/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <stdint.h> #include <math.h> #include <sys/types.h> #include <cutils/properties.h> #include <utils/SortedVector.h> #include <utils/KeyedVector.h> #include <utils/threads.h> #include <utils/Atomic.h> #include <utils/Errors.h> #include <utils/RefBase.h> #include <utils/Singleton.h> #include <utils/String16.h> #include <binder/BinderService.h> #include <binder/IServiceManager.h> #include <binder/PermissionCache.h> #include <gui/ISensorServer.h> #include <gui/ISensorEventConnection.h> #include <gui/SensorEventQueue.h> #include <hardware/sensors.h> #include <hardware_legacy/power.h> #include "BatteryService.h" #include "CorrectedGyroSensor.h" #include "GravitySensor.h" #include "LinearAccelerationSensor.h" #include "OrientationSensor.h" #include "RotationVectorSensor.h" #include "SensorFusion.h" #include "SensorService.h" namespace android { // --------------------------------------------------------------------------- /* * Notes: * * - what about a gyro-corrected magnetic-field sensor? * - run mag sensor from time to time to force calibration * - gravity sensor length is wrong (=> drift in linear-acc sensor) * */ const char* SensorService::WAKE_LOCK_NAME = "SensorService"; SensorService::SensorService() : mInitCheck(NO_INIT) { } void SensorService::onFirstRef() { ALOGD("nuSensorService starting..."); SensorDevice& dev(SensorDevice::getInstance()); if (dev.initCheck() == NO_ERROR) { sensor_t const* list; ssize_t count = dev.getSensorList(&list); if (count > 0) { ssize_t orientationIndex = -1; bool hasGyro = false; uint32_t virtualSensorsNeeds = (1<<SENSOR_TYPE_GRAVITY) | (1<<SENSOR_TYPE_LINEAR_ACCELERATION) | (1<<SENSOR_TYPE_ROTATION_VECTOR); mLastEventSeen.setCapacity(count); for (ssize_t i=0 ; i<count ; i++) { registerSensor( new HardwareSensor(list[i]) ); switch (list[i].type) { case SENSOR_TYPE_ORIENTATION: orientationIndex = i; break; case SENSOR_TYPE_GYROSCOPE: case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: hasGyro = true; break; case SENSOR_TYPE_GRAVITY: case SENSOR_TYPE_LINEAR_ACCELERATION: case SENSOR_TYPE_ROTATION_VECTOR: virtualSensorsNeeds &= ~(1<<list[i].type); break; } } // it's safe to instantiate the SensorFusion object here // (it wants to be instantiated after h/w sensors have been // registered) const SensorFusion& fusion(SensorFusion::getInstance()); // build the sensor list returned to users mUserSensorList = mSensorList; if (hasGyro) { Sensor aSensor; // Add Android virtual sensors if they're not already // available in the HAL aSensor = registerVirtualSensor( new RotationVectorSensor() ); if (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) { mUserSensorList.add(aSensor); } aSensor = registerVirtualSensor( new GravitySensor(list, count) ); if (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) { mUserSensorList.add(aSensor); } aSensor = registerVirtualSensor( new LinearAccelerationSensor(list, count) ); if (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) { mUserSensorList.add(aSensor); } aSensor = registerVirtualSensor( new OrientationSensor() ); if (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) { // if we are doing our own rotation-vector, also add // the orientation sensor and remove the HAL provided one. mUserSensorList.replaceAt(aSensor, orientationIndex); } // virtual debugging sensors are not added to mUserSensorList registerVirtualSensor( new CorrectedGyroSensor(list, count) ); registerVirtualSensor( new GyroDriftSensor() ); } // debugging sensor list mUserSensorListDebug = mSensorList; mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED; FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r"); char line[128]; if (fp != NULL && fgets(line, sizeof(line), fp) != NULL) { line[sizeof(line) - 1] = '\0'; sscanf(line, "%u", &mSocketBufferSize); if (mSocketBufferSize > MAX_SOCKET_BUFFER_SIZE_BATCHED) { mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED; } } ALOGD("Max socket buffer size %u", mSocketBufferSize); if (fp) { fclose(fp); } run("SensorService", PRIORITY_URGENT_DISPLAY); mInitCheck = NO_ERROR; } } } Sensor SensorService::registerSensor(SensorInterface* s) { sensors_event_t event; memset(&event, 0, sizeof(event)); const Sensor sensor(s->getSensor()); // add to the sensor list (returned to clients) mSensorList.add(sensor); // add to our handle->SensorInterface mapping mSensorMap.add(sensor.getHandle(), s); // create an entry in the mLastEventSeen array mLastEventSeen.add(sensor.getHandle(), event); return sensor; } Sensor SensorService::registerVirtualSensor(SensorInterface* s) { Sensor sensor = registerSensor(s); mVirtualSensorList.add( s ); return sensor; } SensorService::~SensorService() { for (size_t i=0 ; i<mSensorMap.size() ; i++) delete mSensorMap.valueAt(i); } static const String16 sDump("android.permission.DUMP"); status_t SensorService::dump(int fd, const Vector<String16>& args) { String8 result; if (!PermissionCache::checkCallingPermission(sDump)) { result.appendFormat("Permission Denial: " "can't dump SurfaceFlinger from pid=%d, uid=%d\n", IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid()); } else { Mutex::Autolock _l(mLock); result.append("Sensor List:\n"); for (size_t i=0 ; i<mSensorList.size() ; i++) { const Sensor& s(mSensorList[i]); const sensors_event_t& e(mLastEventSeen.valueFor(s.getHandle())); result.appendFormat( "%-48s| %-32s | 0x%08x | ", s.getName().string(), s.getVendor().string(), s.getHandle()); if (s.getMinDelay() > 0) { result.appendFormat( "maxRate=%7.2fHz | ", 1e6f / s.getMinDelay()); } else { result.append(s.getMinDelay() == 0 ? "on-demand | " : "one-shot | "); } if (s.getFifoMaxEventCount() > 0) { result.appendFormat("getFifoMaxEventCount=%d events | ", s.getFifoMaxEventCount()); } else { result.append("no batching support | "); } switch (s.getType()) { case SENSOR_TYPE_ROTATION_VECTOR: case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR: result.appendFormat( "last=<%5.1f,%5.1f,%5.1f,%5.1f,%5.1f>\n", e.data[0], e.data[1], e.data[2], e.data[3], e.data[4]); break; case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED: case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: result.appendFormat( "last=<%5.1f,%5.1f,%5.1f,%5.1f,%5.1f,%5.1f>\n", e.data[0], e.data[1], e.data[2], e.data[3], e.data[4], e.data[5]); break; case SENSOR_TYPE_GAME_ROTATION_VECTOR: result.appendFormat( "last=<%5.1f,%5.1f,%5.1f,%5.1f>\n", e.data[0], e.data[1], e.data[2], e.data[3]); break; case SENSOR_TYPE_SIGNIFICANT_MOTION: case SENSOR_TYPE_STEP_DETECTOR: result.appendFormat( "last=<%f>\n", e.data[0]); break; case SENSOR_TYPE_STEP_COUNTER: result.appendFormat( "last=<%llu>\n", e.u64.step_counter); break; default: // default to 3 values result.appendFormat( "last=<%5.1f,%5.1f,%5.1f>\n", e.data[0], e.data[1], e.data[2]); break; } } SensorFusion::getInstance().dump(result); SensorDevice::getInstance().dump(result); result.append("Active sensors:\n"); for (size_t i=0 ; i<mActiveSensors.size() ; i++) { int handle = mActiveSensors.keyAt(i); result.appendFormat("%s (handle=0x%08x, connections=%d)\n", getSensorName(handle).string(), handle, mActiveSensors.valueAt(i)->getNumConnections()); } result.appendFormat("%u Max Socket Buffer size\n", mSocketBufferSize); result.appendFormat("%d active connections\n", mActiveConnections.size()); for (size_t i=0 ; i < mActiveConnections.size() ; i++) { sp<SensorEventConnection> connection(mActiveConnections[i].promote()); if (connection != 0) { result.appendFormat("Connection Number: %d \n", i); connection->dump(result); } } } write(fd, result.string(), result.size()); return NO_ERROR; } void SensorService::cleanupAutoDisabledSensor(const sp<SensorEventConnection>& connection, sensors_event_t const* buffer, const int count) { SensorInterface* sensor; status_t err = NO_ERROR; for (int i=0 ; i<count ; i++) { int handle = buffer[i].sensor; int type = buffer[i].type; if (type == SENSOR_TYPE_SIGNIFICANT_MOTION) { if (connection->hasSensor(handle)) { sensor = mSensorMap.valueFor(handle); if (sensor != NULL) { sensor->autoDisable(connection.get(), handle); } cleanupWithoutDisable(connection, handle); } } } } bool SensorService::threadLoop() { ALOGD("nuSensorService thread starting..."); // each virtual sensor could generate an event per "real" event, that's why we need // to size numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT. // in practice, this is too aggressive, but guaranteed to be enough. const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT; const size_t numEventMax = minBufferSize / (1 + mVirtualSensorList.size()); sensors_event_t buffer[minBufferSize]; sensors_event_t scratch[minBufferSize]; SensorDevice& device(SensorDevice::getInstance()); const size_t vcount = mVirtualSensorList.size(); ssize_t count; bool wakeLockAcquired = false; const int halVersion = device.getHalDeviceVersion(); do { count = device.poll(buffer, numEventMax); if (count<0) { ALOGE("sensor poll failed (%s)", strerror(-count)); break; } // Poll has returned. Hold a wakelock. // Todo(): add a flag to the sensors definitions to indicate // the sensors which can wake up the AP for (int i = 0; i < count; i++) { if (buffer[i].type == SENSOR_TYPE_SIGNIFICANT_MOTION) { acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME); wakeLockAcquired = true; break; } } recordLastValue(buffer, count); // handle virtual sensors if (count && vcount) { sensors_event_t const * const event = buffer; const DefaultKeyedVector<int, SensorInterface*> virtualSensors( getActiveVirtualSensors()); const size_t activeVirtualSensorCount = virtualSensors.size(); if (activeVirtualSensorCount) { size_t k = 0; SensorFusion& fusion(SensorFusion::getInstance()); if (fusion.isEnabled()) { for (size_t i=0 ; i<size_t(count) ; i++) { fusion.process(event[i]); } } for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) { for (size_t j=0 ; j<activeVirtualSensorCount ; j++) { if (count + k >= minBufferSize) { ALOGE("buffer too small to hold all events: " "count=%u, k=%u, size=%u", count, k, minBufferSize); break; } sensors_event_t out; SensorInterface* si = virtualSensors.valueAt(j); if (si->process(&out, event[i])) { buffer[count + k] = out; k++; } } } if (k) { // record the last synthesized values recordLastValue(&buffer[count], k); count += k; // sort the buffer by time-stamps sortEventBuffer(buffer, count); } } } // handle backward compatibility for RotationVector sensor if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) { for (int i = 0; i < count; i++) { if (buffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) { // All the 4 components of the quaternion should be available // No heading accuracy. Set it to -1 buffer[i].data[4] = -1; } } } // send our events to clients... const SortedVector< wp<SensorEventConnection> > activeConnections( getActiveConnections()); size_t numConnections = activeConnections.size(); for (size_t i=0 ; i<numConnections ; i++) { sp<SensorEventConnection> connection( activeConnections[i].promote()); if (connection != 0) { connection->sendEvents(buffer, count, scratch); // Some sensors need to be auto disabled after the trigger cleanupAutoDisabledSensor(connection, buffer, count); } } // We have read the data, upper layers should hold the wakelock. if (wakeLockAcquired) release_wake_lock(WAKE_LOCK_NAME); } while (count >= 0 || Thread::exitPending()); ALOGW("Exiting SensorService::threadLoop => aborting..."); abort(); return false; } void SensorService::recordLastValue( const sensors_event_t* buffer, size_t count) { Mutex::Autolock _l(mLock); const sensors_event_t* last = NULL; for (size_t i = 0; i < count; i++) { const sensors_event_t* event = &buffer[i]; if (event->type != SENSOR_TYPE_META_DATA) { if (last && event->sensor != last->sensor) { mLastEventSeen.editValueFor(last->sensor) = *last; } last = event; } } if (last) { mLastEventSeen.editValueFor(last->sensor) = *last; } } void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) { struct compar { static int cmp(void const* lhs, void const* rhs) { sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs); sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs); return l->timestamp - r->timestamp; } }; qsort(buffer, count, sizeof(sensors_event_t), compar::cmp); } SortedVector< wp<SensorService::SensorEventConnection> > SensorService::getActiveConnections() const { Mutex::Autolock _l(mLock); return mActiveConnections; } DefaultKeyedVector<int, SensorInterface*> SensorService::getActiveVirtualSensors() const { Mutex::Autolock _l(mLock); return mActiveVirtualSensors; } String8 SensorService::getSensorName(int handle) const { size_t count = mUserSensorList.size(); for (size_t i=0 ; i<count ; i++) { const Sensor& sensor(mUserSensorList[i]); if (sensor.getHandle() == handle) { return sensor.getName(); } } String8 result("unknown"); return result; } bool SensorService::isVirtualSensor(int handle) const { SensorInterface* sensor = mSensorMap.valueFor(handle); return sensor->isVirtual(); } Vector<Sensor> SensorService::getSensorList() { char value[PROPERTY_VALUE_MAX]; property_get("debug.sensors", value, "0"); if (atoi(value)) { return mUserSensorListDebug; } return mUserSensorList; } sp<ISensorEventConnection> SensorService::createSensorEventConnection() { uid_t uid = IPCThreadState::self()->getCallingUid(); sp<SensorEventConnection> result(new SensorEventConnection(this, uid)); return result; } void SensorService::cleanupConnection(SensorEventConnection* c) { Mutex::Autolock _l(mLock); const wp<SensorEventConnection> connection(c); size_t size = mActiveSensors.size(); ALOGD_IF(DEBUG_CONNECTIONS, "%d active sensors", size); for (size_t i=0 ; i<size ; ) { int handle = mActiveSensors.keyAt(i); if (c->hasSensor(handle)) { ALOGD_IF(DEBUG_CONNECTIONS, "%i: disabling handle=0x%08x", i, handle); SensorInterface* sensor = mSensorMap.valueFor( handle ); ALOGE_IF(!sensor, "mSensorMap[handle=0x%08x] is null!", handle); if (sensor) { sensor->activate(c, false); } } SensorRecord* rec = mActiveSensors.valueAt(i); ALOGE_IF(!rec, "mActiveSensors[%d] is null (handle=0x%08x)!", i, handle); ALOGD_IF(DEBUG_CONNECTIONS, "removing connection %p for sensor[%d].handle=0x%08x", c, i, handle); if (rec && rec->removeConnection(connection)) { ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection"); mActiveSensors.removeItemsAt(i, 1); mActiveVirtualSensors.removeItem(handle); delete rec; size--; } else { i++; } } mActiveConnections.remove(connection); BatteryService::cleanup(c->getUid()); } status_t SensorService::enable(const sp<SensorEventConnection>& connection, int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags) { if (mInitCheck != NO_ERROR) return mInitCheck; SensorInterface* sensor = mSensorMap.valueFor(handle); if (sensor == NULL) { return BAD_VALUE; } Mutex::Autolock _l(mLock); SensorRecord* rec = mActiveSensors.valueFor(handle); if (rec == 0) { rec = new SensorRecord(connection); mActiveSensors.add(handle, rec); if (sensor->isVirtual()) { mActiveVirtualSensors.add(handle, sensor); } } else { if (rec->addConnection(connection)) { // this sensor is already activated, but we are adding a // connection that uses it. Immediately send down the last // known value of the requested sensor if it's not a // "continuous" sensor. if (sensor->getSensor().getMinDelay() == 0) { sensors_event_t scratch; sensors_event_t& event(mLastEventSeen.editValueFor(handle)); if (event.version == sizeof(sensors_event_t)) { connection->sendEvents(&event, 1); } } } } if (connection->addSensor(handle)) { BatteryService::enableSensor(connection->getUid(), handle); // the sensor was added (which means it wasn't already there) // so, see if this connection becomes active if (mActiveConnections.indexOf(connection) < 0) { mActiveConnections.add(connection); } } else { ALOGW("sensor %08x already enabled in connection %p (ignoring)", handle, connection.get()); } nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs(); if (samplingPeriodNs < minDelayNs) { samplingPeriodNs = minDelayNs; } ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d rate=%lld timeout== %lld", handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs); status_t err = sensor->batch(connection.get(), handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs); if (err == NO_ERROR) { connection->setFirstFlushPending(handle, true); status_t err_flush = sensor->flush(connection.get(), handle); // Flush may return error if the sensor is not activated or the underlying h/w sensor does // not support flush. if (err_flush != NO_ERROR) { connection->setFirstFlushPending(handle, false); } } if (err == NO_ERROR) { ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle); err = sensor->activate(connection.get(), true); } if (err != NO_ERROR) { // batch/activate has failed, reset our state. cleanupWithoutDisableLocked(connection, handle); } return err; } status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) { if (mInitCheck != NO_ERROR) return mInitCheck; Mutex::Autolock _l(mLock); status_t err = cleanupWithoutDisableLocked(connection, handle); if (err == NO_ERROR) { SensorInterface* sensor = mSensorMap.valueFor(handle); err = sensor ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE); } return err; } status_t SensorService::cleanupWithoutDisable( const sp<SensorEventConnection>& connection, int handle) { Mutex::Autolock _l(mLock); return cleanupWithoutDisableLocked(connection, handle); } status_t SensorService::cleanupWithoutDisableLocked( const sp<SensorEventConnection>& connection, int handle) { SensorRecord* rec = mActiveSensors.valueFor(handle); if (rec) { // see if this connection becomes inactive if (connection->removeSensor(handle)) { BatteryService::disableSensor(connection->getUid(), handle); } if (connection->hasAnySensor() == false) { mActiveConnections.remove(connection); } // see if this sensor becomes inactive if (rec->removeConnection(connection)) { mActiveSensors.removeItem(handle); mActiveVirtualSensors.removeItem(handle); delete rec; } return NO_ERROR; } return BAD_VALUE; } status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection, int handle, nsecs_t ns) { if (mInitCheck != NO_ERROR) return mInitCheck; SensorInterface* sensor = mSensorMap.valueFor(handle); if (!sensor) return BAD_VALUE; if (ns < 0) return BAD_VALUE; nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs(); if (ns < minDelayNs) { ns = minDelayNs; } return sensor->setDelay(connection.get(), handle, ns); } status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection, int handle) { if (mInitCheck != NO_ERROR) return mInitCheck; SensorInterface* sensor = mSensorMap.valueFor(handle); if (sensor == NULL) { return BAD_VALUE; } if (sensor->getSensor().getType() == SENSOR_TYPE_SIGNIFICANT_MOTION) { ALOGE("flush called on Significant Motion sensor"); return INVALID_OPERATION; } return sensor->flush(connection.get(), handle); } // --------------------------------------------------------------------------- SensorService::SensorRecord::SensorRecord( const sp<SensorEventConnection>& connection) { mConnections.add(connection); } bool SensorService::SensorRecord::addConnection( const sp<SensorEventConnection>& connection) { if (mConnections.indexOf(connection) < 0) { mConnections.add(connection); return true; } return false; } bool SensorService::SensorRecord::removeConnection( const wp<SensorEventConnection>& connection) { ssize_t index = mConnections.indexOf(connection); if (index >= 0) { mConnections.removeItemsAt(index, 1); } return mConnections.size() ? false : true; } // --------------------------------------------------------------------------- SensorService::SensorEventConnection::SensorEventConnection( const sp<SensorService>& service, uid_t uid) : mService(service), mUid(uid) { const SensorDevice& device(SensorDevice::getInstance()); if (device.getHalDeviceVersion() >= SENSORS_DEVICE_API_VERSION_1_1) { // Increase socket buffer size to 1MB for batching capabilities. mChannel = new BitTube(service->mSocketBufferSize); } else { mChannel = new BitTube(SOCKET_BUFFER_SIZE_NON_BATCHED); } } SensorService::SensorEventConnection::~SensorEventConnection() { ALOGD_IF(DEBUG_CONNECTIONS, "~SensorEventConnection(%p)", this); mService->cleanupConnection(this); } void SensorService::SensorEventConnection::onFirstRef() { } void SensorService::SensorEventConnection::dump(String8& result) { Mutex::Autolock _l(mConnectionLock); for (size_t i = 0; i < mSensorInfo.size(); ++i) { const FlushInfo& flushInfo = mSensorInfo.valueAt(i); result.appendFormat("\t %s | status: %s | pending flush events %d\n", mService->getSensorName(mSensorInfo.keyAt(i)).string(), flushInfo.mFirstFlushPending ? "First flush pending" : "active", flushInfo.mPendingFlushEventsToSend); } } bool SensorService::SensorEventConnection::addSensor(int32_t handle) { Mutex::Autolock _l(mConnectionLock); if (mSensorInfo.indexOfKey(handle) < 0) { mSensorInfo.add(handle, FlushInfo()); return true; } return false; } bool SensorService::SensorEventConnection::removeSensor(int32_t handle) { Mutex::Autolock _l(mConnectionLock); if (mSensorInfo.removeItem(handle) >= 0) { return true; } return false; } bool SensorService::SensorEventConnection::hasSensor(int32_t handle) const { Mutex::Autolock _l(mConnectionLock); return mSensorInfo.indexOfKey(handle) >= 0; } bool SensorService::SensorEventConnection::hasAnySensor() const { Mutex::Autolock _l(mConnectionLock); return mSensorInfo.size() ? true : false; } void SensorService::SensorEventConnection::setFirstFlushPending(int32_t handle, bool value) { Mutex::Autolock _l(mConnectionLock); ssize_t index = mSensorInfo.indexOfKey(handle); if (index >= 0) { FlushInfo& flushInfo = mSensorInfo.editValueAt(index); flushInfo.mFirstFlushPending = value; } } status_t SensorService::SensorEventConnection::sendEvents( sensors_event_t const* buffer, size_t numEvents, sensors_event_t* scratch) { // filter out events not for this connection size_t count = 0; if (scratch) { Mutex::Autolock _l(mConnectionLock); size_t i=0; while (i<numEvents) { int32_t curr = buffer[i].sensor; if (buffer[i].type == SENSOR_TYPE_META_DATA) { ALOGD_IF(DEBUG_CONNECTIONS, "flush complete event sensor==%d ", buffer[i].meta_data.sensor); // Setting curr to the correct sensor to ensure the sensor events per connection are // filtered correctly. buffer[i].sensor is zero for meta_data events. curr = buffer[i].meta_data.sensor; } ssize_t index = mSensorInfo.indexOfKey(curr); if (index >= 0 && mSensorInfo[index].mFirstFlushPending == true && buffer[i].type == SENSOR_TYPE_META_DATA) { // This is the first flush before activate is called. Events can now be sent for // this sensor on this connection. ALOGD_IF(DEBUG_CONNECTIONS, "First flush event for sensor==%d ", buffer[i].meta_data.sensor); mSensorInfo.editValueAt(index).mFirstFlushPending = false; } if (index >= 0 && mSensorInfo[index].mFirstFlushPending == false) { do { scratch[count++] = buffer[i++]; } while ((i<numEvents) && ((buffer[i].sensor == curr) || (buffer[i].type == SENSOR_TYPE_META_DATA && buffer[i].meta_data.sensor == curr))); } else { i++; } } } else { scratch = const_cast<sensors_event_t *>(buffer); count = numEvents; } // Send pending flush events (if any) before sending events from the cache. { ASensorEvent flushCompleteEvent; flushCompleteEvent.type = SENSOR_TYPE_META_DATA; flushCompleteEvent.sensor = 0; Mutex::Autolock _l(mConnectionLock); // Loop through all the sensors for this connection and check if there are any pending // flush complete events to be sent. for (size_t i = 0; i < mSensorInfo.size(); ++i) { FlushInfo& flushInfo = mSensorInfo.editValueAt(i); while (flushInfo.mPendingFlushEventsToSend > 0) { flushCompleteEvent.meta_data.sensor = mSensorInfo.keyAt(i); ssize_t size = SensorEventQueue::write(mChannel, &flushCompleteEvent, 1); if (size < 0) { // ALOGW("dropping %d events on the floor", count); countFlushCompleteEventsLocked(scratch, count); return size; } ALOGD_IF(DEBUG_CONNECTIONS, "sent dropped flush complete event==%d ", flushCompleteEvent.meta_data.sensor); flushInfo.mPendingFlushEventsToSend--; } } } // Early return if there are no events for this connection. if (count == 0) { return status_t(NO_ERROR); } // NOTE: ASensorEvent and sensors_event_t are the same type ssize_t size = SensorEventQueue::write(mChannel, reinterpret_cast<ASensorEvent const*>(scratch), count); if (size == -EAGAIN) { // the destination doesn't accept events anymore, it's probably // full. For now, we just drop the events on the floor. // ALOGW("dropping %d events on the floor", count); Mutex::Autolock _l(mConnectionLock); countFlushCompleteEventsLocked(scratch, count); return size; } return size < 0 ? status_t(size) : status_t(NO_ERROR); } void SensorService::SensorEventConnection::countFlushCompleteEventsLocked( sensors_event_t* scratch, const int numEventsDropped) { ALOGD_IF(DEBUG_CONNECTIONS, "dropping %d events ", numEventsDropped); // Count flushComplete events in the events that are about to the dropped. These will be sent // separately before the next batch of events. for (int j = 0; j < numEventsDropped; ++j) { if (scratch[j].type == SENSOR_TYPE_META_DATA) { FlushInfo& flushInfo = mSensorInfo.editValueFor(scratch[j].meta_data.sensor); flushInfo.mPendingFlushEventsToSend++; ALOGD_IF(DEBUG_CONNECTIONS, "increment pendingFlushCount %d", flushInfo.mPendingFlushEventsToSend); } } return; } sp<BitTube> SensorService::SensorEventConnection::getSensorChannel() const { return mChannel; } status_t SensorService::SensorEventConnection::enableDisable( int handle, bool enabled, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags) { status_t err; if (enabled) { err = mService->enable(this, handle, samplingPeriodNs, maxBatchReportLatencyNs, reservedFlags); } else { err = mService->disable(this, handle); } return err; } status_t SensorService::SensorEventConnection::setEventRate( int handle, nsecs_t samplingPeriodNs) { return mService->setEventRate(this, handle, samplingPeriodNs); } status_t SensorService::SensorEventConnection::flush() { SensorDevice& dev(SensorDevice::getInstance()); const int halVersion = dev.getHalDeviceVersion(); Mutex::Autolock _l(mConnectionLock); status_t err(NO_ERROR); // Loop through all sensors for this connection and call flush on each of them. for (size_t i = 0; i < mSensorInfo.size(); ++i) { const int handle = mSensorInfo.keyAt(i); if (halVersion < SENSORS_DEVICE_API_VERSION_1_1 || mService->isVirtualSensor(handle)) { // For older devices just increment pending flush count which will send a trivial // flush complete event. FlushInfo& flushInfo = mSensorInfo.editValueFor(handle); flushInfo.mPendingFlushEventsToSend++; } else { status_t err_flush = mService->flushSensor(this, handle); if (err_flush != NO_ERROR) { ALOGE("Flush error handle=%d %s", handle, strerror(-err_flush)); } err = (err_flush != NO_ERROR) ? err_flush : err; } } return err; } // --------------------------------------------------------------------------- }; // namespace android