// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ipc/ipc_sync_channel.h"
#include <string>
#include <vector>
#include "base/basictypes.h"
#include "base/bind.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/message_loop/message_loop.h"
#include "base/process/process_handle.h"
#include "base/run_loop.h"
#include "base/strings/string_util.h"
#include "base/synchronization/waitable_event.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread.h"
#include "ipc/ipc_listener.h"
#include "ipc/ipc_message.h"
#include "ipc/ipc_sender.h"
#include "ipc/ipc_sync_message_filter.h"
#include "ipc/ipc_sync_message_unittest.h"
#include "testing/gtest/include/gtest/gtest.h"
using base::WaitableEvent;
namespace IPC {
namespace {
// Base class for a "process" with listener and IPC threads.
class Worker : public Listener, public Sender {
public:
// Will create a channel without a name.
Worker(Channel::Mode mode, const std::string& thread_name)
: done_(new WaitableEvent(false, false)),
channel_created_(new WaitableEvent(false, false)),
mode_(mode),
ipc_thread_((thread_name + "_ipc").c_str()),
listener_thread_((thread_name + "_listener").c_str()),
overrided_thread_(NULL),
shutdown_event_(true, false),
is_shutdown_(false) {
}
// Will create a named channel and use this name for the threads' name.
Worker(const std::string& channel_name, Channel::Mode mode)
: done_(new WaitableEvent(false, false)),
channel_created_(new WaitableEvent(false, false)),
channel_name_(channel_name),
mode_(mode),
ipc_thread_((channel_name + "_ipc").c_str()),
listener_thread_((channel_name + "_listener").c_str()),
overrided_thread_(NULL),
shutdown_event_(true, false),
is_shutdown_(false) {
}
virtual ~Worker() {
// Shutdown() must be called before destruction.
CHECK(is_shutdown_);
}
void AddRef() { }
void Release() { }
virtual bool Send(Message* msg) OVERRIDE { return channel_->Send(msg); }
bool SendWithTimeout(Message* msg, int timeout_ms) {
return channel_->SendWithTimeout(msg, timeout_ms);
}
void WaitForChannelCreation() { channel_created_->Wait(); }
void CloseChannel() {
DCHECK(base::MessageLoop::current() == ListenerThread()->message_loop());
channel_->Close();
}
void Start() {
StartThread(&listener_thread_, base::MessageLoop::TYPE_DEFAULT);
ListenerThread()->message_loop()->PostTask(
FROM_HERE, base::Bind(&Worker::OnStart, this));
}
void Shutdown() {
// The IPC thread needs to outlive SyncChannel. We can't do this in
// ~Worker(), since that'll reset the vtable pointer (to Worker's), which
// may result in a race conditions. See http://crbug.com/25841.
WaitableEvent listener_done(false, false), ipc_done(false, false);
ListenerThread()->message_loop()->PostTask(
FROM_HERE, base::Bind(&Worker::OnListenerThreadShutdown1, this,
&listener_done, &ipc_done));
listener_done.Wait();
ipc_done.Wait();
ipc_thread_.Stop();
listener_thread_.Stop();
is_shutdown_ = true;
}
void OverrideThread(base::Thread* overrided_thread) {
DCHECK(overrided_thread_ == NULL);
overrided_thread_ = overrided_thread;
}
bool SendAnswerToLife(bool pump, int timeout, bool succeed) {
int answer = 0;
SyncMessage* msg = new SyncChannelTestMsg_AnswerToLife(&answer);
if (pump)
msg->EnableMessagePumping();
bool result = SendWithTimeout(msg, timeout);
DCHECK_EQ(result, succeed);
DCHECK_EQ(answer, (succeed ? 42 : 0));
return result;
}
bool SendDouble(bool pump, bool succeed) {
int answer = 0;
SyncMessage* msg = new SyncChannelTestMsg_Double(5, &answer);
if (pump)
msg->EnableMessagePumping();
bool result = Send(msg);
DCHECK_EQ(result, succeed);
DCHECK_EQ(answer, (succeed ? 10 : 0));
return result;
}
const std::string& channel_name() { return channel_name_; }
Channel::Mode mode() { return mode_; }
WaitableEvent* done_event() { return done_.get(); }
WaitableEvent* shutdown_event() { return &shutdown_event_; }
void ResetChannel() { channel_.reset(); }
// Derived classes need to call this when they've completed their part of
// the test.
void Done() { done_->Signal(); }
protected:
SyncChannel* channel() { return channel_.get(); }
// Functions for dervied classes to implement if they wish.
virtual void Run() { }
virtual void OnAnswer(int* answer) { NOTREACHED(); }
virtual void OnAnswerDelay(Message* reply_msg) {
// The message handler map below can only take one entry for
// SyncChannelTestMsg_AnswerToLife, so since some classes want
// the normal version while other want the delayed reply, we
// call the normal version if the derived class didn't override
// this function.
int answer;
OnAnswer(&answer);
SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, answer);
Send(reply_msg);
}
virtual void OnDouble(int in, int* out) { NOTREACHED(); }
virtual void OnDoubleDelay(int in, Message* reply_msg) {
int result;
OnDouble(in, &result);
SyncChannelTestMsg_Double::WriteReplyParams(reply_msg, result);
Send(reply_msg);
}
virtual void OnNestedTestMsg(Message* reply_msg) {
NOTREACHED();
}
virtual SyncChannel* CreateChannel() {
return new SyncChannel(channel_name_,
mode_,
this,
ipc_thread_.message_loop_proxy().get(),
true,
&shutdown_event_);
}
base::Thread* ListenerThread() {
return overrided_thread_ ? overrided_thread_ : &listener_thread_;
}
const base::Thread& ipc_thread() const { return ipc_thread_; }
private:
// Called on the listener thread to create the sync channel.
void OnStart() {
// Link ipc_thread_, listener_thread_ and channel_ altogether.
StartThread(&ipc_thread_, base::MessageLoop::TYPE_IO);
channel_.reset(CreateChannel());
channel_created_->Signal();
Run();
}
void OnListenerThreadShutdown1(WaitableEvent* listener_event,
WaitableEvent* ipc_event) {
// SyncChannel needs to be destructed on the thread that it was created on.
channel_.reset();
base::RunLoop().RunUntilIdle();
ipc_thread_.message_loop()->PostTask(
FROM_HERE, base::Bind(&Worker::OnIPCThreadShutdown, this,
listener_event, ipc_event));
}
void OnIPCThreadShutdown(WaitableEvent* listener_event,
WaitableEvent* ipc_event) {
base::RunLoop().RunUntilIdle();
ipc_event->Signal();
listener_thread_.message_loop()->PostTask(
FROM_HERE, base::Bind(&Worker::OnListenerThreadShutdown2, this,
listener_event));
}
void OnListenerThreadShutdown2(WaitableEvent* listener_event) {
base::RunLoop().RunUntilIdle();
listener_event->Signal();
}
virtual bool OnMessageReceived(const Message& message) OVERRIDE {
IPC_BEGIN_MESSAGE_MAP(Worker, message)
IPC_MESSAGE_HANDLER_DELAY_REPLY(SyncChannelTestMsg_Double, OnDoubleDelay)
IPC_MESSAGE_HANDLER_DELAY_REPLY(SyncChannelTestMsg_AnswerToLife,
OnAnswerDelay)
IPC_MESSAGE_HANDLER_DELAY_REPLY(SyncChannelNestedTestMsg_String,
OnNestedTestMsg)
IPC_END_MESSAGE_MAP()
return true;
}
void StartThread(base::Thread* thread, base::MessageLoop::Type type) {
base::Thread::Options options;
options.message_loop_type = type;
thread->StartWithOptions(options);
}
scoped_ptr<WaitableEvent> done_;
scoped_ptr<WaitableEvent> channel_created_;
std::string channel_name_;
Channel::Mode mode_;
scoped_ptr<SyncChannel> channel_;
base::Thread ipc_thread_;
base::Thread listener_thread_;
base::Thread* overrided_thread_;
base::WaitableEvent shutdown_event_;
bool is_shutdown_;
DISALLOW_COPY_AND_ASSIGN(Worker);
};
// Starts the test with the given workers. This function deletes the workers
// when it's done.
void RunTest(std::vector<Worker*> workers) {
// First we create the workers that are channel servers, or else the other
// workers' channel initialization might fail because the pipe isn't created..
for (size_t i = 0; i < workers.size(); ++i) {
if (workers[i]->mode() & Channel::MODE_SERVER_FLAG) {
workers[i]->Start();
workers[i]->WaitForChannelCreation();
}
}
// now create the clients
for (size_t i = 0; i < workers.size(); ++i) {
if (workers[i]->mode() & Channel::MODE_CLIENT_FLAG)
workers[i]->Start();
}
// wait for all the workers to finish
for (size_t i = 0; i < workers.size(); ++i)
workers[i]->done_event()->Wait();
for (size_t i = 0; i < workers.size(); ++i) {
workers[i]->Shutdown();
delete workers[i];
}
}
class IPCSyncChannelTest : public testing::Test {
private:
base::MessageLoop message_loop_;
};
//------------------------------------------------------------------------------
class SimpleServer : public Worker {
public:
explicit SimpleServer(bool pump_during_send)
: Worker(Channel::MODE_SERVER, "simpler_server"),
pump_during_send_(pump_during_send) { }
virtual void Run() OVERRIDE {
SendAnswerToLife(pump_during_send_, base::kNoTimeout, true);
Done();
}
bool pump_during_send_;
};
class SimpleClient : public Worker {
public:
SimpleClient() : Worker(Channel::MODE_CLIENT, "simple_client") { }
virtual void OnAnswer(int* answer) OVERRIDE {
*answer = 42;
Done();
}
};
void Simple(bool pump_during_send) {
std::vector<Worker*> workers;
workers.push_back(new SimpleServer(pump_during_send));
workers.push_back(new SimpleClient());
RunTest(workers);
}
// Tests basic synchronous call
TEST_F(IPCSyncChannelTest, Simple) {
Simple(false);
Simple(true);
}
//------------------------------------------------------------------------------
// Worker classes which override how the sync channel is created to use the
// two-step initialization (calling the lightweight constructor and then
// ChannelProxy::Init separately) process.
class TwoStepServer : public Worker {
public:
explicit TwoStepServer(bool create_pipe_now)
: Worker(Channel::MODE_SERVER, "simpler_server"),
create_pipe_now_(create_pipe_now) { }
virtual void Run() OVERRIDE {
SendAnswerToLife(false, base::kNoTimeout, true);
Done();
}
virtual SyncChannel* CreateChannel() OVERRIDE {
SyncChannel* channel = new SyncChannel(
this, ipc_thread().message_loop_proxy().get(), shutdown_event());
channel->Init(channel_name(), mode(), create_pipe_now_);
return channel;
}
bool create_pipe_now_;
};
class TwoStepClient : public Worker {
public:
TwoStepClient(bool create_pipe_now)
: Worker(Channel::MODE_CLIENT, "simple_client"),
create_pipe_now_(create_pipe_now) { }
virtual void OnAnswer(int* answer) OVERRIDE {
*answer = 42;
Done();
}
virtual SyncChannel* CreateChannel() OVERRIDE {
SyncChannel* channel = new SyncChannel(
this, ipc_thread().message_loop_proxy().get(), shutdown_event());
channel->Init(channel_name(), mode(), create_pipe_now_);
return channel;
}
bool create_pipe_now_;
};
void TwoStep(bool create_server_pipe_now, bool create_client_pipe_now) {
std::vector<Worker*> workers;
workers.push_back(new TwoStepServer(create_server_pipe_now));
workers.push_back(new TwoStepClient(create_client_pipe_now));
RunTest(workers);
}
// Tests basic two-step initialization, where you call the lightweight
// constructor then Init.
TEST_F(IPCSyncChannelTest, TwoStepInitialization) {
TwoStep(false, false);
TwoStep(false, true);
TwoStep(true, false);
TwoStep(true, true);
}
//------------------------------------------------------------------------------
class DelayClient : public Worker {
public:
DelayClient() : Worker(Channel::MODE_CLIENT, "delay_client") { }
virtual void OnAnswerDelay(Message* reply_msg) OVERRIDE {
SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, 42);
Send(reply_msg);
Done();
}
};
void DelayReply(bool pump_during_send) {
std::vector<Worker*> workers;
workers.push_back(new SimpleServer(pump_during_send));
workers.push_back(new DelayClient());
RunTest(workers);
}
// Tests that asynchronous replies work
TEST_F(IPCSyncChannelTest, DelayReply) {
DelayReply(false);
DelayReply(true);
}
//------------------------------------------------------------------------------
class NoHangServer : public Worker {
public:
NoHangServer(WaitableEvent* got_first_reply, bool pump_during_send)
: Worker(Channel::MODE_SERVER, "no_hang_server"),
got_first_reply_(got_first_reply),
pump_during_send_(pump_during_send) { }
virtual void Run() OVERRIDE {
SendAnswerToLife(pump_during_send_, base::kNoTimeout, true);
got_first_reply_->Signal();
SendAnswerToLife(pump_during_send_, base::kNoTimeout, false);
Done();
}
WaitableEvent* got_first_reply_;
bool pump_during_send_;
};
class NoHangClient : public Worker {
public:
explicit NoHangClient(WaitableEvent* got_first_reply)
: Worker(Channel::MODE_CLIENT, "no_hang_client"),
got_first_reply_(got_first_reply) { }
virtual void OnAnswerDelay(Message* reply_msg) OVERRIDE {
// Use the DELAY_REPLY macro so that we can force the reply to be sent
// before this function returns (when the channel will be reset).
SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, 42);
Send(reply_msg);
got_first_reply_->Wait();
CloseChannel();
Done();
}
WaitableEvent* got_first_reply_;
};
void NoHang(bool pump_during_send) {
WaitableEvent got_first_reply(false, false);
std::vector<Worker*> workers;
workers.push_back(new NoHangServer(&got_first_reply, pump_during_send));
workers.push_back(new NoHangClient(&got_first_reply));
RunTest(workers);
}
// Tests that caller doesn't hang if receiver dies
TEST_F(IPCSyncChannelTest, NoHang) {
NoHang(false);
NoHang(true);
}
//------------------------------------------------------------------------------
class UnblockServer : public Worker {
public:
UnblockServer(bool pump_during_send, bool delete_during_send)
: Worker(Channel::MODE_SERVER, "unblock_server"),
pump_during_send_(pump_during_send),
delete_during_send_(delete_during_send) { }
virtual void Run() OVERRIDE {
if (delete_during_send_) {
// Use custom code since race conditions mean the answer may or may not be
// available.
int answer = 0;
SyncMessage* msg = new SyncChannelTestMsg_AnswerToLife(&answer);
if (pump_during_send_)
msg->EnableMessagePumping();
Send(msg);
} else {
SendAnswerToLife(pump_during_send_, base::kNoTimeout, true);
}
Done();
}
virtual void OnDoubleDelay(int in, Message* reply_msg) OVERRIDE {
SyncChannelTestMsg_Double::WriteReplyParams(reply_msg, in * 2);
Send(reply_msg);
if (delete_during_send_)
ResetChannel();
}
bool pump_during_send_;
bool delete_during_send_;
};
class UnblockClient : public Worker {
public:
explicit UnblockClient(bool pump_during_send)
: Worker(Channel::MODE_CLIENT, "unblock_client"),
pump_during_send_(pump_during_send) { }
virtual void OnAnswer(int* answer) OVERRIDE {
SendDouble(pump_during_send_, true);
*answer = 42;
Done();
}
bool pump_during_send_;
};
void Unblock(bool server_pump, bool client_pump, bool delete_during_send) {
std::vector<Worker*> workers;
workers.push_back(new UnblockServer(server_pump, delete_during_send));
workers.push_back(new UnblockClient(client_pump));
RunTest(workers);
}
// Tests that the caller unblocks to answer a sync message from the receiver.
TEST_F(IPCSyncChannelTest, Unblock) {
Unblock(false, false, false);
Unblock(false, true, false);
Unblock(true, false, false);
Unblock(true, true, false);
}
//------------------------------------------------------------------------------
// Tests that the the SyncChannel object can be deleted during a Send.
TEST_F(IPCSyncChannelTest, ChannelDeleteDuringSend) {
Unblock(false, false, true);
Unblock(false, true, true);
Unblock(true, false, true);
Unblock(true, true, true);
}
//------------------------------------------------------------------------------
class RecursiveServer : public Worker {
public:
RecursiveServer(bool expected_send_result, bool pump_first, bool pump_second)
: Worker(Channel::MODE_SERVER, "recursive_server"),
expected_send_result_(expected_send_result),
pump_first_(pump_first), pump_second_(pump_second) {}
virtual void Run() OVERRIDE {
SendDouble(pump_first_, expected_send_result_);
Done();
}
virtual void OnDouble(int in, int* out) OVERRIDE {
*out = in * 2;
SendAnswerToLife(pump_second_, base::kNoTimeout, expected_send_result_);
}
bool expected_send_result_, pump_first_, pump_second_;
};
class RecursiveClient : public Worker {
public:
RecursiveClient(bool pump_during_send, bool close_channel)
: Worker(Channel::MODE_CLIENT, "recursive_client"),
pump_during_send_(pump_during_send), close_channel_(close_channel) {}
virtual void OnDoubleDelay(int in, Message* reply_msg) OVERRIDE {
SendDouble(pump_during_send_, !close_channel_);
if (close_channel_) {
delete reply_msg;
} else {
SyncChannelTestMsg_Double::WriteReplyParams(reply_msg, in * 2);
Send(reply_msg);
}
Done();
}
virtual void OnAnswerDelay(Message* reply_msg) OVERRIDE {
if (close_channel_) {
delete reply_msg;
CloseChannel();
} else {
SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, 42);
Send(reply_msg);
}
}
bool pump_during_send_, close_channel_;
};
void Recursive(
bool server_pump_first, bool server_pump_second, bool client_pump) {
std::vector<Worker*> workers;
workers.push_back(
new RecursiveServer(true, server_pump_first, server_pump_second));
workers.push_back(new RecursiveClient(client_pump, false));
RunTest(workers);
}
// Tests a server calling Send while another Send is pending.
TEST_F(IPCSyncChannelTest, Recursive) {
Recursive(false, false, false);
Recursive(false, false, true);
Recursive(false, true, false);
Recursive(false, true, true);
Recursive(true, false, false);
Recursive(true, false, true);
Recursive(true, true, false);
Recursive(true, true, true);
}
//------------------------------------------------------------------------------
void RecursiveNoHang(
bool server_pump_first, bool server_pump_second, bool client_pump) {
std::vector<Worker*> workers;
workers.push_back(
new RecursiveServer(false, server_pump_first, server_pump_second));
workers.push_back(new RecursiveClient(client_pump, true));
RunTest(workers);
}
// Tests that if a caller makes a sync call during an existing sync call and
// the receiver dies, neither of the Send() calls hang.
TEST_F(IPCSyncChannelTest, RecursiveNoHang) {
RecursiveNoHang(false, false, false);
RecursiveNoHang(false, false, true);
RecursiveNoHang(false, true, false);
RecursiveNoHang(false, true, true);
RecursiveNoHang(true, false, false);
RecursiveNoHang(true, false, true);
RecursiveNoHang(true, true, false);
RecursiveNoHang(true, true, true);
}
//------------------------------------------------------------------------------
class MultipleServer1 : public Worker {
public:
explicit MultipleServer1(bool pump_during_send)
: Worker("test_channel1", Channel::MODE_SERVER),
pump_during_send_(pump_during_send) { }
virtual void Run() OVERRIDE {
SendDouble(pump_during_send_, true);
Done();
}
bool pump_during_send_;
};
class MultipleClient1 : public Worker {
public:
MultipleClient1(WaitableEvent* client1_msg_received,
WaitableEvent* client1_can_reply) :
Worker("test_channel1", Channel::MODE_CLIENT),
client1_msg_received_(client1_msg_received),
client1_can_reply_(client1_can_reply) { }
virtual void OnDouble(int in, int* out) OVERRIDE {
client1_msg_received_->Signal();
*out = in * 2;
client1_can_reply_->Wait();
Done();
}
private:
WaitableEvent *client1_msg_received_, *client1_can_reply_;
};
class MultipleServer2 : public Worker {
public:
MultipleServer2() : Worker("test_channel2", Channel::MODE_SERVER) { }
virtual void OnAnswer(int* result) OVERRIDE {
*result = 42;
Done();
}
};
class MultipleClient2 : public Worker {
public:
MultipleClient2(
WaitableEvent* client1_msg_received, WaitableEvent* client1_can_reply,
bool pump_during_send)
: Worker("test_channel2", Channel::MODE_CLIENT),
client1_msg_received_(client1_msg_received),
client1_can_reply_(client1_can_reply),
pump_during_send_(pump_during_send) { }
virtual void Run() OVERRIDE {
client1_msg_received_->Wait();
SendAnswerToLife(pump_during_send_, base::kNoTimeout, true);
client1_can_reply_->Signal();
Done();
}
private:
WaitableEvent *client1_msg_received_, *client1_can_reply_;
bool pump_during_send_;
};
void Multiple(bool server_pump, bool client_pump) {
std::vector<Worker*> workers;
// A shared worker thread so that server1 and server2 run on one thread.
base::Thread worker_thread("Multiple");
ASSERT_TRUE(worker_thread.Start());
// Server1 sends a sync msg to client1, which blocks the reply until
// server2 (which runs on the same worker thread as server1) responds
// to a sync msg from client2.
WaitableEvent client1_msg_received(false, false);
WaitableEvent client1_can_reply(false, false);
Worker* worker;
worker = new MultipleServer2();
worker->OverrideThread(&worker_thread);
workers.push_back(worker);
worker = new MultipleClient2(
&client1_msg_received, &client1_can_reply, client_pump);
workers.push_back(worker);
worker = new MultipleServer1(server_pump);
worker->OverrideThread(&worker_thread);
workers.push_back(worker);
worker = new MultipleClient1(
&client1_msg_received, &client1_can_reply);
workers.push_back(worker);
RunTest(workers);
}
// Tests that multiple SyncObjects on the same listener thread can unblock each
// other.
TEST_F(IPCSyncChannelTest, Multiple) {
Multiple(false, false);
Multiple(false, true);
Multiple(true, false);
Multiple(true, true);
}
//------------------------------------------------------------------------------
// This class provides server side functionality to test the case where
// multiple sync channels are in use on the same thread on the client and
// nested calls are issued.
class QueuedReplyServer : public Worker {
public:
QueuedReplyServer(base::Thread* listener_thread,
const std::string& channel_name,
const std::string& reply_text)
: Worker(channel_name, Channel::MODE_SERVER),
reply_text_(reply_text) {
Worker::OverrideThread(listener_thread);
}
virtual void OnNestedTestMsg(Message* reply_msg) OVERRIDE {
VLOG(1) << __FUNCTION__ << " Sending reply: " << reply_text_;
SyncChannelNestedTestMsg_String::WriteReplyParams(reply_msg, reply_text_);
Send(reply_msg);
Done();
}
private:
std::string reply_text_;
};
// The QueuedReplyClient class provides functionality to test the case where
// multiple sync channels are in use on the same thread and they make nested
// sync calls, i.e. while the first channel waits for a response it makes a
// sync call on another channel.
// The callstack should unwind correctly, i.e. the outermost call should
// complete first, and so on.
class QueuedReplyClient : public Worker {
public:
QueuedReplyClient(base::Thread* listener_thread,
const std::string& channel_name,
const std::string& expected_text,
bool pump_during_send)
: Worker(channel_name, Channel::MODE_CLIENT),
pump_during_send_(pump_during_send),
expected_text_(expected_text) {
Worker::OverrideThread(listener_thread);
}
virtual void Run() OVERRIDE {
std::string response;
SyncMessage* msg = new SyncChannelNestedTestMsg_String(&response);
if (pump_during_send_)
msg->EnableMessagePumping();
bool result = Send(msg);
DCHECK(result);
DCHECK_EQ(response, expected_text_);
VLOG(1) << __FUNCTION__ << " Received reply: " << response;
Done();
}
private:
bool pump_during_send_;
std::string expected_text_;
};
void QueuedReply(bool client_pump) {
std::vector<Worker*> workers;
// A shared worker thread for servers
base::Thread server_worker_thread("QueuedReply_ServerListener");
ASSERT_TRUE(server_worker_thread.Start());
base::Thread client_worker_thread("QueuedReply_ClientListener");
ASSERT_TRUE(client_worker_thread.Start());
Worker* worker;
worker = new QueuedReplyServer(&server_worker_thread,
"QueuedReply_Server1",
"Got first message");
workers.push_back(worker);
worker = new QueuedReplyServer(&server_worker_thread,
"QueuedReply_Server2",
"Got second message");
workers.push_back(worker);
worker = new QueuedReplyClient(&client_worker_thread,
"QueuedReply_Server1",
"Got first message",
client_pump);
workers.push_back(worker);
worker = new QueuedReplyClient(&client_worker_thread,
"QueuedReply_Server2",
"Got second message",
client_pump);
workers.push_back(worker);
RunTest(workers);
}
// While a blocking send is in progress, the listener thread might answer other
// synchronous messages. This tests that if during the response to another
// message the reply to the original messages comes, it is queued up correctly
// and the original Send is unblocked later.
// We also test that the send call stacks unwind correctly when the channel
// pumps messages while waiting for a response.
TEST_F(IPCSyncChannelTest, QueuedReply) {
QueuedReply(false);
QueuedReply(true);
}
//------------------------------------------------------------------------------
class ChattyClient : public Worker {
public:
ChattyClient() :
Worker(Channel::MODE_CLIENT, "chatty_client") { }
virtual void OnAnswer(int* answer) OVERRIDE {
// The PostMessage limit is 10k. Send 20% more than that.
const int kMessageLimit = 10000;
const int kMessagesToSend = kMessageLimit * 120 / 100;
for (int i = 0; i < kMessagesToSend; ++i) {
if (!SendDouble(false, true))
break;
}
*answer = 42;
Done();
}
};
void ChattyServer(bool pump_during_send) {
std::vector<Worker*> workers;
workers.push_back(new UnblockServer(pump_during_send, false));
workers.push_back(new ChattyClient());
RunTest(workers);
}
// Tests http://b/1093251 - that sending lots of sync messages while
// the receiver is waiting for a sync reply does not overflow the PostMessage
// queue.
TEST_F(IPCSyncChannelTest, ChattyServer) {
ChattyServer(false);
ChattyServer(true);
}
//------------------------------------------------------------------------------
class TimeoutServer : public Worker {
public:
TimeoutServer(int timeout_ms,
std::vector<bool> timeout_seq,
bool pump_during_send)
: Worker(Channel::MODE_SERVER, "timeout_server"),
timeout_ms_(timeout_ms),
timeout_seq_(timeout_seq),
pump_during_send_(pump_during_send) {
}
virtual void Run() OVERRIDE {
for (std::vector<bool>::const_iterator iter = timeout_seq_.begin();
iter != timeout_seq_.end(); ++iter) {
SendAnswerToLife(pump_during_send_, timeout_ms_, !*iter);
}
Done();
}
private:
int timeout_ms_;
std::vector<bool> timeout_seq_;
bool pump_during_send_;
};
class UnresponsiveClient : public Worker {
public:
explicit UnresponsiveClient(std::vector<bool> timeout_seq)
: Worker(Channel::MODE_CLIENT, "unresponsive_client"),
timeout_seq_(timeout_seq) {
}
virtual void OnAnswerDelay(Message* reply_msg) OVERRIDE {
DCHECK(!timeout_seq_.empty());
if (!timeout_seq_[0]) {
SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, 42);
Send(reply_msg);
} else {
// Don't reply.
delete reply_msg;
}
timeout_seq_.erase(timeout_seq_.begin());
if (timeout_seq_.empty())
Done();
}
private:
// Whether we should time-out or respond to the various messages we receive.
std::vector<bool> timeout_seq_;
};
void SendWithTimeoutOK(bool pump_during_send) {
std::vector<Worker*> workers;
std::vector<bool> timeout_seq;
timeout_seq.push_back(false);
timeout_seq.push_back(false);
timeout_seq.push_back(false);
workers.push_back(new TimeoutServer(5000, timeout_seq, pump_during_send));
workers.push_back(new SimpleClient());
RunTest(workers);
}
void SendWithTimeoutTimeout(bool pump_during_send) {
std::vector<Worker*> workers;
std::vector<bool> timeout_seq;
timeout_seq.push_back(true);
timeout_seq.push_back(false);
timeout_seq.push_back(false);
workers.push_back(new TimeoutServer(100, timeout_seq, pump_during_send));
workers.push_back(new UnresponsiveClient(timeout_seq));
RunTest(workers);
}
void SendWithTimeoutMixedOKAndTimeout(bool pump_during_send) {
std::vector<Worker*> workers;
std::vector<bool> timeout_seq;
timeout_seq.push_back(true);
timeout_seq.push_back(false);
timeout_seq.push_back(false);
timeout_seq.push_back(true);
timeout_seq.push_back(false);
workers.push_back(new TimeoutServer(100, timeout_seq, pump_during_send));
workers.push_back(new UnresponsiveClient(timeout_seq));
RunTest(workers);
}
// Tests that SendWithTimeout does not time-out if the response comes back fast
// enough.
TEST_F(IPCSyncChannelTest, SendWithTimeoutOK) {
SendWithTimeoutOK(false);
SendWithTimeoutOK(true);
}
// Tests that SendWithTimeout does time-out.
TEST_F(IPCSyncChannelTest, SendWithTimeoutTimeout) {
SendWithTimeoutTimeout(false);
SendWithTimeoutTimeout(true);
}
// Sends some message that time-out and some that succeed.
TEST_F(IPCSyncChannelTest, SendWithTimeoutMixedOKAndTimeout) {
SendWithTimeoutMixedOKAndTimeout(false);
SendWithTimeoutMixedOKAndTimeout(true);
}
//------------------------------------------------------------------------------
void NestedCallback(Worker* server) {
// Sleep a bit so that we wake up after the reply has been received.
base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(250));
server->SendAnswerToLife(true, base::kNoTimeout, true);
}
bool timeout_occurred = false;
void TimeoutCallback() {
timeout_occurred = true;
}
class DoneEventRaceServer : public Worker {
public:
DoneEventRaceServer()
: Worker(Channel::MODE_SERVER, "done_event_race_server") { }
virtual void Run() OVERRIDE {
base::MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&NestedCallback, this));
base::MessageLoop::current()->PostDelayedTask(
FROM_HERE,
base::Bind(&TimeoutCallback),
base::TimeDelta::FromSeconds(9));
// Even though we have a timeout on the Send, it will succeed since for this
// bug, the reply message comes back and is deserialized, however the done
// event wasn't set. So we indirectly use the timeout task to notice if a
// timeout occurred.
SendAnswerToLife(true, 10000, true);
DCHECK(!timeout_occurred);
Done();
}
};
// Tests http://b/1474092 - that if after the done_event is set but before
// OnObjectSignaled is called another message is sent out, then after its
// reply comes back OnObjectSignaled will be called for the first message.
TEST_F(IPCSyncChannelTest, DoneEventRace) {
std::vector<Worker*> workers;
workers.push_back(new DoneEventRaceServer());
workers.push_back(new SimpleClient());
RunTest(workers);
}
//------------------------------------------------------------------------------
class TestSyncMessageFilter : public SyncMessageFilter {
public:
TestSyncMessageFilter(base::WaitableEvent* shutdown_event,
Worker* worker,
scoped_refptr<base::MessageLoopProxy> message_loop)
: SyncMessageFilter(shutdown_event),
worker_(worker),
message_loop_(message_loop) {
}
virtual void OnFilterAdded(Channel* channel) OVERRIDE {
SyncMessageFilter::OnFilterAdded(channel);
message_loop_->PostTask(
FROM_HERE,
base::Bind(&TestSyncMessageFilter::SendMessageOnHelperThread, this));
}
void SendMessageOnHelperThread() {
int answer = 0;
bool result = Send(new SyncChannelTestMsg_AnswerToLife(&answer));
DCHECK(result);
DCHECK_EQ(answer, 42);
worker_->Done();
}
private:
virtual ~TestSyncMessageFilter() {}
Worker* worker_;
scoped_refptr<base::MessageLoopProxy> message_loop_;
};
class SyncMessageFilterServer : public Worker {
public:
SyncMessageFilterServer()
: Worker(Channel::MODE_SERVER, "sync_message_filter_server"),
thread_("helper_thread") {
base::Thread::Options options;
options.message_loop_type = base::MessageLoop::TYPE_DEFAULT;
thread_.StartWithOptions(options);
filter_ = new TestSyncMessageFilter(shutdown_event(), this,
thread_.message_loop_proxy());
}
virtual void Run() OVERRIDE {
channel()->AddFilter(filter_.get());
}
base::Thread thread_;
scoped_refptr<TestSyncMessageFilter> filter_;
};
// This class provides functionality to test the case that a Send on the sync
// channel does not crash after the channel has been closed.
class ServerSendAfterClose : public Worker {
public:
ServerSendAfterClose()
: Worker(Channel::MODE_SERVER, "simpler_server"),
send_result_(true) {
}
bool SendDummy() {
ListenerThread()->message_loop()->PostTask(
FROM_HERE, base::Bind(base::IgnoreResult(&ServerSendAfterClose::Send),
this, new SyncChannelTestMsg_NoArgs));
return true;
}
bool send_result() const {
return send_result_;
}
private:
virtual void Run() OVERRIDE {
CloseChannel();
Done();
}
virtual bool Send(Message* msg) OVERRIDE {
send_result_ = Worker::Send(msg);
Done();
return send_result_;
}
bool send_result_;
};
// Tests basic synchronous call
TEST_F(IPCSyncChannelTest, SyncMessageFilter) {
std::vector<Worker*> workers;
workers.push_back(new SyncMessageFilterServer());
workers.push_back(new SimpleClient());
RunTest(workers);
}
// Test the case when the channel is closed and a Send is attempted after that.
TEST_F(IPCSyncChannelTest, SendAfterClose) {
ServerSendAfterClose server;
server.Start();
server.done_event()->Wait();
server.done_event()->Reset();
server.SendDummy();
server.done_event()->Wait();
EXPECT_FALSE(server.send_result());
server.Shutdown();
}
//------------------------------------------------------------------------------
class RestrictedDispatchServer : public Worker {
public:
RestrictedDispatchServer(WaitableEvent* sent_ping_event,
WaitableEvent* wait_event)
: Worker("restricted_channel", Channel::MODE_SERVER),
sent_ping_event_(sent_ping_event),
wait_event_(wait_event) { }
void OnDoPing(int ping) {
// Send an asynchronous message that unblocks the caller.
Message* msg = new SyncChannelTestMsg_Ping(ping);
msg->set_unblock(true);
Send(msg);
// Signal the event after the message has been sent on the channel, on the
// IPC thread.
ipc_thread().message_loop()->PostTask(
FROM_HERE, base::Bind(&RestrictedDispatchServer::OnPingSent, this));
}
void OnPingTTL(int ping, int* out) {
*out = ping;
wait_event_->Wait();
}
base::Thread* ListenerThread() { return Worker::ListenerThread(); }
private:
virtual bool OnMessageReceived(const Message& message) OVERRIDE {
IPC_BEGIN_MESSAGE_MAP(RestrictedDispatchServer, message)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_NoArgs, OnNoArgs)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_PingTTL, OnPingTTL)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_Done, Done)
IPC_END_MESSAGE_MAP()
return true;
}
void OnPingSent() {
sent_ping_event_->Signal();
}
void OnNoArgs() { }
WaitableEvent* sent_ping_event_;
WaitableEvent* wait_event_;
};
class NonRestrictedDispatchServer : public Worker {
public:
NonRestrictedDispatchServer(WaitableEvent* signal_event)
: Worker("non_restricted_channel", Channel::MODE_SERVER),
signal_event_(signal_event) {}
base::Thread* ListenerThread() { return Worker::ListenerThread(); }
void OnDoPingTTL(int ping) {
int value = 0;
Send(new SyncChannelTestMsg_PingTTL(ping, &value));
signal_event_->Signal();
}
private:
virtual bool OnMessageReceived(const Message& message) OVERRIDE {
IPC_BEGIN_MESSAGE_MAP(NonRestrictedDispatchServer, message)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_NoArgs, OnNoArgs)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_Done, Done)
IPC_END_MESSAGE_MAP()
return true;
}
void OnNoArgs() { }
WaitableEvent* signal_event_;
};
class RestrictedDispatchClient : public Worker {
public:
RestrictedDispatchClient(WaitableEvent* sent_ping_event,
RestrictedDispatchServer* server,
NonRestrictedDispatchServer* server2,
int* success)
: Worker("restricted_channel", Channel::MODE_CLIENT),
ping_(0),
server_(server),
server2_(server2),
success_(success),
sent_ping_event_(sent_ping_event) {}
virtual void Run() OVERRIDE {
// Incoming messages from our channel should only be dispatched when we
// send a message on that same channel.
channel()->SetRestrictDispatchChannelGroup(1);
server_->ListenerThread()->message_loop()->PostTask(
FROM_HERE, base::Bind(&RestrictedDispatchServer::OnDoPing, server_, 1));
sent_ping_event_->Wait();
Send(new SyncChannelTestMsg_NoArgs);
if (ping_ == 1)
++*success_;
else
LOG(ERROR) << "Send failed to dispatch incoming message on same channel";
non_restricted_channel_.reset(
new SyncChannel("non_restricted_channel",
Channel::MODE_CLIENT,
this,
ipc_thread().message_loop_proxy().get(),
true,
shutdown_event()));
server_->ListenerThread()->message_loop()->PostTask(
FROM_HERE, base::Bind(&RestrictedDispatchServer::OnDoPing, server_, 2));
sent_ping_event_->Wait();
// Check that the incoming message is *not* dispatched when sending on the
// non restricted channel.
// TODO(piman): there is a possibility of a false positive race condition
// here, if the message that was posted on the server-side end of the pipe
// is not visible yet on the client side, but I don't know how to solve this
// without hooking into the internals of SyncChannel. I haven't seen it in
// practice (i.e. not setting SetRestrictDispatchToSameChannel does cause
// the following to fail).
non_restricted_channel_->Send(new SyncChannelTestMsg_NoArgs);
if (ping_ == 1)
++*success_;
else
LOG(ERROR) << "Send dispatched message from restricted channel";
Send(new SyncChannelTestMsg_NoArgs);
if (ping_ == 2)
++*success_;
else
LOG(ERROR) << "Send failed to dispatch incoming message on same channel";
// Check that the incoming message on the non-restricted channel is
// dispatched when sending on the restricted channel.
server2_->ListenerThread()->message_loop()->PostTask(
FROM_HERE,
base::Bind(&NonRestrictedDispatchServer::OnDoPingTTL, server2_, 3));
int value = 0;
Send(new SyncChannelTestMsg_PingTTL(4, &value));
if (ping_ == 3 && value == 4)
++*success_;
else
LOG(ERROR) << "Send failed to dispatch message from unrestricted channel";
non_restricted_channel_->Send(new SyncChannelTestMsg_Done);
non_restricted_channel_.reset();
Send(new SyncChannelTestMsg_Done);
Done();
}
private:
virtual bool OnMessageReceived(const Message& message) OVERRIDE {
IPC_BEGIN_MESSAGE_MAP(RestrictedDispatchClient, message)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_Ping, OnPing)
IPC_MESSAGE_HANDLER_DELAY_REPLY(SyncChannelTestMsg_PingTTL, OnPingTTL)
IPC_END_MESSAGE_MAP()
return true;
}
void OnPing(int ping) {
ping_ = ping;
}
void OnPingTTL(int ping, IPC::Message* reply) {
ping_ = ping;
// This message comes from the NonRestrictedDispatchServer, we have to send
// the reply back manually.
SyncChannelTestMsg_PingTTL::WriteReplyParams(reply, ping);
non_restricted_channel_->Send(reply);
}
int ping_;
RestrictedDispatchServer* server_;
NonRestrictedDispatchServer* server2_;
int* success_;
WaitableEvent* sent_ping_event_;
scoped_ptr<SyncChannel> non_restricted_channel_;
};
TEST_F(IPCSyncChannelTest, RestrictedDispatch) {
WaitableEvent sent_ping_event(false, false);
WaitableEvent wait_event(false, false);
RestrictedDispatchServer* server =
new RestrictedDispatchServer(&sent_ping_event, &wait_event);
NonRestrictedDispatchServer* server2 =
new NonRestrictedDispatchServer(&wait_event);
int success = 0;
std::vector<Worker*> workers;
workers.push_back(server);
workers.push_back(server2);
workers.push_back(new RestrictedDispatchClient(
&sent_ping_event, server, server2, &success));
RunTest(workers);
EXPECT_EQ(4, success);
}
//------------------------------------------------------------------------------
// This test case inspired by crbug.com/108491
// We create two servers that use the same ListenerThread but have
// SetRestrictDispatchToSameChannel set to true.
// We create clients, then use some specific WaitableEvent wait/signalling to
// ensure that messages get dispatched in a way that causes a deadlock due to
// a nested dispatch and an eligible message in a higher-level dispatch's
// delayed_queue. Specifically, we start with client1 about so send an
// unblocking message to server1, while the shared listener thread for the
// servers server1 and server2 is about to send a non-unblocking message to
// client1. At the same time, client2 will be about to send an unblocking
// message to server2. Server1 will handle the client1->server1 message by
// telling server2 to send a non-unblocking message to client2.
// What should happen is that the send to server2 should find the pending,
// same-context client2->server2 message to dispatch, causing client2 to
// unblock then handle the server2->client2 message, so that the shared
// servers' listener thread can then respond to the client1->server1 message.
// Then client1 can handle the non-unblocking server1->client1 message.
// The old code would end up in a state where the server2->client2 message is
// sent, but the client2->server2 message (which is eligible for dispatch, and
// which is what client2 is waiting for) is stashed in a local delayed_queue
// that has server1's channel context, causing a deadlock.
// WaitableEvents in the events array are used to:
// event 0: indicate to client1 that server listener is in OnDoServerTask
// event 1: indicate to client1 that client2 listener is in OnDoClient2Task
// event 2: indicate to server1 that client2 listener is in OnDoClient2Task
// event 3: indicate to client2 that server listener is in OnDoServerTask
class RestrictedDispatchDeadlockServer : public Worker {
public:
RestrictedDispatchDeadlockServer(int server_num,
WaitableEvent* server_ready_event,
WaitableEvent** events,
RestrictedDispatchDeadlockServer* peer)
: Worker(server_num == 1 ? "channel1" : "channel2", Channel::MODE_SERVER),
server_num_(server_num),
server_ready_event_(server_ready_event),
events_(events),
peer_(peer) { }
void OnDoServerTask() {
events_[3]->Signal();
events_[2]->Wait();
events_[0]->Signal();
SendMessageToClient();
}
virtual void Run() OVERRIDE {
channel()->SetRestrictDispatchChannelGroup(1);
server_ready_event_->Signal();
}
base::Thread* ListenerThread() { return Worker::ListenerThread(); }
private:
virtual bool OnMessageReceived(const Message& message) OVERRIDE {
IPC_BEGIN_MESSAGE_MAP(RestrictedDispatchDeadlockServer, message)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_NoArgs, OnNoArgs)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_Done, Done)
IPC_END_MESSAGE_MAP()
return true;
}
void OnNoArgs() {
if (server_num_ == 1) {
DCHECK(peer_ != NULL);
peer_->SendMessageToClient();
}
}
void SendMessageToClient() {
Message* msg = new SyncChannelTestMsg_NoArgs;
msg->set_unblock(false);
DCHECK(!msg->should_unblock());
Send(msg);
}
int server_num_;
WaitableEvent* server_ready_event_;
WaitableEvent** events_;
RestrictedDispatchDeadlockServer* peer_;
};
class RestrictedDispatchDeadlockClient2 : public Worker {
public:
RestrictedDispatchDeadlockClient2(RestrictedDispatchDeadlockServer* server,
WaitableEvent* server_ready_event,
WaitableEvent** events)
: Worker("channel2", Channel::MODE_CLIENT),
server_ready_event_(server_ready_event),
events_(events),
received_msg_(false),
received_noarg_reply_(false),
done_issued_(false) {}
virtual void Run() OVERRIDE {
server_ready_event_->Wait();
}
void OnDoClient2Task() {
events_[3]->Wait();
events_[1]->Signal();
events_[2]->Signal();
DCHECK(received_msg_ == false);
Message* message = new SyncChannelTestMsg_NoArgs;
message->set_unblock(true);
Send(message);
received_noarg_reply_ = true;
}
base::Thread* ListenerThread() { return Worker::ListenerThread(); }
private:
virtual bool OnMessageReceived(const Message& message) OVERRIDE {
IPC_BEGIN_MESSAGE_MAP(RestrictedDispatchDeadlockClient2, message)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_NoArgs, OnNoArgs)
IPC_END_MESSAGE_MAP()
return true;
}
void OnNoArgs() {
received_msg_ = true;
PossiblyDone();
}
void PossiblyDone() {
if (received_noarg_reply_ && received_msg_) {
DCHECK(done_issued_ == false);
done_issued_ = true;
Send(new SyncChannelTestMsg_Done);
Done();
}
}
WaitableEvent* server_ready_event_;
WaitableEvent** events_;
bool received_msg_;
bool received_noarg_reply_;
bool done_issued_;
};
class RestrictedDispatchDeadlockClient1 : public Worker {
public:
RestrictedDispatchDeadlockClient1(RestrictedDispatchDeadlockServer* server,
RestrictedDispatchDeadlockClient2* peer,
WaitableEvent* server_ready_event,
WaitableEvent** events)
: Worker("channel1", Channel::MODE_CLIENT),
server_(server),
peer_(peer),
server_ready_event_(server_ready_event),
events_(events),
received_msg_(false),
received_noarg_reply_(false),
done_issued_(false) {}
virtual void Run() OVERRIDE {
server_ready_event_->Wait();
server_->ListenerThread()->message_loop()->PostTask(
FROM_HERE,
base::Bind(&RestrictedDispatchDeadlockServer::OnDoServerTask, server_));
peer_->ListenerThread()->message_loop()->PostTask(
FROM_HERE,
base::Bind(&RestrictedDispatchDeadlockClient2::OnDoClient2Task, peer_));
events_[0]->Wait();
events_[1]->Wait();
DCHECK(received_msg_ == false);
Message* message = new SyncChannelTestMsg_NoArgs;
message->set_unblock(true);
Send(message);
received_noarg_reply_ = true;
PossiblyDone();
}
base::Thread* ListenerThread() { return Worker::ListenerThread(); }
private:
virtual bool OnMessageReceived(const Message& message) OVERRIDE {
IPC_BEGIN_MESSAGE_MAP(RestrictedDispatchDeadlockClient1, message)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_NoArgs, OnNoArgs)
IPC_END_MESSAGE_MAP()
return true;
}
void OnNoArgs() {
received_msg_ = true;
PossiblyDone();
}
void PossiblyDone() {
if (received_noarg_reply_ && received_msg_) {
DCHECK(done_issued_ == false);
done_issued_ = true;
Send(new SyncChannelTestMsg_Done);
Done();
}
}
RestrictedDispatchDeadlockServer* server_;
RestrictedDispatchDeadlockClient2* peer_;
WaitableEvent* server_ready_event_;
WaitableEvent** events_;
bool received_msg_;
bool received_noarg_reply_;
bool done_issued_;
};
TEST_F(IPCSyncChannelTest, RestrictedDispatchDeadlock) {
std::vector<Worker*> workers;
// A shared worker thread so that server1 and server2 run on one thread.
base::Thread worker_thread("RestrictedDispatchDeadlock");
ASSERT_TRUE(worker_thread.Start());
WaitableEvent server1_ready(false, false);
WaitableEvent server2_ready(false, false);
WaitableEvent event0(false, false);
WaitableEvent event1(false, false);
WaitableEvent event2(false, false);
WaitableEvent event3(false, false);
WaitableEvent* events[4] = {&event0, &event1, &event2, &event3};
RestrictedDispatchDeadlockServer* server1;
RestrictedDispatchDeadlockServer* server2;
RestrictedDispatchDeadlockClient1* client1;
RestrictedDispatchDeadlockClient2* client2;
server2 = new RestrictedDispatchDeadlockServer(2, &server2_ready, events,
NULL);
server2->OverrideThread(&worker_thread);
workers.push_back(server2);
client2 = new RestrictedDispatchDeadlockClient2(server2, &server2_ready,
events);
workers.push_back(client2);
server1 = new RestrictedDispatchDeadlockServer(1, &server1_ready, events,
server2);
server1->OverrideThread(&worker_thread);
workers.push_back(server1);
client1 = new RestrictedDispatchDeadlockClient1(server1, client2,
&server1_ready, events);
workers.push_back(client1);
RunTest(workers);
}
//------------------------------------------------------------------------------
// This test case inspired by crbug.com/120530
// We create 4 workers that pipe to each other W1->W2->W3->W4->W1 then we send a
// message that recurses through 3, 4 or 5 steps to make sure, say, W1 can
// re-enter when called from W4 while it's sending a message to W2.
// The first worker drives the whole test so it must be treated specially.
class RestrictedDispatchPipeWorker : public Worker {
public:
RestrictedDispatchPipeWorker(
const std::string &channel1,
WaitableEvent* event1,
const std::string &channel2,
WaitableEvent* event2,
int group,
int* success)
: Worker(channel1, Channel::MODE_SERVER),
event1_(event1),
event2_(event2),
other_channel_name_(channel2),
group_(group),
success_(success) {
}
void OnPingTTL(int ping, int* ret) {
*ret = 0;
if (!ping)
return;
other_channel_->Send(new SyncChannelTestMsg_PingTTL(ping - 1, ret));
++*ret;
}
void OnDone() {
if (is_first())
return;
other_channel_->Send(new SyncChannelTestMsg_Done);
other_channel_.reset();
Done();
}
virtual void Run() OVERRIDE {
channel()->SetRestrictDispatchChannelGroup(group_);
if (is_first())
event1_->Signal();
event2_->Wait();
other_channel_.reset(
new SyncChannel(other_channel_name_,
Channel::MODE_CLIENT,
this,
ipc_thread().message_loop_proxy().get(),
true,
shutdown_event()));
other_channel_->SetRestrictDispatchChannelGroup(group_);
if (!is_first()) {
event1_->Signal();
return;
}
*success_ = 0;
int value = 0;
OnPingTTL(3, &value);
*success_ += (value == 3);
OnPingTTL(4, &value);
*success_ += (value == 4);
OnPingTTL(5, &value);
*success_ += (value == 5);
other_channel_->Send(new SyncChannelTestMsg_Done);
other_channel_.reset();
Done();
}
bool is_first() { return !!success_; }
private:
virtual bool OnMessageReceived(const Message& message) OVERRIDE {
IPC_BEGIN_MESSAGE_MAP(RestrictedDispatchPipeWorker, message)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_PingTTL, OnPingTTL)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_Done, OnDone)
IPC_END_MESSAGE_MAP()
return true;
}
scoped_ptr<SyncChannel> other_channel_;
WaitableEvent* event1_;
WaitableEvent* event2_;
std::string other_channel_name_;
int group_;
int* success_;
};
TEST_F(IPCSyncChannelTest, RestrictedDispatch4WayDeadlock) {
int success = 0;
std::vector<Worker*> workers;
WaitableEvent event0(true, false);
WaitableEvent event1(true, false);
WaitableEvent event2(true, false);
WaitableEvent event3(true, false);
workers.push_back(new RestrictedDispatchPipeWorker(
"channel0", &event0, "channel1", &event1, 1, &success));
workers.push_back(new RestrictedDispatchPipeWorker(
"channel1", &event1, "channel2", &event2, 2, NULL));
workers.push_back(new RestrictedDispatchPipeWorker(
"channel2", &event2, "channel3", &event3, 3, NULL));
workers.push_back(new RestrictedDispatchPipeWorker(
"channel3", &event3, "channel0", &event0, 4, NULL));
RunTest(workers);
EXPECT_EQ(3, success);
}
//------------------------------------------------------------------------------
// This test case inspired by crbug.com/122443
// We want to make sure a reply message with the unblock flag set correctly
// behaves as a reply, not a regular message.
// We have 3 workers. Server1 will send a message to Server2 (which will block),
// during which it will dispatch a message comming from Client, at which point
// it will send another message to Server2. While sending that second message it
// will receive a reply from Server1 with the unblock flag.
class ReentrantReplyServer1 : public Worker {
public:
ReentrantReplyServer1(WaitableEvent* server_ready)
: Worker("reentrant_reply1", Channel::MODE_SERVER),
server_ready_(server_ready) { }
virtual void Run() OVERRIDE {
server2_channel_.reset(
new SyncChannel("reentrant_reply2",
Channel::MODE_CLIENT,
this,
ipc_thread().message_loop_proxy().get(),
true,
shutdown_event()));
server_ready_->Signal();
Message* msg = new SyncChannelTestMsg_Reentrant1();
server2_channel_->Send(msg);
server2_channel_.reset();
Done();
}
private:
virtual bool OnMessageReceived(const Message& message) OVERRIDE {
IPC_BEGIN_MESSAGE_MAP(ReentrantReplyServer1, message)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_Reentrant2, OnReentrant2)
IPC_REPLY_HANDLER(OnReply)
IPC_END_MESSAGE_MAP()
return true;
}
void OnReentrant2() {
Message* msg = new SyncChannelTestMsg_Reentrant3();
server2_channel_->Send(msg);
}
void OnReply(const Message& message) {
// If we get here, the Send() will never receive the reply (thus would
// hang), so abort instead.
LOG(FATAL) << "Reply message was dispatched";
}
WaitableEvent* server_ready_;
scoped_ptr<SyncChannel> server2_channel_;
};
class ReentrantReplyServer2 : public Worker {
public:
ReentrantReplyServer2()
: Worker("reentrant_reply2", Channel::MODE_SERVER),
reply_(NULL) { }
private:
virtual bool OnMessageReceived(const Message& message) OVERRIDE {
IPC_BEGIN_MESSAGE_MAP(ReentrantReplyServer2, message)
IPC_MESSAGE_HANDLER_DELAY_REPLY(
SyncChannelTestMsg_Reentrant1, OnReentrant1)
IPC_MESSAGE_HANDLER(SyncChannelTestMsg_Reentrant3, OnReentrant3)
IPC_END_MESSAGE_MAP()
return true;
}
void OnReentrant1(Message* reply) {
DCHECK(!reply_);
reply_ = reply;
}
void OnReentrant3() {
DCHECK(reply_);
Message* reply = reply_;
reply_ = NULL;
reply->set_unblock(true);
Send(reply);
Done();
}
Message* reply_;
};
class ReentrantReplyClient : public Worker {
public:
ReentrantReplyClient(WaitableEvent* server_ready)
: Worker("reentrant_reply1", Channel::MODE_CLIENT),
server_ready_(server_ready) { }
virtual void Run() OVERRIDE {
server_ready_->Wait();
Send(new SyncChannelTestMsg_Reentrant2());
Done();
}
private:
WaitableEvent* server_ready_;
};
TEST_F(IPCSyncChannelTest, ReentrantReply) {
std::vector<Worker*> workers;
WaitableEvent server_ready(false, false);
workers.push_back(new ReentrantReplyServer2());
workers.push_back(new ReentrantReplyServer1(&server_ready));
workers.push_back(new ReentrantReplyClient(&server_ready));
RunTest(workers);
}
//------------------------------------------------------------------------------
// Generate a validated channel ID using Channel::GenerateVerifiedChannelID().
class VerifiedServer : public Worker {
public:
VerifiedServer(base::Thread* listener_thread,
const std::string& channel_name,
const std::string& reply_text)
: Worker(channel_name, Channel::MODE_SERVER),
reply_text_(reply_text) {
Worker::OverrideThread(listener_thread);
}
virtual void OnNestedTestMsg(Message* reply_msg) OVERRIDE {
VLOG(1) << __FUNCTION__ << " Sending reply: " << reply_text_;
SyncChannelNestedTestMsg_String::WriteReplyParams(reply_msg, reply_text_);
Send(reply_msg);
ASSERT_EQ(channel()->peer_pid(), base::GetCurrentProcId());
Done();
}
private:
std::string reply_text_;
};
class VerifiedClient : public Worker {
public:
VerifiedClient(base::Thread* listener_thread,
const std::string& channel_name,
const std::string& expected_text)
: Worker(channel_name, Channel::MODE_CLIENT),
expected_text_(expected_text) {
Worker::OverrideThread(listener_thread);
}
virtual void Run() OVERRIDE {
std::string response;
SyncMessage* msg = new SyncChannelNestedTestMsg_String(&response);
bool result = Send(msg);
DCHECK(result);
DCHECK_EQ(response, expected_text_);
// expected_text_ is only used in the above DCHECK. This line suppresses the
// "unused private field" warning in release builds.
(void)expected_text_;
VLOG(1) << __FUNCTION__ << " Received reply: " << response;
ASSERT_EQ(channel()->peer_pid(), base::GetCurrentProcId());
Done();
}
private:
std::string expected_text_;
};
void Verified() {
std::vector<Worker*> workers;
// A shared worker thread for servers
base::Thread server_worker_thread("Verified_ServerListener");
ASSERT_TRUE(server_worker_thread.Start());
base::Thread client_worker_thread("Verified_ClientListener");
ASSERT_TRUE(client_worker_thread.Start());
std::string channel_id = Channel::GenerateVerifiedChannelID("Verified");
Worker* worker;
worker = new VerifiedServer(&server_worker_thread,
channel_id,
"Got first message");
workers.push_back(worker);
worker = new VerifiedClient(&client_worker_thread,
channel_id,
"Got first message");
workers.push_back(worker);
RunTest(workers);
}
// Windows needs to send an out-of-band secret to verify the client end of the
// channel. Test that we still connect correctly in that case.
TEST_F(IPCSyncChannelTest, Verified) {
Verified();
}
} // namespace
} // namespace IPC