerformance) {
ASSERT_TRUE(CleanupCacheDir());
disk_cache::BlockFiles files(cache_path_);
ASSERT_TRUE(files.Init(true));
int seed = static_cast<int>(Time::Now().ToInternalValue());
srand(seed);
const int kNumEntries = 60000;
disk_cache::Addr* address = new disk_cache::Addr[kNumEntries];
base::PerfTimeLogger timer1("Fill three block-files");
// Fill up the 32-byte block file (use three files).
for (int i = 0; i < kNumEntries; i++) {
EXPECT_TRUE(files.CreateBlock(disk_cache::RANKINGS, BlockSize(),
&address[i]));
}
timer1.Done();
base::PerfTimeLogger timer2("Create and delete blocks");
for (int i = 0; i < 200000; i++) {
int entry = rand() * (kNumEntries / RAND_MAX + 1);
if (entry >= kNumEntries)
entry = 0;
files.DeleteBlock(address[entry], false);
EXPECT_TRUE(files.CreateBlock(disk_cache::RANKINGS, BlockSize(),
&address[entry]));
}
timer2.Done();
base::MessageLoop::current()->RunUntilIdle();
delete[] address;
}