// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/cdm/aes_decryptor.h"
#include <list>
#include <vector>
#include "base/logging.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "crypto/encryptor.h"
#include "crypto/symmetric_key.h"
#include "media/base/audio_decoder_config.h"
#include "media/base/decoder_buffer.h"
#include "media/base/decrypt_config.h"
#include "media/base/video_decoder_config.h"
#include "media/base/video_frame.h"
#include "media/cdm/json_web_key.h"
namespace media {
// Keeps track of the session IDs and DecryptionKeys. The keys are ordered by
// insertion time (last insertion is first). It takes ownership of the
// DecryptionKeys.
class AesDecryptor::SessionIdDecryptionKeyMap {
// Use a std::list to actually hold the data. Insertion is always done
// at the front, so the "latest" decryption key is always the first one
// in the list.
typedef std::list<std::pair<uint32, DecryptionKey*> > KeyList;
public:
SessionIdDecryptionKeyMap() {}
~SessionIdDecryptionKeyMap() { STLDeleteValues(&key_list_); }
// Replaces value if |session_id| is already present, or adds it if not.
// This |decryption_key| becomes the latest until another insertion or
// |session_id| is erased.
void Insert(uint32 session_id, scoped_ptr<DecryptionKey> decryption_key);
// Deletes the entry for |session_id| if present.
void Erase(const uint32 session_id);
// Returns whether the list is empty
bool Empty() const { return key_list_.empty(); }
// Returns the last inserted DecryptionKey.
DecryptionKey* LatestDecryptionKey() {
DCHECK(!key_list_.empty());
return key_list_.begin()->second;
}
private:
// Searches the list for an element with |session_id|.
KeyList::iterator Find(const uint32 session_id);
// Deletes the entry pointed to by |position|.
void Erase(KeyList::iterator position);
KeyList key_list_;
DISALLOW_COPY_AND_ASSIGN(SessionIdDecryptionKeyMap);
};
void AesDecryptor::SessionIdDecryptionKeyMap::Insert(
uint32 session_id,
scoped_ptr<DecryptionKey> decryption_key) {
KeyList::iterator it = Find(session_id);
if (it != key_list_.end())
Erase(it);
DecryptionKey* raw_ptr = decryption_key.release();
key_list_.push_front(std::make_pair(session_id, raw_ptr));
}
void AesDecryptor::SessionIdDecryptionKeyMap::Erase(const uint32 session_id) {
KeyList::iterator it = Find(session_id);
if (it == key_list_.end())
return;
Erase(it);
}
AesDecryptor::SessionIdDecryptionKeyMap::KeyList::iterator
AesDecryptor::SessionIdDecryptionKeyMap::Find(const uint32 session_id) {
for (KeyList::iterator it = key_list_.begin(); it != key_list_.end(); ++it) {
if (it->first == session_id)
return it;
}
return key_list_.end();
}
void AesDecryptor::SessionIdDecryptionKeyMap::Erase(
KeyList::iterator position) {
DCHECK(position->second);
delete position->second;
key_list_.erase(position);
}
uint32 AesDecryptor::next_web_session_id_ = 1;
enum ClearBytesBufferSel {
kSrcContainsClearBytes,
kDstContainsClearBytes
};
static void CopySubsamples(const std::vector<SubsampleEntry>& subsamples,
const ClearBytesBufferSel sel,
const uint8* src,
uint8* dst) {
for (size_t i = 0; i < subsamples.size(); i++) {
const SubsampleEntry& subsample = subsamples[i];
if (sel == kSrcContainsClearBytes) {
src += subsample.clear_bytes;
} else {
dst += subsample.clear_bytes;
}
memcpy(dst, src, subsample.cypher_bytes);
src += subsample.cypher_bytes;
dst += subsample.cypher_bytes;
}
}
// Decrypts |input| using |key|. Returns a DecoderBuffer with the decrypted
// data if decryption succeeded or NULL if decryption failed.
static scoped_refptr<DecoderBuffer> DecryptData(const DecoderBuffer& input,
crypto::SymmetricKey* key) {
CHECK(input.data_size());
CHECK(input.decrypt_config());
CHECK(key);
crypto::Encryptor encryptor;
if (!encryptor.Init(key, crypto::Encryptor::CTR, "")) {
DVLOG(1) << "Could not initialize decryptor.";
return NULL;
}
DCHECK_EQ(input.decrypt_config()->iv().size(),
static_cast<size_t>(DecryptConfig::kDecryptionKeySize));
if (!encryptor.SetCounter(input.decrypt_config()->iv())) {
DVLOG(1) << "Could not set counter block.";
return NULL;
}
const int data_offset = input.decrypt_config()->data_offset();
const char* sample =
reinterpret_cast<const char*>(input.data() + data_offset);
DCHECK_GT(input.data_size(), data_offset);
size_t sample_size = static_cast<size_t>(input.data_size() - data_offset);
DCHECK_GT(sample_size, 0U) << "No sample data to be decrypted.";
if (sample_size == 0)
return NULL;
if (input.decrypt_config()->subsamples().empty()) {
std::string decrypted_text;
base::StringPiece encrypted_text(sample, sample_size);
if (!encryptor.Decrypt(encrypted_text, &decrypted_text)) {
DVLOG(1) << "Could not decrypt data.";
return NULL;
}
// TODO(xhwang): Find a way to avoid this data copy.
return DecoderBuffer::CopyFrom(
reinterpret_cast<const uint8*>(decrypted_text.data()),
decrypted_text.size());
}
const std::vector<SubsampleEntry>& subsamples =
input.decrypt_config()->subsamples();
size_t total_clear_size = 0;
size_t total_encrypted_size = 0;
for (size_t i = 0; i < subsamples.size(); i++) {
total_clear_size += subsamples[i].clear_bytes;
total_encrypted_size += subsamples[i].cypher_bytes;
// Check for overflow. This check is valid because *_size is unsigned.
DCHECK(total_clear_size >= subsamples[i].clear_bytes);
if (total_encrypted_size < subsamples[i].cypher_bytes)
return NULL;
}
size_t total_size = total_clear_size + total_encrypted_size;
if (total_size < total_clear_size || total_size != sample_size) {
DVLOG(1) << "Subsample sizes do not equal input size";
return NULL;
}
// No need to decrypt if there is no encrypted data.
if (total_encrypted_size <= 0) {
return DecoderBuffer::CopyFrom(reinterpret_cast<const uint8*>(sample),
sample_size);
}
// The encrypted portions of all subsamples must form a contiguous block,
// such that an encrypted subsample that ends away from a block boundary is
// immediately followed by the start of the next encrypted subsample. We
// copy all encrypted subsamples to a contiguous buffer, decrypt them, then
// copy the decrypted bytes over the encrypted bytes in the output.
// TODO(strobe): attempt to reduce number of memory copies
scoped_ptr<uint8[]> encrypted_bytes(new uint8[total_encrypted_size]);
CopySubsamples(subsamples, kSrcContainsClearBytes,
reinterpret_cast<const uint8*>(sample), encrypted_bytes.get());
base::StringPiece encrypted_text(
reinterpret_cast<const char*>(encrypted_bytes.get()),
total_encrypted_size);
std::string decrypted_text;
if (!encryptor.Decrypt(encrypted_text, &decrypted_text)) {
DVLOG(1) << "Could not decrypt data.";
return NULL;
}
DCHECK_EQ(decrypted_text.size(), encrypted_text.size());
scoped_refptr<DecoderBuffer> output = DecoderBuffer::CopyFrom(
reinterpret_cast<const uint8*>(sample), sample_size);
CopySubsamples(subsamples, kDstContainsClearBytes,
reinterpret_cast<const uint8*>(decrypted_text.data()),
output->writable_data());
return output;
}
AesDecryptor::AesDecryptor(const SessionCreatedCB& session_created_cb,
const SessionMessageCB& session_message_cb,
const SessionReadyCB& session_ready_cb,
const SessionClosedCB& session_closed_cb,
const SessionErrorCB& session_error_cb)
: session_created_cb_(session_created_cb),
session_message_cb_(session_message_cb),
session_ready_cb_(session_ready_cb),
session_closed_cb_(session_closed_cb),
session_error_cb_(session_error_cb) {}
AesDecryptor::~AesDecryptor() {
key_map_.clear();
}
bool AesDecryptor::CreateSession(uint32 session_id,
const std::string& type,
const uint8* init_data,
int init_data_length) {
// Validate that this is a new session.
DCHECK(valid_sessions_.find(session_id) == valid_sessions_.end());
valid_sessions_.insert(session_id);
std::string web_session_id_string(base::UintToString(next_web_session_id_++));
// For now, the AesDecryptor does not care about |type|;
// just fire the event with the |init_data| as the request.
std::vector<uint8> message;
if (init_data && init_data_length)
message.assign(init_data, init_data + init_data_length);
session_created_cb_.Run(session_id, web_session_id_string);
session_message_cb_.Run(session_id, message, std::string());
return true;
}
void AesDecryptor::UpdateSession(uint32 session_id,
const uint8* response,
int response_length) {
CHECK(response);
CHECK_GT(response_length, 0);
DCHECK(valid_sessions_.find(session_id) != valid_sessions_.end());
std::string key_string(reinterpret_cast<const char*>(response),
response_length);
KeyIdAndKeyPairs keys;
if (!ExtractKeysFromJWKSet(key_string, &keys)) {
session_error_cb_.Run(session_id, MediaKeys::kUnknownError, 0);
return;
}
// Make sure that at least one key was extracted.
if (keys.empty()) {
session_error_cb_.Run(session_id, MediaKeys::kUnknownError, 0);
return;
}
for (KeyIdAndKeyPairs::iterator it = keys.begin(); it != keys.end(); ++it) {
if (it->second.length() !=
static_cast<size_t>(DecryptConfig::kDecryptionKeySize)) {
DVLOG(1) << "Invalid key length: " << key_string.length();
session_error_cb_.Run(session_id, MediaKeys::kUnknownError, 0);
return;
}
if (!AddDecryptionKey(session_id, it->first, it->second)) {
session_error_cb_.Run(session_id, MediaKeys::kUnknownError, 0);
return;
}
}
if (!new_audio_key_cb_.is_null())
new_audio_key_cb_.Run();
if (!new_video_key_cb_.is_null())
new_video_key_cb_.Run();
session_ready_cb_.Run(session_id);
}
void AesDecryptor::ReleaseSession(uint32 session_id) {
// Validate that this is a reference to an active session and then forget it.
std::set<uint32>::iterator it = valid_sessions_.find(session_id);
DCHECK(it != valid_sessions_.end());
valid_sessions_.erase(it);
DeleteKeysForSession(session_id);
session_closed_cb_.Run(session_id);
}
Decryptor* AesDecryptor::GetDecryptor() {
return this;
}
void AesDecryptor::RegisterNewKeyCB(StreamType stream_type,
const NewKeyCB& new_key_cb) {
switch (stream_type) {
case kAudio:
new_audio_key_cb_ = new_key_cb;
break;
case kVideo:
new_video_key_cb_ = new_key_cb;
break;
default:
NOTREACHED();
}
}
void AesDecryptor::Decrypt(StreamType stream_type,
const scoped_refptr<DecoderBuffer>& encrypted,
const DecryptCB& decrypt_cb) {
CHECK(encrypted->decrypt_config());
scoped_refptr<DecoderBuffer> decrypted;
// An empty iv string signals that the frame is unencrypted.
if (encrypted->decrypt_config()->iv().empty()) {
int data_offset = encrypted->decrypt_config()->data_offset();
decrypted = DecoderBuffer::CopyFrom(encrypted->data() + data_offset,
encrypted->data_size() - data_offset);
} else {
const std::string& key_id = encrypted->decrypt_config()->key_id();
DecryptionKey* key = GetKey(key_id);
if (!key) {
DVLOG(1) << "Could not find a matching key for the given key ID.";
decrypt_cb.Run(kNoKey, NULL);
return;
}
crypto::SymmetricKey* decryption_key = key->decryption_key();
decrypted = DecryptData(*encrypted.get(), decryption_key);
if (!decrypted.get()) {
DVLOG(1) << "Decryption failed.";
decrypt_cb.Run(kError, NULL);
return;
}
}
decrypted->set_timestamp(encrypted->timestamp());
decrypted->set_duration(encrypted->duration());
decrypt_cb.Run(kSuccess, decrypted);
}
void AesDecryptor::CancelDecrypt(StreamType stream_type) {
// Decrypt() calls the DecryptCB synchronously so there's nothing to cancel.
}
void AesDecryptor::InitializeAudioDecoder(const AudioDecoderConfig& config,
const DecoderInitCB& init_cb) {
// AesDecryptor does not support audio decoding.
init_cb.Run(false);
}
void AesDecryptor::InitializeVideoDecoder(const VideoDecoderConfig& config,
const DecoderInitCB& init_cb) {
// AesDecryptor does not support video decoding.
init_cb.Run(false);
}
void AesDecryptor::DecryptAndDecodeAudio(
const scoped_refptr<DecoderBuffer>& encrypted,
const AudioDecodeCB& audio_decode_cb) {
NOTREACHED() << "AesDecryptor does not support audio decoding";
}
void AesDecryptor::DecryptAndDecodeVideo(
const scoped_refptr<DecoderBuffer>& encrypted,
const VideoDecodeCB& video_decode_cb) {
NOTREACHED() << "AesDecryptor does not support video decoding";
}
void AesDecryptor::ResetDecoder(StreamType stream_type) {
NOTREACHED() << "AesDecryptor does not support audio/video decoding";
}
void AesDecryptor::DeinitializeDecoder(StreamType stream_type) {
NOTREACHED() << "AesDecryptor does not support audio/video decoding";
}
bool AesDecryptor::AddDecryptionKey(const uint32 session_id,
const std::string& key_id,
const std::string& key_string) {
scoped_ptr<DecryptionKey> decryption_key(new DecryptionKey(key_string));
if (!decryption_key) {
DVLOG(1) << "Could not create key.";
return false;
}
if (!decryption_key->Init()) {
DVLOG(1) << "Could not initialize decryption key.";
return false;
}
base::AutoLock auto_lock(key_map_lock_);
KeyIdToSessionKeysMap::iterator key_id_entry = key_map_.find(key_id);
if (key_id_entry != key_map_.end()) {
key_id_entry->second->Insert(session_id, decryption_key.Pass());
return true;
}
// |key_id| not found, so need to create new entry.
scoped_ptr<SessionIdDecryptionKeyMap> inner_map(
new SessionIdDecryptionKeyMap());
inner_map->Insert(session_id, decryption_key.Pass());
key_map_.add(key_id, inner_map.Pass());
return true;
}
AesDecryptor::DecryptionKey* AesDecryptor::GetKey(
const std::string& key_id) const {
base::AutoLock auto_lock(key_map_lock_);
KeyIdToSessionKeysMap::const_iterator key_id_found = key_map_.find(key_id);
if (key_id_found == key_map_.end())
return NULL;
// Return the key from the "latest" session_id entry.
return key_id_found->second->LatestDecryptionKey();
}
void AesDecryptor::DeleteKeysForSession(const uint32 session_id) {
base::AutoLock auto_lock(key_map_lock_);
// Remove all keys associated with |session_id|. Since the data is optimized
// for access in GetKey(), we need to look at each entry in |key_map_|.
KeyIdToSessionKeysMap::iterator it = key_map_.begin();
while (it != key_map_.end()) {
it->second->Erase(session_id);
if (it->second->Empty()) {
// Need to get rid of the entry for this key_id. This will mess up the
// iterator, so we need to increment it first.
KeyIdToSessionKeysMap::iterator current = it;
++it;
key_map_.erase(current);
} else {
++it;
}
}
}
AesDecryptor::DecryptionKey::DecryptionKey(const std::string& secret)
: secret_(secret) {
}
AesDecryptor::DecryptionKey::~DecryptionKey() {}
bool AesDecryptor::DecryptionKey::Init() {
CHECK(!secret_.empty());
decryption_key_.reset(crypto::SymmetricKey::Import(
crypto::SymmetricKey::AES, secret_));
if (!decryption_key_)
return false;
return true;
}
} // namespace media