// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/base/vector_math.h"
#include "media/base/vector_math_testing.h"
#include <algorithm>
#include "base/cpu.h"
#include "base/logging.h"
#include "build/build_config.h"
#if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
#include <arm_neon.h>
#endif
namespace media {
namespace vector_math {
// If we know the minimum architecture at compile time, avoid CPU detection.
// Force NaCl code to use C routines since (at present) nothing there uses these
// methods and plumbing the -msse built library is non-trivial.
#if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
#if defined(__SSE__)
#define FMAC_FUNC FMAC_SSE
#define FMUL_FUNC FMUL_SSE
#define EWMAAndMaxPower_FUNC EWMAAndMaxPower_SSE
void Initialize() {}
#else
// X86 CPU detection required. Functions will be set by Initialize().
// TODO(dalecurtis): Once Chrome moves to an SSE baseline this can be removed.
#define FMAC_FUNC g_fmac_proc_
#define FMUL_FUNC g_fmul_proc_
#define EWMAAndMaxPower_FUNC g_ewma_power_proc_
typedef void (*MathProc)(const float src[], float scale, int len, float dest[]);
static MathProc g_fmac_proc_ = NULL;
static MathProc g_fmul_proc_ = NULL;
typedef std::pair<float, float> (*EWMAAndMaxPowerProc)(
float initial_value, const float src[], int len, float smoothing_factor);
static EWMAAndMaxPowerProc g_ewma_power_proc_ = NULL;
void Initialize() {
CHECK(!g_fmac_proc_);
CHECK(!g_fmul_proc_);
CHECK(!g_ewma_power_proc_);
const bool kUseSSE = base::CPU().has_sse();
g_fmac_proc_ = kUseSSE ? FMAC_SSE : FMAC_C;
g_fmul_proc_ = kUseSSE ? FMUL_SSE : FMUL_C;
g_ewma_power_proc_ = kUseSSE ? EWMAAndMaxPower_SSE : EWMAAndMaxPower_C;
}
#endif
#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
#define FMAC_FUNC FMAC_NEON
#define FMUL_FUNC FMUL_NEON
#define EWMAAndMaxPower_FUNC EWMAAndMaxPower_NEON
void Initialize() {}
#else
// Unknown architecture.
#define FMAC_FUNC FMAC_C
#define FMUL_FUNC FMUL_C
#define EWMAAndMaxPower_FUNC EWMAAndMaxPower_C
void Initialize() {}
#endif
void FMAC(const float src[], float scale, int len, float dest[]) {
// Ensure |src| and |dest| are 16-byte aligned.
DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(dest) & (kRequiredAlignment - 1));
return FMAC_FUNC(src, scale, len, dest);
}
void FMAC_C(const float src[], float scale, int len, float dest[]) {
for (int i = 0; i < len; ++i)
dest[i] += src[i] * scale;
}
void FMUL(const float src[], float scale, int len, float dest[]) {
// Ensure |src| and |dest| are 16-byte aligned.
DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(dest) & (kRequiredAlignment - 1));
return FMUL_FUNC(src, scale, len, dest);
}
void FMUL_C(const float src[], float scale, int len, float dest[]) {
for (int i = 0; i < len; ++i)
dest[i] = src[i] * scale;
}
std::pair<float, float> EWMAAndMaxPower(
float initial_value, const float src[], int len, float smoothing_factor) {
// Ensure |src| is 16-byte aligned.
DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
return EWMAAndMaxPower_FUNC(initial_value, src, len, smoothing_factor);
}
std::pair<float, float> EWMAAndMaxPower_C(
float initial_value, const float src[], int len, float smoothing_factor) {
std::pair<float, float> result(initial_value, 0.0f);
const float weight_prev = 1.0f - smoothing_factor;
for (int i = 0; i < len; ++i) {
result.first *= weight_prev;
const float sample = src[i];
const float sample_squared = sample * sample;
result.first += sample_squared * smoothing_factor;
result.second = std::max(result.second, sample_squared);
}
return result;
}
#if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
void FMAC_NEON(const float src[], float scale, int len, float dest[]) {
const int rem = len % 4;
const int last_index = len - rem;
float32x4_t m_scale = vmovq_n_f32(scale);
for (int i = 0; i < last_index; i += 4) {
vst1q_f32(dest + i, vmlaq_f32(
vld1q_f32(dest + i), vld1q_f32(src + i), m_scale));
}
// Handle any remaining values that wouldn't fit in an NEON pass.
for (int i = last_index; i < len; ++i)
dest[i] += src[i] * scale;
}
void FMUL_NEON(const float src[], float scale, int len, float dest[]) {
const int rem = len % 4;
const int last_index = len - rem;
float32x4_t m_scale = vmovq_n_f32(scale);
for (int i = 0; i < last_index; i += 4)
vst1q_f32(dest + i, vmulq_f32(vld1q_f32(src + i), m_scale));
// Handle any remaining values that wouldn't fit in an NEON pass.
for (int i = last_index; i < len; ++i)
dest[i] = src[i] * scale;
}
std::pair<float, float> EWMAAndMaxPower_NEON(
float initial_value, const float src[], int len, float smoothing_factor) {
// When the recurrence is unrolled, we see that we can split it into 4
// separate lanes of evaluation:
//
// y[n] = a(S[n]^2) + (1-a)(y[n-1])
// = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ...
// = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
//
// where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ...
//
// Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in
// each of the 4 lanes, and then combine them to give y[n].
const int rem = len % 4;
const int last_index = len - rem;
const float32x4_t smoothing_factor_x4 = vdupq_n_f32(smoothing_factor);
const float weight_prev = 1.0f - smoothing_factor;
const float32x4_t weight_prev_x4 = vdupq_n_f32(weight_prev);
const float32x4_t weight_prev_squared_x4 =
vmulq_f32(weight_prev_x4, weight_prev_x4);
const float32x4_t weight_prev_4th_x4 =
vmulq_f32(weight_prev_squared_x4, weight_prev_squared_x4);
// Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and
// 0, respectively.
float32x4_t max_x4 = vdupq_n_f32(0.0f);
float32x4_t ewma_x4 = vsetq_lane_f32(initial_value, vdupq_n_f32(0.0f), 3);
int i;
for (i = 0; i < last_index; i += 4) {
ewma_x4 = vmulq_f32(ewma_x4, weight_prev_4th_x4);
const float32x4_t sample_x4 = vld1q_f32(src + i);
const float32x4_t sample_squared_x4 = vmulq_f32(sample_x4, sample_x4);
max_x4 = vmaxq_f32(max_x4, sample_squared_x4);
ewma_x4 = vmlaq_f32(ewma_x4, sample_squared_x4, smoothing_factor_x4);
}
// y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
float ewma = vgetq_lane_f32(ewma_x4, 3);
ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
ewma += vgetq_lane_f32(ewma_x4, 2);
ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
ewma += vgetq_lane_f32(ewma_x4, 1);
ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
ewma += vgetq_lane_f32(ewma_x4, 0);
// Fold the maximums together to get the overall maximum.
float32x2_t max_x2 = vpmax_f32(vget_low_f32(max_x4), vget_high_f32(max_x4));
max_x2 = vpmax_f32(max_x2, max_x2);
std::pair<float, float> result(ewma, vget_lane_f32(max_x2, 0));
// Handle remaining values at the end of |src|.
for (; i < len; ++i) {
result.first *= weight_prev;
const float sample = src[i];
const float sample_squared = sample * sample;
result.first += sample_squared * smoothing_factor;
result.second = std::max(result.second, sample_squared);
}
return result;
}
#endif
} // namespace vector_math
} // namespace media