// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This defines a set of argument wrappers and related factory methods that
// can be used specify the refcounting and reference semantics of arguments
// that are bound by the Bind() function in base/bind.h.
//
// The public functions are base::Unretained() and base::ConstRef().
// Unretained() allows Bind() to bind a non-refcounted class.
// ConstRef() allows binding a constant reference to an argument rather
// than a copy.
//
//
// EXAMPLE OF Unretained():
//
// class Foo {
// public:
// void func() { cout << "Foo:f" << endl;
// };
//
// // In some function somewhere.
// Foo foo;
// Callback<void(void)> foo_callback =
// Bind(&Foo::func, Unretained(&foo));
// foo_callback.Run(); // Prints "Foo:f".
//
// Without the Unretained() wrapper on |&foo|, the above call would fail
// to compile because Foo does not support the AddRef() and Release() methods.
//
//
// EXAMPLE OF ConstRef();
// void foo(int arg) { cout << arg << endl }
//
// int n = 1;
// Callback<void(void)> no_ref = Bind(&foo, n);
// Callback<void(void)> has_ref = Bind(&foo, ConstRef(n));
//
// no_ref.Run(); // Prints "1"
// has_ref.Run(); // Prints "1"
//
// n = 2;
// no_ref.Run(); // Prints "1"
// has_ref.Run(); // Prints "2"
//
// Note that because ConstRef() takes a reference on |n|, |n| must outlive all
// its bound callbacks.
//
#ifndef BASE_BIND_HELPERS_H_
#define BASE_BIND_HELPERS_H_
#pragma once
#include "base/basictypes.h"
#include "base/template_util.h"
namespace base {
namespace internal {
// Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
// for the existence of AddRef() and Release() functions of the correct
// signature.
//
// http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
// http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
// http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
// http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
//
// The last link in particular show the method used below.
//
// For SFINAE to work with inherited methods, we need to pull some extra tricks
// with multiple inheritance. In the more standard formulation, the overloads
// of Check would be:
//
// template <typename C>
// Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
//
// template <typename C>
// No NotTheCheckWeWant(...);
//
// static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
//
// The problem here is that template resolution will not match
// C::TargetFunc if TargetFunc does not exist directly in C. That is, if
// TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
// |value| will be false. This formulation only checks for whether or
// not TargetFunc exist directly in the class being introspected.
//
// To get around this, we play a dirty trick with multiple inheritance.
// First, We create a class BaseMixin that declares each function that we
// want to probe for. Then we create a class Base that inherits from both T
// (the class we wish to probe) and BaseMixin. Note that the function
// signature in BaseMixin does not need to match the signature of the function
// we are probing for; thus it's easiest to just use void(void).
//
// Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
// ambiguous resolution between BaseMixin and T. This lets us write the
// following:
//
// template <typename C>
// No GoodCheck(Helper<&C::TargetFunc>*);
//
// template <typename C>
// Yes GoodCheck(...);
//
// static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
//
// Notice here that the variadic version of GoodCheck() returns Yes here
// instead of No like the previous one. Also notice that we calculate |value|
// by specializing GoodCheck() on Base instead of T.
//
// We've reversed the roles of the variadic, and Helper overloads.
// GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
// substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
// to the variadic version if T has TargetFunc. If T::TargetFunc does not
// exist, then &C::TargetFunc is not ambiguous, and the overload resolution
// will prefer GoodCheck(Helper<&C::TargetFunc>*).
//
// This method of SFINAE will correctly probe for inherited names, but it cannot
// typecheck those names. It's still a good enough sanity check though.
//
// Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
//
// TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
// this works well.
template <typename T>
class SupportsAddRefAndRelease {
typedef char Yes[1];
typedef char No[2];
struct BaseMixin {
void AddRef();
void Release();
};
// MSVC warns when you try to use Base if T has a private destructor, the
// common pattern for refcounted types. It does this even though no attempt to
// instantiate Base is made. We disable the warning for this definition.
#if defined(OS_WIN)
#pragma warning(disable:4624)
#endif
struct Base : public T, public BaseMixin {
};
#if defined(OS_WIN)
#pragma warning(default:4624)
#endif
template <void(BaseMixin::*)(void)> struct Helper {};
template <typename C>
static No& Check(Helper<&C::AddRef>*, Helper<&C::Release>*);
template <typename >
static Yes& Check(...);
public:
static const bool value = sizeof(Check<Base>(0,0)) == sizeof(Yes);
};
// Helpers to assert that arguments of a recounted type are bound with a
// scoped_refptr.
template <bool IsClasstype, typename T>
struct UnsafeBindtoRefCountedArgHelper : false_type {
};
template <typename T>
struct UnsafeBindtoRefCountedArgHelper<true, T>
: integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
};
template <typename T>
struct UnsafeBindtoRefCountedArg : false_type {
};
template <typename T>
struct UnsafeBindtoRefCountedArg<T*>
: UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
};
template <typename T>
class UnretainedWrapper {
public:
explicit UnretainedWrapper(T* o) : obj_(o) {}
T* get() { return obj_; }
private:
T* obj_;
};
template <typename T>
class ConstRefWrapper {
public:
explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
const T& get() { return *ptr_; }
private:
const T* ptr_;
};
// Unwrap the stored parameters for the wrappers above.
template <typename T>
T Unwrap(T o) { return o; }
template <typename T>
T* Unwrap(UnretainedWrapper<T> unretained) { return unretained.get(); }
template <typename T>
const T& Unwrap(ConstRefWrapper<T> const_ref) {
return const_ref.get();
}
// Utility for handling different refcounting semantics in the Bind()
// function.
template <typename ref, typename T>
struct MaybeRefcount;
template <typename T>
struct MaybeRefcount<base::false_type, T> {
static void AddRef(const T&) {}
static void Release(const T&) {}
};
template <typename T, size_t n>
struct MaybeRefcount<base::false_type, T[n]> {
static void AddRef(const T*) {}
static void Release(const T*) {}
};
template <typename T>
struct MaybeRefcount<base::true_type, UnretainedWrapper<T> > {
static void AddRef(const UnretainedWrapper<T>&) {}
static void Release(const UnretainedWrapper<T>&) {}
};
template <typename T>
struct MaybeRefcount<base::true_type, T*> {
static void AddRef(T* o) { o->AddRef(); }
static void Release(T* o) { o->Release(); }
};
template <typename T>
struct MaybeRefcount<base::true_type, const T*> {
static void AddRef(const T* o) { o->AddRef(); }
static void Release(const T* o) { o->Release(); }
};
} // namespace internal
template <typename T>
inline internal::UnretainedWrapper<T> Unretained(T* o) {
return internal::UnretainedWrapper<T>(o);
}
template <typename T>
inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
return internal::ConstRefWrapper<T>(o);
}
} // namespace base
#endif // BASE_BIND_HELPERS_H_