// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <string>
#include <vector>
#include "base/basictypes.h"
#include "base/bind.h"
#include "media/base/decoder_buffer.h"
#include "media/base/decrypt_config.h"
#include "media/base/mock_filters.h"
#include "media/cdm/aes_decryptor.h"
#include "media/webm/webm_constants.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using ::testing::_;
using ::testing::Gt;
using ::testing::IsNull;
using ::testing::NotNull;
using ::testing::SaveArg;
using ::testing::StrNe;
MATCHER(IsEmpty, "") { return arg.empty(); }
namespace media {
const uint8 kOriginalData[] = "Original subsample data.";
const int kOriginalDataSize = 24;
// In the examples below, 'k'(key) has to be 16 bytes, and will always require
// 2 bytes of padding. 'kid'(keyid) is variable length, and may require 0, 1,
// or 2 bytes of padding.
const uint8 kKeyId[] = {
// base64 equivalent is AAECAw
0x00, 0x01, 0x02, 0x03
};
// Key is 0x0405060708090a0b0c0d0e0f10111213,
// base64 equivalent is BAUGBwgJCgsMDQ4PEBESEw.
const char kKeyAsJWK[] =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAw\","
" \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\""
" }"
" ]"
"}";
// Same kid as kKeyAsJWK, key to decrypt kEncryptedData2
const char kKeyAlternateAsJWK[] =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAw\","
" \"k\": \"FBUWFxgZGhscHR4fICEiIw\""
" }"
" ]"
"}";
const char kWrongKeyAsJWK[] =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAw\","
" \"k\": \"7u7u7u7u7u7u7u7u7u7u7g\""
" }"
" ]"
"}";
const char kWrongSizedKeyAsJWK[] =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAw\","
" \"k\": \"AAECAw\""
" }"
" ]"
"}";
const uint8 kIv[] = {
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
// kOriginalData encrypted with kKey and kIv but without any subsamples (or
// equivalently using kSubsampleEntriesCypherOnly).
const uint8 kEncryptedData[] = {
0x2f, 0x03, 0x09, 0xef, 0x71, 0xaf, 0x31, 0x16,
0xfa, 0x9d, 0x18, 0x43, 0x1e, 0x96, 0x71, 0xb5,
0xbf, 0xf5, 0x30, 0x53, 0x9a, 0x20, 0xdf, 0x95
};
// kOriginalData encrypted with kSubsampleKey and kSubsampleIv using
// kSubsampleEntriesNormal.
const uint8 kSubsampleEncryptedData[] = {
0x4f, 0x72, 0x09, 0x16, 0x09, 0xe6, 0x79, 0xad,
0x70, 0x73, 0x75, 0x62, 0x09, 0xbb, 0x83, 0x1d,
0x4d, 0x08, 0xd7, 0x78, 0xa4, 0xa7, 0xf1, 0x2e
};
const uint8 kOriginalData2[] = "Changed Original data.";
const uint8 kIv2[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
const uint8 kKeyId2[] = {
// base64 equivalent is AAECAwQFBgcICQoLDA0ODxAREhM=
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13
};
const char kKey2AsJWK[] =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAwQFBgcICQoLDA0ODxAREhM\","
" \"k\": \"FBUWFxgZGhscHR4fICEiIw\""
" }"
" ]"
"}";
// 'k' in bytes is x14x15x16x17x18x19x1ax1bx1cx1dx1ex1fx20x21x22x23
const uint8 kEncryptedData2[] = {
0x57, 0x66, 0xf4, 0x12, 0x1a, 0xed, 0xb5, 0x79,
0x1c, 0x8e, 0x25, 0xd7, 0x17, 0xe7, 0x5e, 0x16,
0xe3, 0x40, 0x08, 0x27, 0x11, 0xe9
};
// Subsample entries for testing. The sum of |cypher_bytes| and |clear_bytes| of
// all entries must be equal to kOriginalDataSize to make the subsample entries
// valid.
const SubsampleEntry kSubsampleEntriesNormal[] = {
{ 2, 7 },
{ 3, 11 },
{ 1, 0 }
};
const SubsampleEntry kSubsampleEntriesWrongSize[] = {
{ 3, 6 }, // This entry doesn't match the correct entry.
{ 3, 11 },
{ 1, 0 }
};
const SubsampleEntry kSubsampleEntriesInvalidTotalSize[] = {
{ 1, 1000 }, // This entry is too large.
{ 3, 11 },
{ 1, 0 }
};
const SubsampleEntry kSubsampleEntriesClearOnly[] = {
{ 7, 0 },
{ 8, 0 },
{ 9, 0 }
};
const SubsampleEntry kSubsampleEntriesCypherOnly[] = {
{ 0, 6 },
{ 0, 8 },
{ 0, 10 }
};
static scoped_refptr<DecoderBuffer> CreateEncryptedBuffer(
const std::vector<uint8>& data,
const std::vector<uint8>& key_id,
const std::vector<uint8>& iv,
int offset,
const std::vector<SubsampleEntry>& subsample_entries) {
DCHECK(!data.empty());
int padded_size = offset + data.size();
scoped_refptr<DecoderBuffer> encrypted_buffer(new DecoderBuffer(padded_size));
memcpy(encrypted_buffer->writable_data() + offset, &data[0], data.size());
CHECK(encrypted_buffer.get());
std::string key_id_string(
reinterpret_cast<const char*>(key_id.empty() ? NULL : &key_id[0]),
key_id.size());
std::string iv_string(
reinterpret_cast<const char*>(iv.empty() ? NULL : &iv[0]), iv.size());
encrypted_buffer->set_decrypt_config(scoped_ptr<DecryptConfig>(
new DecryptConfig(key_id_string, iv_string, offset, subsample_entries)));
return encrypted_buffer;
}
class AesDecryptorTest : public testing::Test {
public:
AesDecryptorTest()
: decryptor_(base::Bind(&AesDecryptorTest::OnSessionCreated,
base::Unretained(this)),
base::Bind(&AesDecryptorTest::OnSessionMessage,
base::Unretained(this)),
base::Bind(&AesDecryptorTest::OnSessionReady,
base::Unretained(this)),
base::Bind(&AesDecryptorTest::OnSessionClosed,
base::Unretained(this)),
base::Bind(&AesDecryptorTest::OnSessionError,
base::Unretained(this))),
decrypt_cb_(base::Bind(&AesDecryptorTest::BufferDecrypted,
base::Unretained(this))),
original_data_(kOriginalData, kOriginalData + kOriginalDataSize),
encrypted_data_(kEncryptedData,
kEncryptedData + arraysize(kEncryptedData)),
subsample_encrypted_data_(
kSubsampleEncryptedData,
kSubsampleEncryptedData + arraysize(kSubsampleEncryptedData)),
key_id_(kKeyId, kKeyId + arraysize(kKeyId)),
iv_(kIv, kIv + arraysize(kIv)),
normal_subsample_entries_(
kSubsampleEntriesNormal,
kSubsampleEntriesNormal + arraysize(kSubsampleEntriesNormal)),
next_session_id_(1) {
}
protected:
// Creates a new session using |key_id|. Returns the session ID.
uint32 CreateSession(const std::vector<uint8>& key_id) {
DCHECK(!key_id.empty());
uint32 session_id = next_session_id_++;
EXPECT_CALL(*this, OnSessionCreated(session_id, StrNe(std::string())));
EXPECT_CALL(*this, OnSessionMessage(session_id, key_id, ""));
EXPECT_TRUE(decryptor_.CreateSession(
session_id, std::string(), &key_id[0], key_id.size()));
return session_id;
}
// Releases the session specified by |session_id|.
void ReleaseSession(uint32 session_id) {
EXPECT_CALL(*this, OnSessionClosed(session_id));
decryptor_.ReleaseSession(session_id);
}
enum UpdateSessionExpectation {
SESSION_READY,
SESSION_ERROR
};
// Updates the session specified by |session_id| with |key|. |result|
// tests that the update succeeds or generates an error.
void UpdateSessionAndExpect(uint32 session_id,
const std::string& key,
UpdateSessionExpectation result) {
DCHECK(!key.empty());
switch (result) {
case SESSION_READY:
EXPECT_CALL(*this, OnSessionReady(session_id));
break;
case SESSION_ERROR:
EXPECT_CALL(*this,
OnSessionError(session_id, MediaKeys::kUnknownError, 0));
break;
}
decryptor_.UpdateSession(
session_id, reinterpret_cast<const uint8*>(key.c_str()), key.length());
}
MOCK_METHOD2(BufferDecrypted, void(Decryptor::Status,
const scoped_refptr<DecoderBuffer>&));
enum DecryptExpectation {
SUCCESS,
DATA_MISMATCH,
DATA_AND_SIZE_MISMATCH,
DECRYPT_ERROR,
NO_KEY
};
void DecryptAndExpect(const scoped_refptr<DecoderBuffer>& encrypted,
const std::vector<uint8>& plain_text,
DecryptExpectation result) {
scoped_refptr<DecoderBuffer> decrypted;
switch (result) {
case SUCCESS:
case DATA_MISMATCH:
case DATA_AND_SIZE_MISMATCH:
EXPECT_CALL(*this, BufferDecrypted(Decryptor::kSuccess, NotNull()))
.WillOnce(SaveArg<1>(&decrypted));
break;
case DECRYPT_ERROR:
EXPECT_CALL(*this, BufferDecrypted(Decryptor::kError, IsNull()))
.WillOnce(SaveArg<1>(&decrypted));
break;
case NO_KEY:
EXPECT_CALL(*this, BufferDecrypted(Decryptor::kNoKey, IsNull()))
.WillOnce(SaveArg<1>(&decrypted));
break;
}
decryptor_.Decrypt(Decryptor::kVideo, encrypted, decrypt_cb_);
std::vector<uint8> decrypted_text;
if (decrypted && decrypted->data_size()) {
decrypted_text.assign(
decrypted->data(), decrypted->data() + decrypted->data_size());
}
switch (result) {
case SUCCESS:
EXPECT_EQ(plain_text, decrypted_text);
break;
case DATA_MISMATCH:
EXPECT_EQ(plain_text.size(), decrypted_text.size());
EXPECT_NE(plain_text, decrypted_text);
break;
case DATA_AND_SIZE_MISMATCH:
EXPECT_NE(plain_text.size(), decrypted_text.size());
break;
case DECRYPT_ERROR:
case NO_KEY:
EXPECT_TRUE(decrypted_text.empty());
break;
}
}
MOCK_METHOD2(OnSessionCreated,
void(uint32 session_id, const std::string& web_session_id));
MOCK_METHOD3(OnSessionMessage,
void(uint32 session_id,
const std::vector<uint8>& message,
const std::string& default_url));
MOCK_METHOD1(OnSessionReady, void(uint32 session_id));
MOCK_METHOD1(OnSessionClosed, void(uint32 session_id));
MOCK_METHOD3(OnSessionError,
void(uint32 session_id, MediaKeys::KeyError, int system_code));
AesDecryptor decryptor_;
AesDecryptor::DecryptCB decrypt_cb_;
// Constants for testing.
const std::vector<uint8> original_data_;
const std::vector<uint8> encrypted_data_;
const std::vector<uint8> subsample_encrypted_data_;
const std::vector<uint8> key_id_;
const std::vector<uint8> iv_;
const std::vector<SubsampleEntry> normal_subsample_entries_;
const std::vector<SubsampleEntry> no_subsample_entries_;
// Generate new session ID every time
uint32 next_session_id_;
};
TEST_F(AesDecryptorTest, CreateSessionWithNullInitData) {
uint32 session_id = 8;
EXPECT_CALL(*this, OnSessionMessage(session_id, IsEmpty(), ""));
EXPECT_CALL(*this, OnSessionCreated(session_id, StrNe(std::string())));
EXPECT_TRUE(decryptor_.CreateSession(session_id, std::string(), NULL, 0));
}
TEST_F(AesDecryptorTest, MultipleCreateSession) {
uint32 session_id1 = 10;
EXPECT_CALL(*this, OnSessionMessage(session_id1, IsEmpty(), ""));
EXPECT_CALL(*this, OnSessionCreated(session_id1, StrNe(std::string())));
EXPECT_TRUE(decryptor_.CreateSession(session_id1, std::string(), NULL, 0));
uint32 session_id2 = 11;
EXPECT_CALL(*this, OnSessionMessage(session_id2, IsEmpty(), ""));
EXPECT_CALL(*this, OnSessionCreated(session_id2, StrNe(std::string())));
EXPECT_TRUE(decryptor_.CreateSession(session_id2, std::string(), NULL, 0));
uint32 session_id3 = 23;
EXPECT_CALL(*this, OnSessionMessage(session_id3, IsEmpty(), ""));
EXPECT_CALL(*this, OnSessionCreated(session_id3, StrNe(std::string())));
EXPECT_TRUE(decryptor_.CreateSession(session_id3, std::string(), NULL, 0));
}
TEST_F(AesDecryptorTest, NormalDecryption) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
TEST_F(AesDecryptorTest, DecryptionWithOffset) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 23, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
TEST_F(AesDecryptorTest, UnencryptedFrame) {
// An empty iv string signals that the frame is unencrypted.
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
original_data_, key_id_, std::vector<uint8>(), 0, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
TEST_F(AesDecryptorTest, WrongKey) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kWrongKeyAsJWK, SESSION_READY);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH);
}
TEST_F(AesDecryptorTest, NoKey) {
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, no_subsample_entries_);
EXPECT_CALL(*this, BufferDecrypted(AesDecryptor::kNoKey, IsNull()));
decryptor_.Decrypt(Decryptor::kVideo, encrypted_buffer, decrypt_cb_);
}
TEST_F(AesDecryptorTest, KeyReplacement) {
uint32 session_id = CreateSession(key_id_);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, no_subsample_entries_);
UpdateSessionAndExpect(session_id, kWrongKeyAsJWK, SESSION_READY);
ASSERT_NO_FATAL_FAILURE(DecryptAndExpect(
encrypted_buffer, original_data_, DATA_MISMATCH));
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS));
}
TEST_F(AesDecryptorTest, WrongSizedKey) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kWrongSizedKeyAsJWK, SESSION_ERROR);
}
TEST_F(AesDecryptorTest, MultipleKeysAndFrames) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 10, no_subsample_entries_);
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS));
UpdateSessionAndExpect(session_id, kKey2AsJWK, SESSION_READY);
// The first key is still available after we added a second key.
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS));
// The second key is also available.
encrypted_buffer = CreateEncryptedBuffer(
std::vector<uint8>(kEncryptedData2,
kEncryptedData2 + arraysize(kEncryptedData2)),
std::vector<uint8>(kKeyId2, kKeyId2 + arraysize(kKeyId2)),
std::vector<uint8>(kIv2, kIv2 + arraysize(kIv2)),
30,
no_subsample_entries_);
ASSERT_NO_FATAL_FAILURE(DecryptAndExpect(
encrypted_buffer,
std::vector<uint8>(kOriginalData2,
kOriginalData2 + arraysize(kOriginalData2) - 1),
SUCCESS));
}
TEST_F(AesDecryptorTest, CorruptedIv) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
std::vector<uint8> bad_iv = iv_;
bad_iv[1]++;
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, bad_iv, 0, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH);
}
TEST_F(AesDecryptorTest, CorruptedData) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
std::vector<uint8> bad_data = encrypted_data_;
bad_data[1]++;
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
bad_data, key_id_, iv_, 0, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH);
}
TEST_F(AesDecryptorTest, EncryptedAsUnencryptedFailure) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, std::vector<uint8>(), 0, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH);
}
TEST_F(AesDecryptorTest, SubsampleDecryption) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
subsample_encrypted_data_, key_id_, iv_, 0, normal_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
// Ensures noninterference of data offset and subsample mechanisms. We never
// expect to encounter this in the wild, but since the DecryptConfig doesn't
// disallow such a configuration, it should be covered.
TEST_F(AesDecryptorTest, SubsampleDecryptionWithOffset) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
subsample_encrypted_data_, key_id_, iv_, 23, normal_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
TEST_F(AesDecryptorTest, SubsampleWrongSize) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
std::vector<SubsampleEntry> subsample_entries_wrong_size(
kSubsampleEntriesWrongSize,
kSubsampleEntriesWrongSize + arraysize(kSubsampleEntriesWrongSize));
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
subsample_encrypted_data_, key_id_, iv_, 0, subsample_entries_wrong_size);
DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH);
}
TEST_F(AesDecryptorTest, SubsampleInvalidTotalSize) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
std::vector<SubsampleEntry> subsample_entries_invalid_total_size(
kSubsampleEntriesInvalidTotalSize,
kSubsampleEntriesInvalidTotalSize +
arraysize(kSubsampleEntriesInvalidTotalSize));
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
subsample_encrypted_data_, key_id_, iv_, 0,
subsample_entries_invalid_total_size);
DecryptAndExpect(encrypted_buffer, original_data_, DECRYPT_ERROR);
}
// No cypher bytes in any of the subsamples.
TEST_F(AesDecryptorTest, SubsampleClearBytesOnly) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
std::vector<SubsampleEntry> clear_only_subsample_entries(
kSubsampleEntriesClearOnly,
kSubsampleEntriesClearOnly + arraysize(kSubsampleEntriesClearOnly));
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
original_data_, key_id_, iv_, 0, clear_only_subsample_entries);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
// No clear bytes in any of the subsamples.
TEST_F(AesDecryptorTest, SubsampleCypherBytesOnly) {
uint32 session_id = CreateSession(key_id_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
std::vector<SubsampleEntry> cypher_only_subsample_entries(
kSubsampleEntriesCypherOnly,
kSubsampleEntriesCypherOnly + arraysize(kSubsampleEntriesCypherOnly));
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, cypher_only_subsample_entries);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
TEST_F(AesDecryptorTest, ReleaseSession) {
uint32 session_id = CreateSession(key_id_);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, no_subsample_entries_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS));
ReleaseSession(session_id);
}
TEST_F(AesDecryptorTest, NoKeyAfterReleaseSession) {
uint32 session_id = CreateSession(key_id_);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, no_subsample_entries_);
UpdateSessionAndExpect(session_id, kKeyAsJWK, SESSION_READY);
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS));
ReleaseSession(session_id);
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, NO_KEY));
}
TEST_F(AesDecryptorTest, LatestKeyUsed) {
uint32 session_id1 = CreateSession(key_id_);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, no_subsample_entries_);
// Add alternate key, buffer should not be decoded properly.
UpdateSessionAndExpect(session_id1, kKeyAlternateAsJWK, SESSION_READY);
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH));
// Create a second session with a correct key value for key_id_.
uint32 session_id2 = CreateSession(key_id_);
UpdateSessionAndExpect(session_id2, kKeyAsJWK, SESSION_READY);
// Should be able to decode with latest key.
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS));
}
TEST_F(AesDecryptorTest, LatestKeyUsedAfterReleaseSession) {
uint32 session_id1 = CreateSession(key_id_);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, no_subsample_entries_);
UpdateSessionAndExpect(session_id1, kKeyAsJWK, SESSION_READY);
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS));
// Create a second session with a different key value for key_id_.
uint32 session_id2 = CreateSession(key_id_);
UpdateSessionAndExpect(session_id2, kKeyAlternateAsJWK, SESSION_READY);
// Should not be able to decode with new key.
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH));
// Close second session, should revert to original key.
ReleaseSession(session_id2);
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS));
}
TEST_F(AesDecryptorTest, JWKKey) {
uint32 session_id = CreateSession(key_id_);
// Try a simple JWK key (i.e. not in a set)
const std::string kJwkSimple =
"{"
" \"kty\": \"oct\","
" \"kid\": \"AAECAwQFBgcICQoLDA0ODxAREhM\","
" \"k\": \"FBUWFxgZGhscHR4fICEiIw\""
"}";
UpdateSessionAndExpect(session_id, kJwkSimple, SESSION_ERROR);
// Try a key list with multiple entries.
const std::string kJwksMultipleEntries =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAwQFBgcICQoLDA0ODxAREhM\","
" \"k\": \"FBUWFxgZGhscHR4fICEiIw\""
" },"
" {"
" \"kty\": \"oct\","
" \"kid\": \"JCUmJygpKissLS4vMA\","
" \"k\":\"MTIzNDU2Nzg5Ojs8PT4/QA\""
" }"
" ]"
"}";
UpdateSessionAndExpect(session_id, kJwksMultipleEntries, SESSION_READY);
// Try a key with no spaces and some \n plus additional fields.
const std::string kJwksNoSpaces =
"\n\n{\"something\":1,\"keys\":[{\n\n\"kty\":\"oct\",\"alg\":\"A128KW\","
"\"kid\":\"AAECAwQFBgcICQoLDA0ODxAREhM\",\"k\":\"GawgguFyGrWKav7AX4VKUg"
"\",\"foo\":\"bar\"}]}\n\n";
UpdateSessionAndExpect(session_id, kJwksNoSpaces, SESSION_READY);
// Try some non-ASCII characters.
UpdateSessionAndExpect(session_id,
"This is not ASCII due to \xff\xfe\xfd in it.",
SESSION_ERROR);
// Try a badly formatted key. Assume that the JSON parser is fully tested,
// so we won't try a lot of combinations. However, need a test to ensure
// that the code doesn't crash if invalid JSON received.
UpdateSessionAndExpect(session_id, "This is not a JSON key.", SESSION_ERROR);
// Try passing some valid JSON that is not a dictionary at the top level.
UpdateSessionAndExpect(session_id, "40", SESSION_ERROR);
// Try an empty dictionary.
UpdateSessionAndExpect(session_id, "{ }", SESSION_ERROR);
// Try an empty 'keys' dictionary.
UpdateSessionAndExpect(session_id, "{ \"keys\": [] }", SESSION_ERROR);
// Try with 'keys' not a dictionary.
UpdateSessionAndExpect(session_id, "{ \"keys\":\"1\" }", SESSION_ERROR);
// Try with 'keys' a list of integers.
UpdateSessionAndExpect(
session_id, "{ \"keys\": [ 1, 2, 3 ] }", SESSION_ERROR);
// Try padding(=) at end of 'k' base64 string.
const std::string kJwksWithPaddedKey =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAw\","
" \"k\": \"BAUGBwgJCgsMDQ4PEBESEw==\""
" }"
" ]"
"}";
UpdateSessionAndExpect(session_id, kJwksWithPaddedKey, SESSION_ERROR);
// Try padding(=) at end of 'kid' base64 string.
const std::string kJwksWithPaddedKeyId =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAw==\","
" \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\""
" }"
" ]"
"}";
UpdateSessionAndExpect(session_id, kJwksWithPaddedKeyId, SESSION_ERROR);
// Try a key with invalid base64 encoding.
const std::string kJwksWithInvalidBase64 =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"!@#$%^&*()\","
" \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\""
" }"
" ]"
"}";
UpdateSessionAndExpect(session_id, kJwksWithInvalidBase64, SESSION_ERROR);
// Try a 3-byte 'kid' where no base64 padding is required.
// |kJwksMultipleEntries| above has 2 'kid's that require 1 and 2 padding
// bytes. Note that 'k' has to be 16 bytes, so it will always require padding.
const std::string kJwksWithNoPadding =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"Kiss\","
" \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\""
" }"
" ]"
"}";
UpdateSessionAndExpect(session_id, kJwksWithNoPadding, SESSION_READY);
// Empty key id.
const std::string kJwksWithEmptyKeyId =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"\","
" \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\""
" }"
" ]"
"}";
UpdateSessionAndExpect(session_id, kJwksWithEmptyKeyId, SESSION_ERROR);
ReleaseSession(session_id);
}
} // namespace media