// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/mp3/mp3_stream_parser.h"
#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/message_loop/message_loop.h"
#include "media/base/bit_reader.h"
#include "media/base/buffers.h"
#include "media/base/stream_parser_buffer.h"
#include "media/base/text_track_config.h"
#include "media/base/video_decoder_config.h"
#include "net/http/http_util.h"
namespace media {
static const uint32 kMP3StartCodeMask = 0xffe00000;
static const uint32 kICYStartCode = 0x49435920; // 'ICY '
// Arbitrary upper bound on the size of an IceCast header before it
// triggers an error.
static const int kMaxIcecastHeaderSize = 4096;
static const uint32 kID3StartCodeMask = 0xffffff00;
static const uint32 kID3v1StartCode = 0x54414700; // 'TAG\0'
static const int kID3v1Size = 128;
static const int kID3v1ExtendedSize = 227;
static const uint32 kID3v2StartCode = 0x49443300; // 'ID3\0'
// Map that determines which bitrate_index & channel_mode combinations
// are allowed.
// Derived from: http://mpgedit.org/mpgedit/mpeg_format/MP3Format.html
static const bool kIsAllowed[17][4] = {
{ true, true, true, true }, // free
{ true, false, false, false }, // 32
{ true, false, false, false }, // 48
{ true, false, false, false }, // 56
{ true, true, true, true }, // 64
{ true, false, false, false }, // 80
{ true, true, true, true }, // 96
{ true, true, true, true }, // 112
{ true, true, true, true }, // 128
{ true, true, true, true }, // 160
{ true, true, true, true }, // 192
{ false, true, true, true }, // 224
{ false, true, true, true }, // 256
{ false, true, true, true }, // 320
{ false, true, true, true }, // 384
{ false, false, false, false } // bad
};
// Maps version and layer information in the frame header
// into an index for the |kBitrateMap|.
// Derived from: http://mpgedit.org/mpgedit/mpeg_format/MP3Format.html
static const int kVersionLayerMap[4][4] = {
// { reserved, L3, L2, L1 }
{ 5, 4, 4, 3 }, // MPEG 2.5
{ 5, 5, 5, 5 }, // reserved
{ 5, 4, 4, 3 }, // MPEG 2
{ 5, 2, 1, 0 } // MPEG 1
};
// Maps the bitrate index field in the header and an index
// from |kVersionLayerMap| to a frame bitrate.
// Derived from: http://mpgedit.org/mpgedit/mpeg_format/MP3Format.html
static const int kBitrateMap[16][6] = {
// { V1L1, V1L2, V1L3, V2L1, V2L2 & V2L3, reserved }
{ 0, 0, 0, 0, 0, 0 },
{ 32, 32, 32, 32, 8, 0 },
{ 64, 48, 40, 48, 16, 0 },
{ 96, 56, 48, 56, 24, 0 },
{ 128, 64, 56, 64, 32, 0 },
{ 160, 80, 64, 80, 40, 0 },
{ 192, 96, 80, 96, 48, 0 },
{ 224, 112, 96, 112, 56, 0 },
{ 256, 128, 112, 128, 64, 0 },
{ 288, 160, 128, 144, 80, 0 },
{ 320, 192, 160, 160, 96, 0 },
{ 352, 224, 192, 176, 112, 0 },
{ 384, 256, 224, 192, 128, 0 },
{ 416, 320, 256, 224, 144, 0 },
{ 448, 384, 320, 256, 160, 0 },
{ 0, 0, 0, 0, 0}
};
// Maps the sample rate index and version fields from the frame header
// to a sample rate.
// Derived from: http://mpgedit.org/mpgedit/mpeg_format/MP3Format.html
static const int kSampleRateMap[4][4] = {
// { V2.5, reserved, V2, V1 }
{ 11025, 0, 22050, 44100 },
{ 12000, 0, 24000, 48000 },
{ 8000, 0, 16000, 32000 },
{ 0, 0, 0, 0 }
};
// Frame header field constants.
static const int kVersion2 = 2;
static const int kVersionReserved = 1;
static const int kVersion2_5 = 0;
static const int kLayerReserved = 0;
static const int kLayer1 = 3;
static const int kLayer2 = 2;
static const int kLayer3 = 1;
static const int kBitrateFree = 0;
static const int kBitrateBad = 0xf;
static const int kSampleRateReserved = 3;
MP3StreamParser::MP3StreamParser()
: state_(UNINITIALIZED),
in_media_segment_(false) {
}
MP3StreamParser::~MP3StreamParser() {}
void MP3StreamParser::Init(const InitCB& init_cb,
const NewConfigCB& config_cb,
const NewBuffersCB& new_buffers_cb,
const NewTextBuffersCB& text_cb,
const NeedKeyCB& need_key_cb,
const NewMediaSegmentCB& new_segment_cb,
const base::Closure& end_of_segment_cb,
const LogCB& log_cb) {
DVLOG(1) << __FUNCTION__;
DCHECK_EQ(state_, UNINITIALIZED);
init_cb_ = init_cb;
config_cb_ = config_cb;
new_buffers_cb_ = new_buffers_cb;
new_segment_cb_ = new_segment_cb;
end_of_segment_cb_ = end_of_segment_cb;
log_cb_ = log_cb;
ChangeState(INITIALIZED);
}
void MP3StreamParser::Flush() {
DVLOG(1) << __FUNCTION__;
DCHECK_NE(state_, UNINITIALIZED);
queue_.Reset();
timestamp_helper_->SetBaseTimestamp(base::TimeDelta());
in_media_segment_ = false;
}
bool MP3StreamParser::Parse(const uint8* buf, int size) {
DVLOG(1) << __FUNCTION__ << "(" << size << ")";
DCHECK(buf);
DCHECK_GT(size, 0);
DCHECK_NE(state_, UNINITIALIZED);
if (state_ == PARSE_ERROR)
return false;
DCHECK_EQ(state_, INITIALIZED);
queue_.Push(buf, size);
bool end_of_segment = true;
BufferQueue buffers;
for (;;) {
const uint8* data;
int data_size;
queue_.Peek(&data, &data_size);
if (data_size < 4)
break;
uint32 start_code = data[0] << 24 | data[1] << 16 | data[2] << 8 | data[3];
int bytes_read = 0;
bool parsed_metadata = true;
if ((start_code & kMP3StartCodeMask) == kMP3StartCodeMask) {
bytes_read = ParseMP3Frame(data, data_size, &buffers);
// Only allow the current segment to end if a full frame has been parsed.
end_of_segment = bytes_read > 0;
parsed_metadata = false;
} else if (start_code == kICYStartCode) {
bytes_read = ParseIcecastHeader(data, data_size);
} else if ((start_code & kID3StartCodeMask) == kID3v1StartCode) {
bytes_read = ParseID3v1(data, data_size);
} else if ((start_code & kID3StartCodeMask) == kID3v2StartCode) {
bytes_read = ParseID3v2(data, data_size);
} else {
bytes_read = FindNextValidStartCode(data, data_size);
if (bytes_read > 0) {
DVLOG(1) << "Unexpected start code 0x" << std::hex << start_code;
DVLOG(1) << "SKIPPING " << bytes_read << " bytes of garbage.";
}
}
CHECK_LE(bytes_read, data_size);
if (bytes_read < 0) {
ChangeState(PARSE_ERROR);
return false;
} else if (bytes_read == 0) {
// Need more data.
break;
}
// Send pending buffers if we have encountered metadata.
if (parsed_metadata && !buffers.empty() && !SendBuffers(&buffers, true))
return false;
queue_.Pop(bytes_read);
end_of_segment = true;
}
if (buffers.empty())
return true;
// Send buffers collected in this append that haven't been sent yet.
return SendBuffers(&buffers, end_of_segment);
}
void MP3StreamParser::ChangeState(State state) {
DVLOG(1) << __FUNCTION__ << "() : " << state_ << " -> " << state;
state_ = state;
}
int MP3StreamParser::ParseFrameHeader(const uint8* data, int size,
int* frame_size,
int* sample_rate,
ChannelLayout* channel_layout,
int* sample_count) const {
DCHECK(data);
DCHECK_GE(size, 0);
DCHECK(frame_size);
if (size < 4)
return 0;
BitReader reader(data, size);
int sync;
int version;
int layer;
int is_protected;
int bitrate_index;
int sample_rate_index;
int has_padding;
int is_private;
int channel_mode;
int other_flags;
if (!reader.ReadBits(11, &sync) ||
!reader.ReadBits(2, &version) ||
!reader.ReadBits(2, &layer) ||
!reader.ReadBits(1, &is_protected) ||
!reader.ReadBits(4, &bitrate_index) ||
!reader.ReadBits(2, &sample_rate_index) ||
!reader.ReadBits(1, &has_padding) ||
!reader.ReadBits(1, &is_private) ||
!reader.ReadBits(2, &channel_mode) ||
!reader.ReadBits(6, &other_flags)) {
return -1;
}
DVLOG(2) << "Header data :" << std::hex
<< " sync 0x" << sync
<< " version 0x" << version
<< " layer 0x" << layer
<< " bitrate_index 0x" << bitrate_index
<< " sample_rate_index 0x" << sample_rate_index
<< " channel_mode 0x" << channel_mode;
if (sync != 0x7ff ||
version == kVersionReserved ||
layer == kLayerReserved ||
bitrate_index == kBitrateFree || bitrate_index == kBitrateBad ||
sample_rate_index == kSampleRateReserved) {
MEDIA_LOG(log_cb_) << "Invalid header data :" << std::hex
<< " sync 0x" << sync
<< " version 0x" << version
<< " layer 0x" << layer
<< " bitrate_index 0x" << bitrate_index
<< " sample_rate_index 0x" << sample_rate_index
<< " channel_mode 0x" << channel_mode;
return -1;
}
if (layer == kLayer2 && kIsAllowed[bitrate_index][channel_mode]) {
MEDIA_LOG(log_cb_) << "Invalid (bitrate_index, channel_mode) combination :"
<< std::hex
<< " bitrate_index " << bitrate_index
<< " channel_mode " << channel_mode;
return -1;
}
int bitrate = kBitrateMap[bitrate_index][kVersionLayerMap[version][layer]];
if (bitrate == 0) {
MEDIA_LOG(log_cb_) << "Invalid bitrate :" << std::hex
<< " version " << version
<< " layer " << layer
<< " bitrate_index " << bitrate_index;
return -1;
}
DVLOG(2) << " bitrate " << bitrate;
int frame_sample_rate = kSampleRateMap[sample_rate_index][version];
if (frame_sample_rate == 0) {
MEDIA_LOG(log_cb_) << "Invalid sample rate :" << std::hex
<< " version " << version
<< " sample_rate_index " << sample_rate_index;
return -1;
}
if (sample_rate)
*sample_rate = frame_sample_rate;
// http://teslabs.com/openplayer/docs/docs/specs/mp3_structure2.pdf
// Table 2.1.5
int samples_per_frame;
switch (layer) {
case kLayer1:
samples_per_frame = 384;
break;
case kLayer2:
samples_per_frame = 1152;
break;
case kLayer3:
if (version == kVersion2 || version == kVersion2_5)
samples_per_frame = 576;
else
samples_per_frame = 1152;
break;
default:
return -1;
}
if (sample_count)
*sample_count = samples_per_frame;
// http://teslabs.com/openplayer/docs/docs/specs/mp3_structure2.pdf
// Text just below Table 2.1.5.
if (layer == kLayer1) {
// This formulation is a slight variation on the equation below,
// but has slightly different truncation characteristics to deal
// with the fact that Layer 1 has 4 byte "slots" instead of single
// byte ones.
*frame_size = 4 * (12 * bitrate * 1000 / frame_sample_rate);
} else {
*frame_size =
((samples_per_frame / 8) * bitrate * 1000) / frame_sample_rate;
}
if (has_padding)
*frame_size += (layer == kLayer1) ? 4 : 1;
if (channel_layout) {
// Map Stereo(0), Joint Stereo(1), and Dual Channel (2) to
// CHANNEL_LAYOUT_STEREO and Single Channel (3) to CHANNEL_LAYOUT_MONO.
*channel_layout =
(channel_mode == 3) ? CHANNEL_LAYOUT_MONO : CHANNEL_LAYOUT_STEREO;
}
return 4;
}
int MP3StreamParser::ParseMP3Frame(const uint8* data,
int size,
BufferQueue* buffers) {
DVLOG(2) << __FUNCTION__ << "(" << size << ")";
int sample_rate;
ChannelLayout channel_layout;
int frame_size;
int sample_count;
int bytes_read = ParseFrameHeader(
data, size, &frame_size, &sample_rate, &channel_layout, &sample_count);
if (bytes_read <= 0)
return bytes_read;
// Make sure data contains the entire frame.
if (size < frame_size)
return 0;
DVLOG(2) << " sample_rate " << sample_rate
<< " channel_layout " << channel_layout
<< " frame_size " << frame_size;
if (config_.IsValidConfig() &&
(config_.samples_per_second() != sample_rate ||
config_.channel_layout() != channel_layout)) {
// Clear config data so that a config change is initiated.
config_ = AudioDecoderConfig();
// Send all buffers associated with the previous config.
if (!buffers->empty() && !SendBuffers(buffers, true))
return -1;
}
if (!config_.IsValidConfig()) {
config_.Initialize(kCodecMP3, kSampleFormatF32, channel_layout,
sample_rate, NULL, 0, false, false,
base::TimeDelta(), base::TimeDelta());
base::TimeDelta base_timestamp;
if (timestamp_helper_)
base_timestamp = timestamp_helper_->GetTimestamp();
timestamp_helper_.reset(new AudioTimestampHelper(sample_rate));
timestamp_helper_->SetBaseTimestamp(base_timestamp);
VideoDecoderConfig video_config;
bool success = config_cb_.Run(config_, video_config, TextTrackConfigMap());
if (!init_cb_.is_null())
base::ResetAndReturn(&init_cb_).Run(success, kInfiniteDuration());
if (!success)
return -1;
}
scoped_refptr<StreamParserBuffer> buffer =
StreamParserBuffer::CopyFrom(data, frame_size, true);
buffer->set_timestamp(timestamp_helper_->GetTimestamp());
buffer->set_duration(timestamp_helper_->GetFrameDuration(sample_count));
buffers->push_back(buffer);
timestamp_helper_->AddFrames(sample_count);
return frame_size;
}
int MP3StreamParser::ParseIcecastHeader(const uint8* data, int size) {
DVLOG(1) << __FUNCTION__ << "(" << size << ")";
if (size < 4)
return 0;
if (memcmp("ICY ", data, 4))
return -1;
int locate_size = std::min(size, kMaxIcecastHeaderSize);
int offset = net::HttpUtil::LocateEndOfHeaders(
reinterpret_cast<const char*>(data), locate_size, 4);
if (offset < 0) {
if (locate_size == kMaxIcecastHeaderSize) {
MEDIA_LOG(log_cb_) << "Icecast header is too large.";
return -1;
}
return 0;
}
return offset;
}
int MP3StreamParser::ParseID3v1(const uint8* data, int size) {
DVLOG(1) << __FUNCTION__ << "(" << size << ")";
if (size < kID3v1Size)
return 0;
// TODO(acolwell): Add code to actually validate ID3v1 data and
// expose it as a metadata text track.
return !memcmp(data, "TAG+", 4) ? kID3v1ExtendedSize : kID3v1Size;
}
int MP3StreamParser::ParseID3v2(const uint8* data, int size) {
DVLOG(1) << __FUNCTION__ << "(" << size << ")";
if (size < 10)
return 0;
BitReader reader(data, size);
int32 id;
int version;
uint8 flags;
int32 id3_size;
if (!reader.ReadBits(24, &id) ||
!reader.ReadBits(16, &version) ||
!reader.ReadBits(8, &flags) ||
!ParseSyncSafeInt(&reader, &id3_size)) {
return -1;
}
int32 actual_tag_size = 10 + id3_size;
// Increment size if 'Footer present' flag is set.
if (flags & 0x10)
actual_tag_size += 10;
// Make sure we have the entire tag.
if (size < actual_tag_size)
return 0;
// TODO(acolwell): Add code to actually validate ID3v2 data and
// expose it as a metadata text track.
return actual_tag_size;
}
bool MP3StreamParser::ParseSyncSafeInt(BitReader* reader, int32* value) {
*value = 0;
for (int i = 0; i < 4; ++i) {
uint8 tmp;
if (!reader->ReadBits(1, &tmp) || tmp != 0) {
MEDIA_LOG(log_cb_) << "ID3 syncsafe integer byte MSb is not 0!";
return false;
}
if (!reader->ReadBits(7, &tmp))
return false;
*value <<= 7;
*value += tmp;
}
return true;
}
int MP3StreamParser::FindNextValidStartCode(const uint8* data, int size) const {
const uint8* start = data;
const uint8* end = data + size;
while (start < end) {
int bytes_left = end - start;
const uint8* candidate_start_code =
static_cast<const uint8*>(memchr(start, 0xff, bytes_left));
if (!candidate_start_code)
return 0;
bool parse_header_failed = false;
const uint8* sync = candidate_start_code;
// Try to find 3 valid frames in a row. 3 was selected to decrease
// the probability of false positives.
for (int i = 0; i < 3; ++i) {
int sync_size = end - sync;
int frame_size;
int sync_bytes = ParseFrameHeader(
sync, sync_size, &frame_size, NULL, NULL, NULL);
if (sync_bytes == 0)
return 0;
if (sync_bytes > 0) {
DCHECK_LT(sync_bytes, sync_size);
// Skip over this frame so we can check the next one.
sync += frame_size;
// Make sure the next frame starts inside the buffer.
if (sync >= end)
return 0;
} else {
DVLOG(1) << "ParseFrameHeader() " << i << " failed @" << (sync - data);
parse_header_failed = true;
break;
}
}
if (parse_header_failed) {
// One of the frame header parses failed so |candidate_start_code|
// did not point to the start of a real frame. Move |start| forward
// so we can find the next candidate.
start = candidate_start_code + 1;
continue;
}
return candidate_start_code - data;
}
return 0;
}
bool MP3StreamParser::SendBuffers(BufferQueue* buffers, bool end_of_segment) {
DCHECK(!buffers->empty());
if (!in_media_segment_) {
in_media_segment_ = true;
new_segment_cb_.Run();
}
BufferQueue empty_video_buffers;
if (!new_buffers_cb_.Run(*buffers, empty_video_buffers))
return false;
buffers->clear();
if (end_of_segment) {
in_media_segment_ = false;
end_of_segment_cb_.Run();
}
return true;
}
} // namespace media