/* * Copyright (C) 2005 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "IPCThreadState" #include <binder/IPCThreadState.h> #include <binder/Binder.h> #include <binder/BpBinder.h> #include <binder/TextOutput.h> #include <cutils/sched_policy.h> #include <utils/Debug.h> #include <utils/Log.h> #include <utils/threads.h> #include <private/binder/binder_module.h> #include <private/binder/Static.h> #include <sys/ioctl.h> #include <signal.h> #include <errno.h> #include <stdio.h> #include <unistd.h> #ifdef HAVE_PTHREADS #include <pthread.h> #include <sched.h> #include <sys/resource.h> #endif #ifdef HAVE_WIN32_THREADS #include <windows.h> #endif #if LOG_NDEBUG #define IF_LOG_TRANSACTIONS() if (false) #define IF_LOG_COMMANDS() if (false) #define LOG_REMOTEREFS(...) #define IF_LOG_REMOTEREFS() if (false) #define LOG_THREADPOOL(...) #define LOG_ONEWAY(...) #else #define IF_LOG_TRANSACTIONS() IF_ALOG(LOG_VERBOSE, "transact") #define IF_LOG_COMMANDS() IF_ALOG(LOG_VERBOSE, "ipc") #define LOG_REMOTEREFS(...) ALOG(LOG_DEBUG, "remoterefs", __VA_ARGS__) #define IF_LOG_REMOTEREFS() IF_ALOG(LOG_DEBUG, "remoterefs") #define LOG_THREADPOOL(...) ALOG(LOG_DEBUG, "threadpool", __VA_ARGS__) #define LOG_ONEWAY(...) ALOG(LOG_DEBUG, "ipc", __VA_ARGS__) #endif // --------------------------------------------------------------------------- namespace android { static const char* getReturnString(size_t idx); static const char* getCommandString(size_t idx); static const void* printReturnCommand(TextOutput& out, const void* _cmd); static const void* printCommand(TextOutput& out, const void* _cmd); // This will result in a missing symbol failure if the IF_LOG_COMMANDS() // conditionals don't get stripped... but that is probably what we want. #if !LOG_NDEBUG static const char *kReturnStrings[] = { "BR_ERROR", "BR_OK", "BR_TRANSACTION", "BR_REPLY", "BR_ACQUIRE_RESULT", "BR_DEAD_REPLY", "BR_TRANSACTION_COMPLETE", "BR_INCREFS", "BR_ACQUIRE", "BR_RELEASE", "BR_DECREFS", "BR_ATTEMPT_ACQUIRE", "BR_NOOP", "BR_SPAWN_LOOPER", "BR_FINISHED", "BR_DEAD_BINDER", "BR_CLEAR_DEATH_NOTIFICATION_DONE", "BR_FAILED_REPLY" }; static const char *kCommandStrings[] = { "BC_TRANSACTION", "BC_REPLY", "BC_ACQUIRE_RESULT", "BC_FREE_BUFFER", "BC_INCREFS", "BC_ACQUIRE", "BC_RELEASE", "BC_DECREFS", "BC_INCREFS_DONE", "BC_ACQUIRE_DONE", "BC_ATTEMPT_ACQUIRE", "BC_REGISTER_LOOPER", "BC_ENTER_LOOPER", "BC_EXIT_LOOPER", "BC_REQUEST_DEATH_NOTIFICATION", "BC_CLEAR_DEATH_NOTIFICATION", "BC_DEAD_BINDER_DONE" }; static const char* getReturnString(size_t idx) { if (idx < sizeof(kReturnStrings) / sizeof(kReturnStrings[0])) return kReturnStrings[idx]; else return "unknown"; } static const char* getCommandString(size_t idx) { if (idx < sizeof(kCommandStrings) / sizeof(kCommandStrings[0])) return kCommandStrings[idx]; else return "unknown"; } static const void* printBinderTransactionData(TextOutput& out, const void* data) { const binder_transaction_data* btd = (const binder_transaction_data*)data; if (btd->target.handle < 1024) { /* want to print descriptors in decimal; guess based on value */ out << "target.desc=" << btd->target.handle; } else { out << "target.ptr=" << btd->target.ptr; } out << " (cookie " << btd->cookie << ")" << endl << "code=" << TypeCode(btd->code) << ", flags=" << (void*)btd->flags << endl << "data=" << btd->data.ptr.buffer << " (" << (void*)btd->data_size << " bytes)" << endl << "offsets=" << btd->data.ptr.offsets << " (" << (void*)btd->offsets_size << " bytes)"; return btd+1; } static const void* printReturnCommand(TextOutput& out, const void* _cmd) { static const size_t N = sizeof(kReturnStrings)/sizeof(kReturnStrings[0]); const int32_t* cmd = (const int32_t*)_cmd; int32_t code = *cmd++; size_t cmdIndex = code & 0xff; if (code == (int32_t) BR_ERROR) { out << "BR_ERROR: " << (void*)(*cmd++) << endl; return cmd; } else if (cmdIndex >= N) { out << "Unknown reply: " << code << endl; return cmd; } out << kReturnStrings[cmdIndex]; switch (code) { case BR_TRANSACTION: case BR_REPLY: { out << ": " << indent; cmd = (const int32_t *)printBinderTransactionData(out, cmd); out << dedent; } break; case BR_ACQUIRE_RESULT: { const int32_t res = *cmd++; out << ": " << res << (res ? " (SUCCESS)" : " (FAILURE)"); } break; case BR_INCREFS: case BR_ACQUIRE: case BR_RELEASE: case BR_DECREFS: { const int32_t b = *cmd++; const int32_t c = *cmd++; out << ": target=" << (void*)b << " (cookie " << (void*)c << ")"; } break; case BR_ATTEMPT_ACQUIRE: { const int32_t p = *cmd++; const int32_t b = *cmd++; const int32_t c = *cmd++; out << ": target=" << (void*)b << " (cookie " << (void*)c << "), pri=" << p; } break; case BR_DEAD_BINDER: case BR_CLEAR_DEATH_NOTIFICATION_DONE: { const int32_t c = *cmd++; out << ": death cookie " << (void*)c; } break; default: // no details to show for: BR_OK, BR_DEAD_REPLY, // BR_TRANSACTION_COMPLETE, BR_FINISHED break; } out << endl; return cmd; } static const void* printCommand(TextOutput& out, const void* _cmd) { static const size_t N = sizeof(kCommandStrings)/sizeof(kCommandStrings[0]); const int32_t* cmd = (const int32_t*)_cmd; int32_t code = *cmd++; size_t cmdIndex = code & 0xff; if (cmdIndex >= N) { out << "Unknown command: " << code << endl; return cmd; } out << kCommandStrings[cmdIndex]; switch (code) { case BC_TRANSACTION: case BC_REPLY: { out << ": " << indent; cmd = (const int32_t *)printBinderTransactionData(out, cmd); out << dedent; } break; case BC_ACQUIRE_RESULT: { const int32_t res = *cmd++; out << ": " << res << (res ? " (SUCCESS)" : " (FAILURE)"); } break; case BC_FREE_BUFFER: { const int32_t buf = *cmd++; out << ": buffer=" << (void*)buf; } break; case BC_INCREFS: case BC_ACQUIRE: case BC_RELEASE: case BC_DECREFS: { const int32_t d = *cmd++; out << ": desc=" << d; } break; case BC_INCREFS_DONE: case BC_ACQUIRE_DONE: { const int32_t b = *cmd++; const int32_t c = *cmd++; out << ": target=" << (void*)b << " (cookie " << (void*)c << ")"; } break; case BC_ATTEMPT_ACQUIRE: { const int32_t p = *cmd++; const int32_t d = *cmd++; out << ": desc=" << d << ", pri=" << p; } break; case BC_REQUEST_DEATH_NOTIFICATION: case BC_CLEAR_DEATH_NOTIFICATION: { const int32_t h = *cmd++; const int32_t c = *cmd++; out << ": handle=" << h << " (death cookie " << (void*)c << ")"; } break; case BC_DEAD_BINDER_DONE: { const int32_t c = *cmd++; out << ": death cookie " << (void*)c; } break; default: // no details to show for: BC_REGISTER_LOOPER, BC_ENTER_LOOPER, // BC_EXIT_LOOPER break; } out << endl; return cmd; } #endif static pthread_mutex_t gTLSMutex = PTHREAD_MUTEX_INITIALIZER; static bool gHaveTLS = false; static pthread_key_t gTLS = 0; static bool gShutdown = false; static bool gDisableBackgroundScheduling = false; IPCThreadState* IPCThreadState::self() { if (gHaveTLS) { restart: const pthread_key_t k = gTLS; IPCThreadState* st = (IPCThreadState*)pthread_getspecific(k); if (st) return st; return new IPCThreadState; } if (gShutdown) return NULL; pthread_mutex_lock(&gTLSMutex); if (!gHaveTLS) { if (pthread_key_create(&gTLS, threadDestructor) != 0) { pthread_mutex_unlock(&gTLSMutex); return NULL; } gHaveTLS = true; } pthread_mutex_unlock(&gTLSMutex); goto restart; } IPCThreadState* IPCThreadState::selfOrNull() { if (gHaveTLS) { const pthread_key_t k = gTLS; IPCThreadState* st = (IPCThreadState*)pthread_getspecific(k); return st; } return NULL; } void IPCThreadState::shutdown() { gShutdown = true; if (gHaveTLS) { // XXX Need to wait for all thread pool threads to exit! IPCThreadState* st = (IPCThreadState*)pthread_getspecific(gTLS); if (st) { delete st; pthread_setspecific(gTLS, NULL); } gHaveTLS = false; } } void IPCThreadState::disableBackgroundScheduling(bool disable) { gDisableBackgroundScheduling = disable; } sp<ProcessState> IPCThreadState::process() { return mProcess; } status_t IPCThreadState::clearLastError() { const status_t err = mLastError; mLastError = NO_ERROR; return err; } int IPCThreadState::getCallingPid() const { return mCallingPid; } int IPCThreadState::getCallingUid() const { return mCallingUid; } int64_t IPCThreadState::clearCallingIdentity() { int64_t token = ((int64_t)mCallingUid<<32) | mCallingPid; clearCaller(); return token; } void IPCThreadState::setStrictModePolicy(int32_t policy) { mStrictModePolicy = policy; } int32_t IPCThreadState::getStrictModePolicy() const { return mStrictModePolicy; } void IPCThreadState::setLastTransactionBinderFlags(int32_t flags) { mLastTransactionBinderFlags = flags; } int32_t IPCThreadState::getLastTransactionBinderFlags() const { return mLastTransactionBinderFlags; } void IPCThreadState::restoreCallingIdentity(int64_t token) { mCallingUid = (int)(token>>32); mCallingPid = (int)token; } void IPCThreadState::clearCaller() { mCallingPid = getpid(); mCallingUid = getuid(); } void IPCThreadState::flushCommands() { if (mProcess->mDriverFD <= 0) return; talkWithDriver(false); } status_t IPCThreadState::getAndExecuteCommand() { status_t result; int32_t cmd; result = talkWithDriver(); if (result >= NO_ERROR) { size_t IN = mIn.dataAvail(); if (IN < sizeof(int32_t)) return result; cmd = mIn.readInt32(); IF_LOG_COMMANDS() { alog << "Processing top-level Command: " << getReturnString(cmd) << endl; } result = executeCommand(cmd); // After executing the command, ensure that the thread is returned to the // foreground cgroup before rejoining the pool. The driver takes care of // restoring the priority, but doesn't do anything with cgroups so we // need to take care of that here in userspace. Note that we do make // sure to go in the foreground after executing a transaction, but // there are other callbacks into user code that could have changed // our group so we want to make absolutely sure it is put back. set_sched_policy(mMyThreadId, SP_FOREGROUND); } return result; } // When we've cleared the incoming command queue, process any pending derefs void IPCThreadState::processPendingDerefs() { if (mIn.dataPosition() >= mIn.dataSize()) { size_t numPending = mPendingWeakDerefs.size(); if (numPending > 0) { for (size_t i = 0; i < numPending; i++) { RefBase::weakref_type* refs = mPendingWeakDerefs[i]; refs->decWeak(mProcess.get()); } mPendingWeakDerefs.clear(); } numPending = mPendingStrongDerefs.size(); if (numPending > 0) { for (size_t i = 0; i < numPending; i++) { BBinder* obj = mPendingStrongDerefs[i]; obj->decStrong(mProcess.get()); } mPendingStrongDerefs.clear(); } } } void IPCThreadState::joinThreadPool(bool isMain) { LOG_THREADPOOL("**** THREAD %p (PID %d) IS JOINING THE THREAD POOL\n", (void*)pthread_self(), getpid()); mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER); // This thread may have been spawned by a thread that was in the background // scheduling group, so first we will make sure it is in the foreground // one to avoid performing an initial transaction in the background. set_sched_policy(mMyThreadId, SP_FOREGROUND); status_t result; do { processPendingDerefs(); // now get the next command to be processed, waiting if necessary result = getAndExecuteCommand(); if (result < NO_ERROR && result != TIMED_OUT && result != -ECONNREFUSED && result != -EBADF) { ALOGE("getAndExecuteCommand(fd=%d) returned unexpected error %d, aborting", mProcess->mDriverFD, result); abort(); } // Let this thread exit the thread pool if it is no longer // needed and it is not the main process thread. if(result == TIMED_OUT && !isMain) { break; } } while (result != -ECONNREFUSED && result != -EBADF); LOG_THREADPOOL("**** THREAD %p (PID %d) IS LEAVING THE THREAD POOL err=%p\n", (void*)pthread_self(), getpid(), (void*)result); mOut.writeInt32(BC_EXIT_LOOPER); talkWithDriver(false); } int IPCThreadState::setupPolling(int* fd) { if (mProcess->mDriverFD <= 0) { return -EBADF; } mOut.writeInt32(BC_ENTER_LOOPER); *fd = mProcess->mDriverFD; return 0; } status_t IPCThreadState::handlePolledCommands() { status_t result; do { result = getAndExecuteCommand(); } while (mIn.dataPosition() < mIn.dataSize()); processPendingDerefs(); flushCommands(); return result; } void IPCThreadState::stopProcess(bool immediate) { //ALOGI("**** STOPPING PROCESS"); flushCommands(); int fd = mProcess->mDriverFD; mProcess->mDriverFD = -1; close(fd); //kill(getpid(), SIGKILL); } status_t IPCThreadState::transact(int32_t handle, uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { status_t err = data.errorCheck(); flags |= TF_ACCEPT_FDS; IF_LOG_TRANSACTIONS() { TextOutput::Bundle _b(alog); alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand " << handle << " / code " << TypeCode(code) << ": " << indent << data << dedent << endl; } if (err == NO_ERROR) { LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(), (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY"); err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL); } if (err != NO_ERROR) { if (reply) reply->setError(err); return (mLastError = err); } if ((flags & TF_ONE_WAY) == 0) { #if 0 if (code == 4) { // relayout ALOGI(">>>>>> CALLING transaction 4"); } else { ALOGI(">>>>>> CALLING transaction %d", code); } #endif if (reply) { err = waitForResponse(reply); } else { Parcel fakeReply; err = waitForResponse(&fakeReply); } #if 0 if (code == 4) { // relayout ALOGI("<<<<<< RETURNING transaction 4"); } else { ALOGI("<<<<<< RETURNING transaction %d", code); } #endif IF_LOG_TRANSACTIONS() { TextOutput::Bundle _b(alog); alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand " << handle << ": "; if (reply) alog << indent << *reply << dedent << endl; else alog << "(none requested)" << endl; } } else { err = waitForResponse(NULL, NULL); } return err; } void IPCThreadState::incStrongHandle(int32_t handle) { LOG_REMOTEREFS("IPCThreadState::incStrongHandle(%d)\n", handle); mOut.writeInt32(BC_ACQUIRE); mOut.writeInt32(handle); } void IPCThreadState::decStrongHandle(int32_t handle) { LOG_REMOTEREFS("IPCThreadState::decStrongHandle(%d)\n", handle); mOut.writeInt32(BC_RELEASE); mOut.writeInt32(handle); } void IPCThreadState::incWeakHandle(int32_t handle) { LOG_REMOTEREFS("IPCThreadState::incWeakHandle(%d)\n", handle); mOut.writeInt32(BC_INCREFS); mOut.writeInt32(handle); } void IPCThreadState::decWeakHandle(int32_t handle) { LOG_REMOTEREFS("IPCThreadState::decWeakHandle(%d)\n", handle); mOut.writeInt32(BC_DECREFS); mOut.writeInt32(handle); } status_t IPCThreadState::attemptIncStrongHandle(int32_t handle) { LOG_REMOTEREFS("IPCThreadState::attemptIncStrongHandle(%d)\n", handle); mOut.writeInt32(BC_ATTEMPT_ACQUIRE); mOut.writeInt32(0); // xxx was thread priority mOut.writeInt32(handle); status_t result = UNKNOWN_ERROR; waitForResponse(NULL, &result); #if LOG_REFCOUNTS printf("IPCThreadState::attemptIncStrongHandle(%ld) = %s\n", handle, result == NO_ERROR ? "SUCCESS" : "FAILURE"); #endif return result; } void IPCThreadState::expungeHandle(int32_t handle, IBinder* binder) { #if LOG_REFCOUNTS printf("IPCThreadState::expungeHandle(%ld)\n", handle); #endif self()->mProcess->expungeHandle(handle, binder); } status_t IPCThreadState::requestDeathNotification(int32_t handle, BpBinder* proxy) { mOut.writeInt32(BC_REQUEST_DEATH_NOTIFICATION); mOut.writeInt32((int32_t)handle); mOut.writeInt32((int32_t)proxy); return NO_ERROR; } status_t IPCThreadState::clearDeathNotification(int32_t handle, BpBinder* proxy) { mOut.writeInt32(BC_CLEAR_DEATH_NOTIFICATION); mOut.writeInt32((int32_t)handle); mOut.writeInt32((int32_t)proxy); return NO_ERROR; } IPCThreadState::IPCThreadState() : mProcess(ProcessState::self()), mMyThreadId(androidGetTid()), mStrictModePolicy(0), mLastTransactionBinderFlags(0) { pthread_setspecific(gTLS, this); clearCaller(); mIn.setDataCapacity(256); mOut.setDataCapacity(256); } IPCThreadState::~IPCThreadState() { } status_t IPCThreadState::sendReply(const Parcel& reply, uint32_t flags) { status_t err; status_t statusBuffer; err = writeTransactionData(BC_REPLY, flags, -1, 0, reply, &statusBuffer); if (err < NO_ERROR) return err; return waitForResponse(NULL, NULL); } status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) { int32_t cmd; int32_t err; while (1) { if ((err=talkWithDriver()) < NO_ERROR) break; err = mIn.errorCheck(); if (err < NO_ERROR) break; if (mIn.dataAvail() == 0) continue; cmd = mIn.readInt32(); IF_LOG_COMMANDS() { alog << "Processing waitForResponse Command: " << getReturnString(cmd) << endl; } switch (cmd) { case BR_TRANSACTION_COMPLETE: if (!reply && !acquireResult) goto finish; break; case BR_DEAD_REPLY: err = DEAD_OBJECT; goto finish; case BR_FAILED_REPLY: err = FAILED_TRANSACTION; goto finish; case BR_ACQUIRE_RESULT: { ALOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT"); const int32_t result = mIn.readInt32(); if (!acquireResult) continue; *acquireResult = result ? NO_ERROR : INVALID_OPERATION; } goto finish; case BR_REPLY: { binder_transaction_data tr; err = mIn.read(&tr, sizeof(tr)); ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); if (err != NO_ERROR) goto finish; if (reply) { if ((tr.flags & TF_STATUS_CODE) == 0) { reply->ipcSetDataReference( reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), freeBuffer, this); } else { err = *static_cast<const status_t*>(tr.data.ptr.buffer); freeBuffer(NULL, reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), this); } } else { freeBuffer(NULL, reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), this); continue; } } goto finish; default: err = executeCommand(cmd); if (err != NO_ERROR) goto finish; break; } } finish: if (err != NO_ERROR) { if (acquireResult) *acquireResult = err; if (reply) reply->setError(err); mLastError = err; } return err; } status_t IPCThreadState::talkWithDriver(bool doReceive) { if (mProcess->mDriverFD <= 0) { return -EBADF; } binder_write_read bwr; // Is the read buffer empty? const bool needRead = mIn.dataPosition() >= mIn.dataSize(); // We don't want to write anything if we are still reading // from data left in the input buffer and the caller // has requested to read the next data. const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0; bwr.write_size = outAvail; bwr.write_buffer = (long unsigned int)mOut.data(); // This is what we'll read. if (doReceive && needRead) { bwr.read_size = mIn.dataCapacity(); bwr.read_buffer = (long unsigned int)mIn.data(); } else { bwr.read_size = 0; bwr.read_buffer = 0; } IF_LOG_COMMANDS() { TextOutput::Bundle _b(alog); if (outAvail != 0) { alog << "Sending commands to driver: " << indent; const void* cmds = (const void*)bwr.write_buffer; const void* end = ((const uint8_t*)cmds)+bwr.write_size; alog << HexDump(cmds, bwr.write_size) << endl; while (cmds < end) cmds = printCommand(alog, cmds); alog << dedent; } alog << "Size of receive buffer: " << bwr.read_size << ", needRead: " << needRead << ", doReceive: " << doReceive << endl; } // Return immediately if there is nothing to do. if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR; bwr.write_consumed = 0; bwr.read_consumed = 0; status_t err; do { IF_LOG_COMMANDS() { alog << "About to read/write, write size = " << mOut.dataSize() << endl; } #if defined(HAVE_ANDROID_OS) if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0) err = NO_ERROR; else err = -errno; #else err = INVALID_OPERATION; #endif if (mProcess->mDriverFD <= 0) { err = -EBADF; } IF_LOG_COMMANDS() { alog << "Finished read/write, write size = " << mOut.dataSize() << endl; } } while (err == -EINTR); IF_LOG_COMMANDS() { alog << "Our err: " << (void*)err << ", write consumed: " << bwr.write_consumed << " (of " << mOut.dataSize() << "), read consumed: " << bwr.read_consumed << endl; } if (err >= NO_ERROR) { if (bwr.write_consumed > 0) { if (bwr.write_consumed < (ssize_t)mOut.dataSize()) mOut.remove(0, bwr.write_consumed); else mOut.setDataSize(0); } if (bwr.read_consumed > 0) { mIn.setDataSize(bwr.read_consumed); mIn.setDataPosition(0); } IF_LOG_COMMANDS() { TextOutput::Bundle _b(alog); alog << "Remaining data size: " << mOut.dataSize() << endl; alog << "Received commands from driver: " << indent; const void* cmds = mIn.data(); const void* end = mIn.data() + mIn.dataSize(); alog << HexDump(cmds, mIn.dataSize()) << endl; while (cmds < end) cmds = printReturnCommand(alog, cmds); alog << dedent; } return NO_ERROR; } return err; } status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags, int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer) { binder_transaction_data tr; tr.target.handle = handle; tr.code = code; tr.flags = binderFlags; tr.cookie = 0; tr.sender_pid = 0; tr.sender_euid = 0; const status_t err = data.errorCheck(); if (err == NO_ERROR) { tr.data_size = data.ipcDataSize(); tr.data.ptr.buffer = data.ipcData(); tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t); tr.data.ptr.offsets = data.ipcObjects(); } else if (statusBuffer) { tr.flags |= TF_STATUS_CODE; *statusBuffer = err; tr.data_size = sizeof(status_t); tr.data.ptr.buffer = statusBuffer; tr.offsets_size = 0; tr.data.ptr.offsets = NULL; } else { return (mLastError = err); } mOut.writeInt32(cmd); mOut.write(&tr, sizeof(tr)); return NO_ERROR; } sp<BBinder> the_context_object; void setTheContextObject(sp<BBinder> obj) { the_context_object = obj; } status_t IPCThreadState::executeCommand(int32_t cmd) { BBinder* obj; RefBase::weakref_type* refs; status_t result = NO_ERROR; switch (cmd) { case BR_ERROR: result = mIn.readInt32(); break; case BR_OK: break; case BR_ACQUIRE: refs = (RefBase::weakref_type*)mIn.readInt32(); obj = (BBinder*)mIn.readInt32(); ALOG_ASSERT(refs->refBase() == obj, "BR_ACQUIRE: object %p does not match cookie %p (expected %p)", refs, obj, refs->refBase()); obj->incStrong(mProcess.get()); IF_LOG_REMOTEREFS() { LOG_REMOTEREFS("BR_ACQUIRE from driver on %p", obj); obj->printRefs(); } mOut.writeInt32(BC_ACQUIRE_DONE); mOut.writeInt32((int32_t)refs); mOut.writeInt32((int32_t)obj); break; case BR_RELEASE: refs = (RefBase::weakref_type*)mIn.readInt32(); obj = (BBinder*)mIn.readInt32(); ALOG_ASSERT(refs->refBase() == obj, "BR_RELEASE: object %p does not match cookie %p (expected %p)", refs, obj, refs->refBase()); IF_LOG_REMOTEREFS() { LOG_REMOTEREFS("BR_RELEASE from driver on %p", obj); obj->printRefs(); } mPendingStrongDerefs.push(obj); break; case BR_INCREFS: refs = (RefBase::weakref_type*)mIn.readInt32(); obj = (BBinder*)mIn.readInt32(); refs->incWeak(mProcess.get()); mOut.writeInt32(BC_INCREFS_DONE); mOut.writeInt32((int32_t)refs); mOut.writeInt32((int32_t)obj); break; case BR_DECREFS: refs = (RefBase::weakref_type*)mIn.readInt32(); obj = (BBinder*)mIn.readInt32(); // NOTE: This assertion is not valid, because the object may no // longer exist (thus the (BBinder*)cast above resulting in a different // memory address). //ALOG_ASSERT(refs->refBase() == obj, // "BR_DECREFS: object %p does not match cookie %p (expected %p)", // refs, obj, refs->refBase()); mPendingWeakDerefs.push(refs); break; case BR_ATTEMPT_ACQUIRE: refs = (RefBase::weakref_type*)mIn.readInt32(); obj = (BBinder*)mIn.readInt32(); { const bool success = refs->attemptIncStrong(mProcess.get()); ALOG_ASSERT(success && refs->refBase() == obj, "BR_ATTEMPT_ACQUIRE: object %p does not match cookie %p (expected %p)", refs, obj, refs->refBase()); mOut.writeInt32(BC_ACQUIRE_RESULT); mOut.writeInt32((int32_t)success); } break; case BR_TRANSACTION: { binder_transaction_data tr; result = mIn.read(&tr, sizeof(tr)); ALOG_ASSERT(result == NO_ERROR, "Not enough command data for brTRANSACTION"); if (result != NO_ERROR) break; Parcel buffer; buffer.ipcSetDataReference( reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), freeBuffer, this); const pid_t origPid = mCallingPid; const uid_t origUid = mCallingUid; mCallingPid = tr.sender_pid; mCallingUid = tr.sender_euid; int curPrio = getpriority(PRIO_PROCESS, mMyThreadId); if (gDisableBackgroundScheduling) { if (curPrio > ANDROID_PRIORITY_NORMAL) { // We have inherited a reduced priority from the caller, but do not // want to run in that state in this process. The driver set our // priority already (though not our scheduling class), so bounce // it back to the default before invoking the transaction. setpriority(PRIO_PROCESS, mMyThreadId, ANDROID_PRIORITY_NORMAL); } } else { if (curPrio >= ANDROID_PRIORITY_BACKGROUND) { // We want to use the inherited priority from the caller. // Ensure this thread is in the background scheduling class, // since the driver won't modify scheduling classes for us. // The scheduling group is reset to default by the caller // once this method returns after the transaction is complete. set_sched_policy(mMyThreadId, SP_BACKGROUND); } } //ALOGI(">>>> TRANSACT from pid %d uid %d\n", mCallingPid, mCallingUid); Parcel reply; IF_LOG_TRANSACTIONS() { TextOutput::Bundle _b(alog); alog << "BR_TRANSACTION thr " << (void*)pthread_self() << " / obj " << tr.target.ptr << " / code " << TypeCode(tr.code) << ": " << indent << buffer << dedent << endl << "Data addr = " << reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer) << ", offsets addr=" << reinterpret_cast<const size_t*>(tr.data.ptr.offsets) << endl; } if (tr.target.ptr) { sp<BBinder> b((BBinder*)tr.cookie); const status_t error = b->transact(tr.code, buffer, &reply, tr.flags); if (error < NO_ERROR) reply.setError(error); } else { const status_t error = the_context_object->transact(tr.code, buffer, &reply, tr.flags); if (error < NO_ERROR) reply.setError(error); } //ALOGI("<<<< TRANSACT from pid %d restore pid %d uid %d\n", // mCallingPid, origPid, origUid); if ((tr.flags & TF_ONE_WAY) == 0) { LOG_ONEWAY("Sending reply to %d!", mCallingPid); sendReply(reply, 0); } else { LOG_ONEWAY("NOT sending reply to %d!", mCallingPid); } mCallingPid = origPid; mCallingUid = origUid; IF_LOG_TRANSACTIONS() { TextOutput::Bundle _b(alog); alog << "BC_REPLY thr " << (void*)pthread_self() << " / obj " << tr.target.ptr << ": " << indent << reply << dedent << endl; } } break; case BR_DEAD_BINDER: { BpBinder *proxy = (BpBinder*)mIn.readInt32(); proxy->sendObituary(); mOut.writeInt32(BC_DEAD_BINDER_DONE); mOut.writeInt32((int32_t)proxy); } break; case BR_CLEAR_DEATH_NOTIFICATION_DONE: { BpBinder *proxy = (BpBinder*)mIn.readInt32(); proxy->getWeakRefs()->decWeak(proxy); } break; case BR_FINISHED: result = TIMED_OUT; break; case BR_NOOP: break; case BR_SPAWN_LOOPER: mProcess->spawnPooledThread(false); break; default: printf("*** BAD COMMAND %d received from Binder driver\n", cmd); result = UNKNOWN_ERROR; break; } if (result != NO_ERROR) { mLastError = result; } return result; } void IPCThreadState::threadDestructor(void *st) { IPCThreadState* const self = static_cast<IPCThreadState*>(st); if (self) { self->flushCommands(); #if defined(HAVE_ANDROID_OS) if (self->mProcess->mDriverFD > 0) { ioctl(self->mProcess->mDriverFD, BINDER_THREAD_EXIT, 0); } #endif delete self; } } void IPCThreadState::freeBuffer(Parcel* parcel, const uint8_t* data, size_t dataSize, const size_t* objects, size_t objectsSize, void* cookie) { //ALOGI("Freeing parcel %p", &parcel); IF_LOG_COMMANDS() { alog << "Writing BC_FREE_BUFFER for " << data << endl; } ALOG_ASSERT(data != NULL, "Called with NULL data"); if (parcel != NULL) parcel->closeFileDescriptors(); IPCThreadState* state = self(); state->mOut.writeInt32(BC_FREE_BUFFER); state->mOut.writeInt32((int32_t)data); } }; // namespace android