/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "InputReader" //#define LOG_NDEBUG 0 // Log debug messages for each raw event received from the EventHub. #define DEBUG_RAW_EVENTS 0 // Log debug messages about touch screen filtering hacks. #define DEBUG_HACKS 0 // Log debug messages about virtual key processing. #define DEBUG_VIRTUAL_KEYS 0 // Log debug messages about pointers. #define DEBUG_POINTERS 0 // Log debug messages about pointer assignment calculations. #define DEBUG_POINTER_ASSIGNMENT 0 // Log debug messages about gesture detection. #define DEBUG_GESTURES 0 // Log debug messages about the vibrator. #define DEBUG_VIBRATOR 0 #include "InputReader.h" #include <cutils/log.h> #include <input/Keyboard.h> #include <input/VirtualKeyMap.h> #include <stddef.h> #include <stdlib.h> #include <unistd.h> #include <errno.h> #include <limits.h> #include <math.h> #define INDENT " " #define INDENT2 " " #define INDENT3 " " #define INDENT4 " " #define INDENT5 " " namespace android { // --- Constants --- // Maximum number of slots supported when using the slot-based Multitouch Protocol B. static const size_t MAX_SLOTS = 32; // --- Static Functions --- template<typename T> inline static T abs(const T& value) { return value < 0 ? - value : value; } template<typename T> inline static T min(const T& a, const T& b) { return a < b ? a : b; } template<typename T> inline static void swap(T& a, T& b) { T temp = a; a = b; b = temp; } inline static float avg(float x, float y) { return (x + y) / 2; } inline static float distance(float x1, float y1, float x2, float y2) { return hypotf(x1 - x2, y1 - y2); } inline static int32_t signExtendNybble(int32_t value) { return value >= 8 ? value - 16 : value; } static inline const char* toString(bool value) { return value ? "true" : "false"; } static int32_t rotateValueUsingRotationMap(int32_t value, int32_t orientation, const int32_t map[][4], size_t mapSize) { if (orientation != DISPLAY_ORIENTATION_0) { for (size_t i = 0; i < mapSize; i++) { if (value == map[i][0]) { return map[i][orientation]; } } } return value; } static const int32_t keyCodeRotationMap[][4] = { // key codes enumerated counter-clockwise with the original (unrotated) key first // no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation { AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT }, { AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN }, { AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT }, { AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP }, }; static const size_t keyCodeRotationMapSize = sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]); static int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) { return rotateValueUsingRotationMap(keyCode, orientation, keyCodeRotationMap, keyCodeRotationMapSize); } static void rotateDelta(int32_t orientation, float* deltaX, float* deltaY) { float temp; switch (orientation) { case DISPLAY_ORIENTATION_90: temp = *deltaX; *deltaX = *deltaY; *deltaY = -temp; break; case DISPLAY_ORIENTATION_180: *deltaX = -*deltaX; *deltaY = -*deltaY; break; case DISPLAY_ORIENTATION_270: temp = *deltaX; *deltaX = -*deltaY; *deltaY = temp; break; } } static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) { return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0; } // Returns true if the pointer should be reported as being down given the specified // button states. This determines whether the event is reported as a touch event. static bool isPointerDown(int32_t buttonState) { return buttonState & (AMOTION_EVENT_BUTTON_PRIMARY | AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY); } static float calculateCommonVector(float a, float b) { if (a > 0 && b > 0) { return a < b ? a : b; } else if (a < 0 && b < 0) { return a > b ? a : b; } else { return 0; } } static void synthesizeButtonKey(InputReaderContext* context, int32_t action, nsecs_t when, int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState, int32_t buttonState, int32_t keyCode) { if ( (action == AKEY_EVENT_ACTION_DOWN && !(lastButtonState & buttonState) && (currentButtonState & buttonState)) || (action == AKEY_EVENT_ACTION_UP && (lastButtonState & buttonState) && !(currentButtonState & buttonState))) { NotifyKeyArgs args(when, deviceId, source, policyFlags, action, 0, keyCode, 0, context->getGlobalMetaState(), when); context->getListener()->notifyKey(&args); } } static void synthesizeButtonKeys(InputReaderContext* context, int32_t action, nsecs_t when, int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState) { synthesizeButtonKey(context, action, when, deviceId, source, policyFlags, lastButtonState, currentButtonState, AMOTION_EVENT_BUTTON_BACK, AKEYCODE_BACK); synthesizeButtonKey(context, action, when, deviceId, source, policyFlags, lastButtonState, currentButtonState, AMOTION_EVENT_BUTTON_FORWARD, AKEYCODE_FORWARD); } // --- InputReaderConfiguration --- bool InputReaderConfiguration::getDisplayInfo(bool external, DisplayViewport* outViewport) const { const DisplayViewport& viewport = external ? mExternalDisplay : mInternalDisplay; if (viewport.displayId >= 0) { *outViewport = viewport; return true; } return false; } void InputReaderConfiguration::setDisplayInfo(bool external, const DisplayViewport& viewport) { DisplayViewport& v = external ? mExternalDisplay : mInternalDisplay; v = viewport; } // --- InputReader --- InputReader::InputReader(const sp<EventHubInterface>& eventHub, const sp<InputReaderPolicyInterface>& policy, const sp<InputListenerInterface>& listener) : mContext(this), mEventHub(eventHub), mPolicy(policy), mGlobalMetaState(0), mGeneration(1), mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX), mConfigurationChangesToRefresh(0) { mQueuedListener = new QueuedInputListener(listener); { // acquire lock AutoMutex _l(mLock); refreshConfigurationLocked(0); updateGlobalMetaStateLocked(); } // release lock } InputReader::~InputReader() { for (size_t i = 0; i < mDevices.size(); i++) { delete mDevices.valueAt(i); } } void InputReader::loopOnce() { int32_t oldGeneration; int32_t timeoutMillis; bool inputDevicesChanged = false; Vector<InputDeviceInfo> inputDevices; { // acquire lock AutoMutex _l(mLock); oldGeneration = mGeneration; timeoutMillis = -1; uint32_t changes = mConfigurationChangesToRefresh; if (changes) { mConfigurationChangesToRefresh = 0; timeoutMillis = 0; refreshConfigurationLocked(changes); } else if (mNextTimeout != LLONG_MAX) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout); } } // release lock size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE); { // acquire lock AutoMutex _l(mLock); mReaderIsAliveCondition.broadcast(); if (count) { processEventsLocked(mEventBuffer, count); } if (mNextTimeout != LLONG_MAX) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); if (now >= mNextTimeout) { #if DEBUG_RAW_EVENTS ALOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f); #endif mNextTimeout = LLONG_MAX; timeoutExpiredLocked(now); } } if (oldGeneration != mGeneration) { inputDevicesChanged = true; getInputDevicesLocked(inputDevices); } } // release lock // Send out a message that the describes the changed input devices. if (inputDevicesChanged) { mPolicy->notifyInputDevicesChanged(inputDevices); } // Flush queued events out to the listener. // This must happen outside of the lock because the listener could potentially call // back into the InputReader's methods, such as getScanCodeState, or become blocked // on another thread similarly waiting to acquire the InputReader lock thereby // resulting in a deadlock. This situation is actually quite plausible because the // listener is actually the input dispatcher, which calls into the window manager, // which occasionally calls into the input reader. mQueuedListener->flush(); } void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) { for (const RawEvent* rawEvent = rawEvents; count;) { int32_t type = rawEvent->type; size_t batchSize = 1; if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) { int32_t deviceId = rawEvent->deviceId; while (batchSize < count) { if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT || rawEvent[batchSize].deviceId != deviceId) { break; } batchSize += 1; } #if DEBUG_RAW_EVENTS ALOGD("BatchSize: %d Count: %d", batchSize, count); #endif processEventsForDeviceLocked(deviceId, rawEvent, batchSize); } else { switch (rawEvent->type) { case EventHubInterface::DEVICE_ADDED: addDeviceLocked(rawEvent->when, rawEvent->deviceId); break; case EventHubInterface::DEVICE_REMOVED: removeDeviceLocked(rawEvent->when, rawEvent->deviceId); break; case EventHubInterface::FINISHED_DEVICE_SCAN: handleConfigurationChangedLocked(rawEvent->when); break; default: ALOG_ASSERT(false); // can't happen break; } } count -= batchSize; rawEvent += batchSize; } } void InputReader::addDeviceLocked(nsecs_t when, int32_t deviceId) { ssize_t deviceIndex = mDevices.indexOfKey(deviceId); if (deviceIndex >= 0) { ALOGW("Ignoring spurious device added event for deviceId %d.", deviceId); return; } InputDeviceIdentifier identifier = mEventHub->getDeviceIdentifier(deviceId); uint32_t classes = mEventHub->getDeviceClasses(deviceId); int32_t controllerNumber = mEventHub->getDeviceControllerNumber(deviceId); InputDevice* device = createDeviceLocked(deviceId, controllerNumber, identifier, classes); device->configure(when, &mConfig, 0); device->reset(when); if (device->isIgnored()) { ALOGI("Device added: id=%d, name='%s' (ignored non-input device)", deviceId, identifier.name.string()); } else { ALOGI("Device added: id=%d, name='%s', sources=0x%08x", deviceId, identifier.name.string(), device->getSources()); } mDevices.add(deviceId, device); bumpGenerationLocked(); } void InputReader::removeDeviceLocked(nsecs_t when, int32_t deviceId) { InputDevice* device = NULL; ssize_t deviceIndex = mDevices.indexOfKey(deviceId); if (deviceIndex < 0) { ALOGW("Ignoring spurious device removed event for deviceId %d.", deviceId); return; } device = mDevices.valueAt(deviceIndex); mDevices.removeItemsAt(deviceIndex, 1); bumpGenerationLocked(); if (device->isIgnored()) { ALOGI("Device removed: id=%d, name='%s' (ignored non-input device)", device->getId(), device->getName().string()); } else { ALOGI("Device removed: id=%d, name='%s', sources=0x%08x", device->getId(), device->getName().string(), device->getSources()); } device->reset(when); delete device; } InputDevice* InputReader::createDeviceLocked(int32_t deviceId, int32_t controllerNumber, const InputDeviceIdentifier& identifier, uint32_t classes) { InputDevice* device = new InputDevice(&mContext, deviceId, bumpGenerationLocked(), controllerNumber, identifier, classes); // External devices. if (classes & INPUT_DEVICE_CLASS_EXTERNAL) { device->setExternal(true); } // Switch-like devices. if (classes & INPUT_DEVICE_CLASS_SWITCH) { device->addMapper(new SwitchInputMapper(device)); } // Vibrator-like devices. if (classes & INPUT_DEVICE_CLASS_VIBRATOR) { device->addMapper(new VibratorInputMapper(device)); } // Keyboard-like devices. uint32_t keyboardSource = 0; int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC; if (classes & INPUT_DEVICE_CLASS_KEYBOARD) { keyboardSource |= AINPUT_SOURCE_KEYBOARD; } if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) { keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC; } if (classes & INPUT_DEVICE_CLASS_DPAD) { keyboardSource |= AINPUT_SOURCE_DPAD; } if (classes & INPUT_DEVICE_CLASS_GAMEPAD) { keyboardSource |= AINPUT_SOURCE_GAMEPAD; } if (keyboardSource != 0) { device->addMapper(new KeyboardInputMapper(device, keyboardSource, keyboardType)); } // Cursor-like devices. if (classes & INPUT_DEVICE_CLASS_CURSOR) { device->addMapper(new CursorInputMapper(device)); } // Touchscreens and touchpad devices. if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) { device->addMapper(new MultiTouchInputMapper(device)); } else if (classes & INPUT_DEVICE_CLASS_TOUCH) { device->addMapper(new SingleTouchInputMapper(device)); } // Joystick-like devices. if (classes & INPUT_DEVICE_CLASS_JOYSTICK) { device->addMapper(new JoystickInputMapper(device)); } return device; } void InputReader::processEventsForDeviceLocked(int32_t deviceId, const RawEvent* rawEvents, size_t count) { ssize_t deviceIndex = mDevices.indexOfKey(deviceId); if (deviceIndex < 0) { ALOGW("Discarding event for unknown deviceId %d.", deviceId); return; } InputDevice* device = mDevices.valueAt(deviceIndex); if (device->isIgnored()) { //ALOGD("Discarding event for ignored deviceId %d.", deviceId); return; } device->process(rawEvents, count); } void InputReader::timeoutExpiredLocked(nsecs_t when) { for (size_t i = 0; i < mDevices.size(); i++) { InputDevice* device = mDevices.valueAt(i); if (!device->isIgnored()) { device->timeoutExpired(when); } } } void InputReader::handleConfigurationChangedLocked(nsecs_t when) { // Reset global meta state because it depends on the list of all configured devices. updateGlobalMetaStateLocked(); // Enqueue configuration changed. NotifyConfigurationChangedArgs args(when); mQueuedListener->notifyConfigurationChanged(&args); } void InputReader::refreshConfigurationLocked(uint32_t changes) { mPolicy->getReaderConfiguration(&mConfig); mEventHub->setExcludedDevices(mConfig.excludedDeviceNames); if (changes) { ALOGI("Reconfiguring input devices. changes=0x%08x", changes); nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); if (changes & InputReaderConfiguration::CHANGE_MUST_REOPEN) { mEventHub->requestReopenDevices(); } else { for (size_t i = 0; i < mDevices.size(); i++) { InputDevice* device = mDevices.valueAt(i); device->configure(now, &mConfig, changes); } } } } void InputReader::updateGlobalMetaStateLocked() { mGlobalMetaState = 0; for (size_t i = 0; i < mDevices.size(); i++) { InputDevice* device = mDevices.valueAt(i); mGlobalMetaState |= device->getMetaState(); } } int32_t InputReader::getGlobalMetaStateLocked() { return mGlobalMetaState; } void InputReader::disableVirtualKeysUntilLocked(nsecs_t time) { mDisableVirtualKeysTimeout = time; } bool InputReader::shouldDropVirtualKeyLocked(nsecs_t now, InputDevice* device, int32_t keyCode, int32_t scanCode) { if (now < mDisableVirtualKeysTimeout) { ALOGI("Dropping virtual key from device %s because virtual keys are " "temporarily disabled for the next %0.3fms. keyCode=%d, scanCode=%d", device->getName().string(), (mDisableVirtualKeysTimeout - now) * 0.000001, keyCode, scanCode); return true; } else { return false; } } void InputReader::fadePointerLocked() { for (size_t i = 0; i < mDevices.size(); i++) { InputDevice* device = mDevices.valueAt(i); device->fadePointer(); } } void InputReader::requestTimeoutAtTimeLocked(nsecs_t when) { if (when < mNextTimeout) { mNextTimeout = when; mEventHub->wake(); } } int32_t InputReader::bumpGenerationLocked() { return ++mGeneration; } void InputReader::getInputDevices(Vector<InputDeviceInfo>& outInputDevices) { AutoMutex _l(mLock); getInputDevicesLocked(outInputDevices); } void InputReader::getInputDevicesLocked(Vector<InputDeviceInfo>& outInputDevices) { outInputDevices.clear(); size_t numDevices = mDevices.size(); for (size_t i = 0; i < numDevices; i++) { InputDevice* device = mDevices.valueAt(i); if (!device->isIgnored()) { outInputDevices.push(); device->getDeviceInfo(&outInputDevices.editTop()); } } } int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask, int32_t keyCode) { AutoMutex _l(mLock); return getStateLocked(deviceId, sourceMask, keyCode, &InputDevice::getKeyCodeState); } int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask, int32_t scanCode) { AutoMutex _l(mLock); return getStateLocked(deviceId, sourceMask, scanCode, &InputDevice::getScanCodeState); } int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) { AutoMutex _l(mLock); return getStateLocked(deviceId, sourceMask, switchCode, &InputDevice::getSwitchState); } int32_t InputReader::getStateLocked(int32_t deviceId, uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) { int32_t result = AKEY_STATE_UNKNOWN; if (deviceId >= 0) { ssize_t deviceIndex = mDevices.indexOfKey(deviceId); if (deviceIndex >= 0) { InputDevice* device = mDevices.valueAt(deviceIndex); if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { result = (device->*getStateFunc)(sourceMask, code); } } } else { size_t numDevices = mDevices.size(); for (size_t i = 0; i < numDevices; i++) { InputDevice* device = mDevices.valueAt(i); if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { // If any device reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that // value. Otherwise, return AKEY_STATE_UP as long as one device reports it. int32_t currentResult = (device->*getStateFunc)(sourceMask, code); if (currentResult >= AKEY_STATE_DOWN) { return currentResult; } else if (currentResult == AKEY_STATE_UP) { result = currentResult; } } } } return result; } bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { AutoMutex _l(mLock); memset(outFlags, 0, numCodes); return markSupportedKeyCodesLocked(deviceId, sourceMask, numCodes, keyCodes, outFlags); } bool InputReader::markSupportedKeyCodesLocked(int32_t deviceId, uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { bool result = false; if (deviceId >= 0) { ssize_t deviceIndex = mDevices.indexOfKey(deviceId); if (deviceIndex >= 0) { InputDevice* device = mDevices.valueAt(deviceIndex); if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { result = device->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags); } } } else { size_t numDevices = mDevices.size(); for (size_t i = 0; i < numDevices; i++) { InputDevice* device = mDevices.valueAt(i); if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { result |= device->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags); } } } return result; } void InputReader::requestRefreshConfiguration(uint32_t changes) { AutoMutex _l(mLock); if (changes) { bool needWake = !mConfigurationChangesToRefresh; mConfigurationChangesToRefresh |= changes; if (needWake) { mEventHub->wake(); } } } void InputReader::vibrate(int32_t deviceId, const nsecs_t* pattern, size_t patternSize, ssize_t repeat, int32_t token) { AutoMutex _l(mLock); ssize_t deviceIndex = mDevices.indexOfKey(deviceId); if (deviceIndex >= 0) { InputDevice* device = mDevices.valueAt(deviceIndex); device->vibrate(pattern, patternSize, repeat, token); } } void InputReader::cancelVibrate(int32_t deviceId, int32_t token) { AutoMutex _l(mLock); ssize_t deviceIndex = mDevices.indexOfKey(deviceId); if (deviceIndex >= 0) { InputDevice* device = mDevices.valueAt(deviceIndex); device->cancelVibrate(token); } } void InputReader::dump(String8& dump) { AutoMutex _l(mLock); mEventHub->dump(dump); dump.append("\n"); dump.append("Input Reader State:\n"); for (size_t i = 0; i < mDevices.size(); i++) { mDevices.valueAt(i)->dump(dump); } dump.append(INDENT "Configuration:\n"); dump.append(INDENT2 "ExcludedDeviceNames: ["); for (size_t i = 0; i < mConfig.excludedDeviceNames.size(); i++) { if (i != 0) { dump.append(", "); } dump.append(mConfig.excludedDeviceNames.itemAt(i).string()); } dump.append("]\n"); dump.appendFormat(INDENT2 "VirtualKeyQuietTime: %0.1fms\n", mConfig.virtualKeyQuietTime * 0.000001f); dump.appendFormat(INDENT2 "PointerVelocityControlParameters: " "scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n", mConfig.pointerVelocityControlParameters.scale, mConfig.pointerVelocityControlParameters.lowThreshold, mConfig.pointerVelocityControlParameters.highThreshold, mConfig.pointerVelocityControlParameters.acceleration); dump.appendFormat(INDENT2 "WheelVelocityControlParameters: " "scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n", mConfig.wheelVelocityControlParameters.scale, mConfig.wheelVelocityControlParameters.lowThreshold, mConfig.wheelVelocityControlParameters.highThreshold, mConfig.wheelVelocityControlParameters.acceleration); dump.appendFormat(INDENT2 "PointerGesture:\n"); dump.appendFormat(INDENT3 "Enabled: %s\n", toString(mConfig.pointerGesturesEnabled)); dump.appendFormat(INDENT3 "QuietInterval: %0.1fms\n", mConfig.pointerGestureQuietInterval * 0.000001f); dump.appendFormat(INDENT3 "DragMinSwitchSpeed: %0.1fpx/s\n", mConfig.pointerGestureDragMinSwitchSpeed); dump.appendFormat(INDENT3 "TapInterval: %0.1fms\n", mConfig.pointerGestureTapInterval * 0.000001f); dump.appendFormat(INDENT3 "TapDragInterval: %0.1fms\n", mConfig.pointerGestureTapDragInterval * 0.000001f); dump.appendFormat(INDENT3 "TapSlop: %0.1fpx\n", mConfig.pointerGestureTapSlop); dump.appendFormat(INDENT3 "MultitouchSettleInterval: %0.1fms\n", mConfig.pointerGestureMultitouchSettleInterval * 0.000001f); dump.appendFormat(INDENT3 "MultitouchMinDistance: %0.1fpx\n", mConfig.pointerGestureMultitouchMinDistance); dump.appendFormat(INDENT3 "SwipeTransitionAngleCosine: %0.1f\n", mConfig.pointerGestureSwipeTransitionAngleCosine); dump.appendFormat(INDENT3 "SwipeMaxWidthRatio: %0.1f\n", mConfig.pointerGestureSwipeMaxWidthRatio); dump.appendFormat(INDENT3 "MovementSpeedRatio: %0.1f\n", mConfig.pointerGestureMovementSpeedRatio); dump.appendFormat(INDENT3 "ZoomSpeedRatio: %0.1f\n", mConfig.pointerGestureZoomSpeedRatio); } void InputReader::monitor() { // Acquire and release the lock to ensure that the reader has not deadlocked. mLock.lock(); mEventHub->wake(); mReaderIsAliveCondition.wait(mLock); mLock.unlock(); // Check the EventHub mEventHub->monitor(); } // --- InputReader::ContextImpl --- InputReader::ContextImpl::ContextImpl(InputReader* reader) : mReader(reader) { } void InputReader::ContextImpl::updateGlobalMetaState() { // lock is already held by the input loop mReader->updateGlobalMetaStateLocked(); } int32_t InputReader::ContextImpl::getGlobalMetaState() { // lock is already held by the input loop return mReader->getGlobalMetaStateLocked(); } void InputReader::ContextImpl::disableVirtualKeysUntil(nsecs_t time) { // lock is already held by the input loop mReader->disableVirtualKeysUntilLocked(time); } bool InputReader::ContextImpl::shouldDropVirtualKey(nsecs_t now, InputDevice* device, int32_t keyCode, int32_t scanCode) { // lock is already held by the input loop return mReader->shouldDropVirtualKeyLocked(now, device, keyCode, scanCode); } void InputReader::ContextImpl::fadePointer() { // lock is already held by the input loop mReader->fadePointerLocked(); } void InputReader::ContextImpl::requestTimeoutAtTime(nsecs_t when) { // lock is already held by the input loop mReader->requestTimeoutAtTimeLocked(when); } int32_t InputReader::ContextImpl::bumpGeneration() { // lock is already held by the input loop return mReader->bumpGenerationLocked(); } InputReaderPolicyInterface* InputReader::ContextImpl::getPolicy() { return mReader->mPolicy.get(); } InputListenerInterface* InputReader::ContextImpl::getListener() { return mReader->mQueuedListener.get(); } EventHubInterface* InputReader::ContextImpl::getEventHub() { return mReader->mEventHub.get(); } // --- InputReaderThread --- InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) : Thread(/*canCallJava*/ true), mReader(reader) { } InputReaderThread::~InputReaderThread() { } bool InputReaderThread::threadLoop() { mReader->loopOnce(); return true; } // --- InputDevice --- InputDevice::InputDevice(InputReaderContext* context, int32_t id, int32_t generation, int32_t controllerNumber, const InputDeviceIdentifier& identifier, uint32_t classes) : mContext(context), mId(id), mGeneration(generation), mControllerNumber(controllerNumber), mIdentifier(identifier), mClasses(classes), mSources(0), mIsExternal(false), mDropUntilNextSync(false) { } InputDevice::~InputDevice() { size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { delete mMappers[i]; } mMappers.clear(); } void InputDevice::dump(String8& dump) { InputDeviceInfo deviceInfo; getDeviceInfo(& deviceInfo); dump.appendFormat(INDENT "Device %d: %s\n", deviceInfo.getId(), deviceInfo.getDisplayName().string()); dump.appendFormat(INDENT2 "Generation: %d\n", mGeneration); dump.appendFormat(INDENT2 "IsExternal: %s\n", toString(mIsExternal)); dump.appendFormat(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources()); dump.appendFormat(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType()); const Vector<InputDeviceInfo::MotionRange>& ranges = deviceInfo.getMotionRanges(); if (!ranges.isEmpty()) { dump.append(INDENT2 "Motion Ranges:\n"); for (size_t i = 0; i < ranges.size(); i++) { const InputDeviceInfo::MotionRange& range = ranges.itemAt(i); const char* label = getAxisLabel(range.axis); char name[32]; if (label) { strncpy(name, label, sizeof(name)); name[sizeof(name) - 1] = '\0'; } else { snprintf(name, sizeof(name), "%d", range.axis); } dump.appendFormat(INDENT3 "%s: source=0x%08x, " "min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f, resolution=%0.3f\n", name, range.source, range.min, range.max, range.flat, range.fuzz, range.resolution); } } size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->dump(dump); } } void InputDevice::addMapper(InputMapper* mapper) { mMappers.add(mapper); } void InputDevice::configure(nsecs_t when, const InputReaderConfiguration* config, uint32_t changes) { mSources = 0; if (!isIgnored()) { if (!changes) { // first time only mContext->getEventHub()->getConfiguration(mId, &mConfiguration); } if (!changes || (changes & InputReaderConfiguration::CHANGE_KEYBOARD_LAYOUTS)) { if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) { sp<KeyCharacterMap> keyboardLayout = mContext->getPolicy()->getKeyboardLayoutOverlay(mIdentifier.descriptor); if (mContext->getEventHub()->setKeyboardLayoutOverlay(mId, keyboardLayout)) { bumpGeneration(); } } } if (!changes || (changes & InputReaderConfiguration::CHANGE_DEVICE_ALIAS)) { if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) { String8 alias = mContext->getPolicy()->getDeviceAlias(mIdentifier); if (mAlias != alias) { mAlias = alias; bumpGeneration(); } } } size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->configure(when, config, changes); mSources |= mapper->getSources(); } } } void InputDevice::reset(nsecs_t when) { size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->reset(when); } mContext->updateGlobalMetaState(); notifyReset(when); } void InputDevice::process(const RawEvent* rawEvents, size_t count) { // Process all of the events in order for each mapper. // We cannot simply ask each mapper to process them in bulk because mappers may // have side-effects that must be interleaved. For example, joystick movement events and // gamepad button presses are handled by different mappers but they should be dispatched // in the order received. size_t numMappers = mMappers.size(); for (const RawEvent* rawEvent = rawEvents; count--; rawEvent++) { #if DEBUG_RAW_EVENTS ALOGD("Input event: device=%d type=0x%04x code=0x%04x value=0x%08x when=%lld", rawEvent->deviceId, rawEvent->type, rawEvent->code, rawEvent->value, rawEvent->when); #endif if (mDropUntilNextSync) { if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { mDropUntilNextSync = false; #if DEBUG_RAW_EVENTS ALOGD("Recovered from input event buffer overrun."); #endif } else { #if DEBUG_RAW_EVENTS ALOGD("Dropped input event while waiting for next input sync."); #endif } } else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_DROPPED) { ALOGI("Detected input event buffer overrun for device %s.", getName().string()); mDropUntilNextSync = true; reset(rawEvent->when); } else { for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->process(rawEvent); } } } } void InputDevice::timeoutExpired(nsecs_t when) { size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->timeoutExpired(when); } } void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) { outDeviceInfo->initialize(mId, mGeneration, mControllerNumber, mIdentifier, mAlias, mIsExternal); size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->populateDeviceInfo(outDeviceInfo); } } int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState); } int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { return getState(sourceMask, scanCode, & InputMapper::getScanCodeState); } int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) { return getState(sourceMask, switchCode, & InputMapper::getSwitchState); } int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) { int32_t result = AKEY_STATE_UNKNOWN; size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; if (sourcesMatchMask(mapper->getSources(), sourceMask)) { // If any mapper reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that // value. Otherwise, return AKEY_STATE_UP as long as one mapper reports it. int32_t currentResult = (mapper->*getStateFunc)(sourceMask, code); if (currentResult >= AKEY_STATE_DOWN) { return currentResult; } else if (currentResult == AKEY_STATE_UP) { result = currentResult; } } } return result; } bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { bool result = false; size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; if (sourcesMatchMask(mapper->getSources(), sourceMask)) { result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags); } } return result; } void InputDevice::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat, int32_t token) { size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->vibrate(pattern, patternSize, repeat, token); } } void InputDevice::cancelVibrate(int32_t token) { size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->cancelVibrate(token); } } int32_t InputDevice::getMetaState() { int32_t result = 0; size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; result |= mapper->getMetaState(); } return result; } void InputDevice::fadePointer() { size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->fadePointer(); } } void InputDevice::bumpGeneration() { mGeneration = mContext->bumpGeneration(); } void InputDevice::notifyReset(nsecs_t when) { NotifyDeviceResetArgs args(when, mId); mContext->getListener()->notifyDeviceReset(&args); } // --- CursorButtonAccumulator --- CursorButtonAccumulator::CursorButtonAccumulator() { clearButtons(); } void CursorButtonAccumulator::reset(InputDevice* device) { mBtnLeft = device->isKeyPressed(BTN_LEFT); mBtnRight = device->isKeyPressed(BTN_RIGHT); mBtnMiddle = device->isKeyPressed(BTN_MIDDLE); mBtnBack = device->isKeyPressed(BTN_BACK); mBtnSide = device->isKeyPressed(BTN_SIDE); mBtnForward = device->isKeyPressed(BTN_FORWARD); mBtnExtra = device->isKeyPressed(BTN_EXTRA); mBtnTask = device->isKeyPressed(BTN_TASK); } void CursorButtonAccumulator::clearButtons() { mBtnLeft = 0; mBtnRight = 0; mBtnMiddle = 0; mBtnBack = 0; mBtnSide = 0; mBtnForward = 0; mBtnExtra = 0; mBtnTask = 0; } void CursorButtonAccumulator::process(const RawEvent* rawEvent) { if (rawEvent->type == EV_KEY) { switch (rawEvent->code) { case BTN_LEFT: mBtnLeft = rawEvent->value; break; case BTN_RIGHT: mBtnRight = rawEvent->value; break; case BTN_MIDDLE: mBtnMiddle = rawEvent->value; break; case BTN_BACK: mBtnBack = rawEvent->value; break; case BTN_SIDE: mBtnSide = rawEvent->value; break; case BTN_FORWARD: mBtnForward = rawEvent->value; break; case BTN_EXTRA: mBtnExtra = rawEvent->value; break; case BTN_TASK: mBtnTask = rawEvent->value; break; } } } uint32_t CursorButtonAccumulator::getButtonState() const { uint32_t result = 0; if (mBtnLeft) { result |= AMOTION_EVENT_BUTTON_PRIMARY; } if (mBtnRight) { result |= AMOTION_EVENT_BUTTON_SECONDARY; } if (mBtnMiddle) { result |= AMOTION_EVENT_BUTTON_TERTIARY; } if (mBtnBack || mBtnSide) { result |= AMOTION_EVENT_BUTTON_BACK; } if (mBtnForward || mBtnExtra) { result |= AMOTION_EVENT_BUTTON_FORWARD; } return result; } // --- CursorMotionAccumulator --- CursorMotionAccumulator::CursorMotionAccumulator() { clearRelativeAxes(); } void CursorMotionAccumulator::reset(InputDevice* device) { clearRelativeAxes(); } void CursorMotionAccumulator::clearRelativeAxes() { mRelX = 0; mRelY = 0; } void CursorMotionAccumulator::process(const RawEvent* rawEvent) { if (rawEvent->type == EV_REL) { switch (rawEvent->code) { case REL_X: mRelX = rawEvent->value; break; case REL_Y: mRelY = rawEvent->value; break; } } } void CursorMotionAccumulator::finishSync() { clearRelativeAxes(); } // --- CursorScrollAccumulator --- CursorScrollAccumulator::CursorScrollAccumulator() : mHaveRelWheel(false), mHaveRelHWheel(false) { clearRelativeAxes(); } void CursorScrollAccumulator::configure(InputDevice* device) { mHaveRelWheel = device->getEventHub()->hasRelativeAxis(device->getId(), REL_WHEEL); mHaveRelHWheel = device->getEventHub()->hasRelativeAxis(device->getId(), REL_HWHEEL); } void CursorScrollAccumulator::reset(InputDevice* device) { clearRelativeAxes(); } void CursorScrollAccumulator::clearRelativeAxes() { mRelWheel = 0; mRelHWheel = 0; } void CursorScrollAccumulator::process(const RawEvent* rawEvent) { if (rawEvent->type == EV_REL) { switch (rawEvent->code) { case REL_WHEEL: mRelWheel = rawEvent->value; break; case REL_HWHEEL: mRelHWheel = rawEvent->value; break; } } } void CursorScrollAccumulator::finishSync() { clearRelativeAxes(); } // --- TouchButtonAccumulator --- TouchButtonAccumulator::TouchButtonAccumulator() : mHaveBtnTouch(false), mHaveStylus(false) { clearButtons(); } void TouchButtonAccumulator::configure(InputDevice* device) { mHaveBtnTouch = device->hasKey(BTN_TOUCH); mHaveStylus = device->hasKey(BTN_TOOL_PEN) || device->hasKey(BTN_TOOL_RUBBER) || device->hasKey(BTN_TOOL_BRUSH) || device->hasKey(BTN_TOOL_PENCIL) || device->hasKey(BTN_TOOL_AIRBRUSH); } void TouchButtonAccumulator::reset(InputDevice* device) { mBtnTouch = device->isKeyPressed(BTN_TOUCH); mBtnStylus = device->isKeyPressed(BTN_STYLUS); mBtnStylus2 = device->isKeyPressed(BTN_STYLUS); mBtnToolFinger = device->isKeyPressed(BTN_TOOL_FINGER); mBtnToolPen = device->isKeyPressed(BTN_TOOL_PEN); mBtnToolRubber = device->isKeyPressed(BTN_TOOL_RUBBER); mBtnToolBrush = device->isKeyPressed(BTN_TOOL_BRUSH); mBtnToolPencil = device->isKeyPressed(BTN_TOOL_PENCIL); mBtnToolAirbrush = device->isKeyPressed(BTN_TOOL_AIRBRUSH); mBtnToolMouse = device->isKeyPressed(BTN_TOOL_MOUSE); mBtnToolLens = device->isKeyPressed(BTN_TOOL_LENS); mBtnToolDoubleTap = device->isKeyPressed(BTN_TOOL_DOUBLETAP); mBtnToolTripleTap = device->isKeyPressed(BTN_TOOL_TRIPLETAP); mBtnToolQuadTap = device->isKeyPressed(BTN_TOOL_QUADTAP); } void TouchButtonAccumulator::clearButtons() { mBtnTouch = 0; mBtnStylus = 0; mBtnStylus2 = 0; mBtnToolFinger = 0; mBtnToolPen = 0; mBtnToolRubber = 0; mBtnToolBrush = 0; mBtnToolPencil = 0; mBtnToolAirbrush = 0; mBtnToolMouse = 0; mBtnToolLens = 0; mBtnToolDoubleTap = 0; mBtnToolTripleTap = 0; mBtnToolQuadTap = 0; } void TouchButtonAccumulator::process(const RawEvent* rawEvent) { if (rawEvent->type == EV_KEY) { switch (rawEvent->code) { case BTN_TOUCH: mBtnTouch = rawEvent->value; break; case BTN_STYLUS: mBtnStylus = rawEvent->value; break; case BTN_STYLUS2: mBtnStylus2 = rawEvent->value; break; case BTN_TOOL_FINGER: mBtnToolFinger = rawEvent->value; break; case BTN_TOOL_PEN: mBtnToolPen = rawEvent->value; break; case BTN_TOOL_RUBBER: mBtnToolRubber = rawEvent->value; break; case BTN_TOOL_BRUSH: mBtnToolBrush = rawEvent->value; break; case BTN_TOOL_PENCIL: mBtnToolPencil = rawEvent->value; break; case BTN_TOOL_AIRBRUSH: mBtnToolAirbrush = rawEvent->value; break; case BTN_TOOL_MOUSE: mBtnToolMouse = rawEvent->value; break; case BTN_TOOL_LENS: mBtnToolLens = rawEvent->value; break; case BTN_TOOL_DOUBLETAP: mBtnToolDoubleTap = rawEvent->value; break; case BTN_TOOL_TRIPLETAP: mBtnToolTripleTap = rawEvent->value; break; case BTN_TOOL_QUADTAP: mBtnToolQuadTap = rawEvent->value; break; } } } uint32_t TouchButtonAccumulator::getButtonState() const { uint32_t result = 0; if (mBtnStylus) { result |= AMOTION_EVENT_BUTTON_SECONDARY; } if (mBtnStylus2) { result |= AMOTION_EVENT_BUTTON_TERTIARY; } return result; } int32_t TouchButtonAccumulator::getToolType() const { if (mBtnToolMouse || mBtnToolLens) { return AMOTION_EVENT_TOOL_TYPE_MOUSE; } if (mBtnToolRubber) { return AMOTION_EVENT_TOOL_TYPE_ERASER; } if (mBtnToolPen || mBtnToolBrush || mBtnToolPencil || mBtnToolAirbrush) { return AMOTION_EVENT_TOOL_TYPE_STYLUS; } if (mBtnToolFinger || mBtnToolDoubleTap || mBtnToolTripleTap || mBtnToolQuadTap) { return AMOTION_EVENT_TOOL_TYPE_FINGER; } return AMOTION_EVENT_TOOL_TYPE_UNKNOWN; } bool TouchButtonAccumulator::isToolActive() const { return mBtnTouch || mBtnToolFinger || mBtnToolPen || mBtnToolRubber || mBtnToolBrush || mBtnToolPencil || mBtnToolAirbrush || mBtnToolMouse || mBtnToolLens || mBtnToolDoubleTap || mBtnToolTripleTap || mBtnToolQuadTap; } bool TouchButtonAccumulator::isHovering() const { return mHaveBtnTouch && !mBtnTouch; } bool TouchButtonAccumulator::hasStylus() const { return mHaveStylus; } // --- RawPointerAxes --- RawPointerAxes::RawPointerAxes() { clear(); } void RawPointerAxes::clear() { x.clear(); y.clear(); pressure.clear(); touchMajor.clear(); touchMinor.clear(); toolMajor.clear(); toolMinor.clear(); orientation.clear(); distance.clear(); tiltX.clear(); tiltY.clear(); trackingId.clear(); slot.clear(); } // --- RawPointerData --- RawPointerData::RawPointerData() { clear(); } void RawPointerData::clear() { pointerCount = 0; clearIdBits(); } void RawPointerData::copyFrom(const RawPointerData& other) { pointerCount = other.pointerCount; hoveringIdBits = other.hoveringIdBits; touchingIdBits = other.touchingIdBits; for (uint32_t i = 0; i < pointerCount; i++) { pointers[i] = other.pointers[i]; int id = pointers[i].id; idToIndex[id] = other.idToIndex[id]; } } void RawPointerData::getCentroidOfTouchingPointers(float* outX, float* outY) const { float x = 0, y = 0; uint32_t count = touchingIdBits.count(); if (count) { for (BitSet32 idBits(touchingIdBits); !idBits.isEmpty(); ) { uint32_t id = idBits.clearFirstMarkedBit(); const Pointer& pointer = pointerForId(id); x += pointer.x; y += pointer.y; } x /= count; y /= count; } *outX = x; *outY = y; } // --- CookedPointerData --- CookedPointerData::CookedPointerData() { clear(); } void CookedPointerData::clear() { pointerCount = 0; hoveringIdBits.clear(); touchingIdBits.clear(); } void CookedPointerData::copyFrom(const CookedPointerData& other) { pointerCount = other.pointerCount; hoveringIdBits = other.hoveringIdBits; touchingIdBits = other.touchingIdBits; for (uint32_t i = 0; i < pointerCount; i++) { pointerProperties[i].copyFrom(other.pointerProperties[i]); pointerCoords[i].copyFrom(other.pointerCoords[i]); int id = pointerProperties[i].id; idToIndex[id] = other.idToIndex[id]; } } // --- SingleTouchMotionAccumulator --- SingleTouchMotionAccumulator::SingleTouchMotionAccumulator() { clearAbsoluteAxes(); } void SingleTouchMotionAccumulator::reset(InputDevice* device) { mAbsX = device->getAbsoluteAxisValue(ABS_X); mAbsY = device->getAbsoluteAxisValue(ABS_Y); mAbsPressure = device->getAbsoluteAxisValue(ABS_PRESSURE); mAbsToolWidth = device->getAbsoluteAxisValue(ABS_TOOL_WIDTH); mAbsDistance = device->getAbsoluteAxisValue(ABS_DISTANCE); mAbsTiltX = device->getAbsoluteAxisValue(ABS_TILT_X); mAbsTiltY = device->getAbsoluteAxisValue(ABS_TILT_Y); } void SingleTouchMotionAccumulator::clearAbsoluteAxes() { mAbsX = 0; mAbsY = 0; mAbsPressure = 0; mAbsToolWidth = 0; mAbsDistance = 0; mAbsTiltX = 0; mAbsTiltY = 0; } void SingleTouchMotionAccumulator::process(const RawEvent* rawEvent) { if (rawEvent->type == EV_ABS) { switch (rawEvent->code) { case ABS_X: mAbsX = rawEvent->value; break; case ABS_Y: mAbsY = rawEvent->value; break; case ABS_PRESSURE: mAbsPressure = rawEvent->value; break; case ABS_TOOL_WIDTH: mAbsToolWidth = rawEvent->value; break; case ABS_DISTANCE: mAbsDistance = rawEvent->value; break; case ABS_TILT_X: mAbsTiltX = rawEvent->value; break; case ABS_TILT_Y: mAbsTiltY = rawEvent->value; break; } } } // --- MultiTouchMotionAccumulator --- MultiTouchMotionAccumulator::MultiTouchMotionAccumulator() : mCurrentSlot(-1), mSlots(NULL), mSlotCount(0), mUsingSlotsProtocol(false), mHaveStylus(false) { } MultiTouchMotionAccumulator::~MultiTouchMotionAccumulator() { delete[] mSlots; } void MultiTouchMotionAccumulator::configure(InputDevice* device, size_t slotCount, bool usingSlotsProtocol) { mSlotCount = slotCount; mUsingSlotsProtocol = usingSlotsProtocol; mHaveStylus = device->hasAbsoluteAxis(ABS_MT_TOOL_TYPE); delete[] mSlots; mSlots = new Slot[slotCount]; } void MultiTouchMotionAccumulator::reset(InputDevice* device) { // Unfortunately there is no way to read the initial contents of the slots. // So when we reset the accumulator, we must assume they are all zeroes. if (mUsingSlotsProtocol) { // Query the driver for the current slot index and use it as the initial slot // before we start reading events from the device. It is possible that the // current slot index will not be the same as it was when the first event was // written into the evdev buffer, which means the input mapper could start // out of sync with the initial state of the events in the evdev buffer. // In the extremely unlikely case that this happens, the data from // two slots will be confused until the next ABS_MT_SLOT event is received. // This can cause the touch point to "jump", but at least there will be // no stuck touches. int32_t initialSlot; status_t status = device->getEventHub()->getAbsoluteAxisValue(device->getId(), ABS_MT_SLOT, &initialSlot); if (status) { ALOGD("Could not retrieve current multitouch slot index. status=%d", status); initialSlot = -1; } clearSlots(initialSlot); } else { clearSlots(-1); } } void MultiTouchMotionAccumulator::clearSlots(int32_t initialSlot) { if (mSlots) { for (size_t i = 0; i < mSlotCount; i++) { mSlots[i].clear(); } } mCurrentSlot = initialSlot; } void MultiTouchMotionAccumulator::process(const RawEvent* rawEvent) { if (rawEvent->type == EV_ABS) { bool newSlot = false; if (mUsingSlotsProtocol) { if (rawEvent->code == ABS_MT_SLOT) { mCurrentSlot = rawEvent->value; newSlot = true; } } else if (mCurrentSlot < 0) { mCurrentSlot = 0; } if (mCurrentSlot < 0 || size_t(mCurrentSlot) >= mSlotCount) { #if DEBUG_POINTERS if (newSlot) { ALOGW("MultiTouch device emitted invalid slot index %d but it " "should be between 0 and %d; ignoring this slot.", mCurrentSlot, mSlotCount - 1); } #endif } else { Slot* slot = &mSlots[mCurrentSlot]; switch (rawEvent->code) { case ABS_MT_POSITION_X: slot->mInUse = true; slot->mAbsMTPositionX = rawEvent->value; break; case ABS_MT_POSITION_Y: slot->mInUse = true; slot->mAbsMTPositionY = rawEvent->value; break; case ABS_MT_TOUCH_MAJOR: slot->mInUse = true; slot->mAbsMTTouchMajor = rawEvent->value; break; case ABS_MT_TOUCH_MINOR: slot->mInUse = true; slot->mAbsMTTouchMinor = rawEvent->value; slot->mHaveAbsMTTouchMinor = true; break; case ABS_MT_WIDTH_MAJOR: slot->mInUse = true; slot->mAbsMTWidthMajor = rawEvent->value; break; case ABS_MT_WIDTH_MINOR: slot->mInUse = true; slot->mAbsMTWidthMinor = rawEvent->value; slot->mHaveAbsMTWidthMinor = true; break; case ABS_MT_ORIENTATION: slot->mInUse = true; slot->mAbsMTOrientation = rawEvent->value; break; case ABS_MT_TRACKING_ID: if (mUsingSlotsProtocol && rawEvent->value < 0) { // The slot is no longer in use but it retains its previous contents, // which may be reused for subsequent touches. slot->mInUse = false; } else { slot->mInUse = true; slot->mAbsMTTrackingId = rawEvent->value; } break; case ABS_MT_PRESSURE: slot->mInUse = true; slot->mAbsMTPressure = rawEvent->value; break; case ABS_MT_DISTANCE: slot->mInUse = true; slot->mAbsMTDistance = rawEvent->value; break; case ABS_MT_TOOL_TYPE: slot->mInUse = true; slot->mAbsMTToolType = rawEvent->value; slot->mHaveAbsMTToolType = true; break; } } } else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_MT_REPORT) { // MultiTouch Sync: The driver has returned all data for *one* of the pointers. mCurrentSlot += 1; } } void MultiTouchMotionAccumulator::finishSync() { if (!mUsingSlotsProtocol) { clearSlots(-1); } } bool MultiTouchMotionAccumulator::hasStylus() const { return mHaveStylus; } // --- MultiTouchMotionAccumulator::Slot --- MultiTouchMotionAccumulator::Slot::Slot() { clear(); } void MultiTouchMotionAccumulator::Slot::clear() { mInUse = false; mHaveAbsMTTouchMinor = false; mHaveAbsMTWidthMinor = false; mHaveAbsMTToolType = false; mAbsMTPositionX = 0; mAbsMTPositionY = 0; mAbsMTTouchMajor = 0; mAbsMTTouchMinor = 0; mAbsMTWidthMajor = 0; mAbsMTWidthMinor = 0; mAbsMTOrientation = 0; mAbsMTTrackingId = -1; mAbsMTPressure = 0; mAbsMTDistance = 0; mAbsMTToolType = 0; } int32_t MultiTouchMotionAccumulator::Slot::getToolType() const { if (mHaveAbsMTToolType) { switch (mAbsMTToolType) { case MT_TOOL_FINGER: return AMOTION_EVENT_TOOL_TYPE_FINGER; case MT_TOOL_PEN: return AMOTION_EVENT_TOOL_TYPE_STYLUS; } } return AMOTION_EVENT_TOOL_TYPE_UNKNOWN; } // --- InputMapper --- InputMapper::InputMapper(InputDevice* device) : mDevice(device), mContext(device->getContext()) { } InputMapper::~InputMapper() { } void InputMapper::populateDeviceInfo(InputDeviceInfo* info) { info->addSource(getSources()); } void InputMapper::dump(String8& dump) { } void InputMapper::configure(nsecs_t when, const InputReaderConfiguration* config, uint32_t changes) { } void InputMapper::reset(nsecs_t when) { } void InputMapper::timeoutExpired(nsecs_t when) { } int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { return AKEY_STATE_UNKNOWN; } int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { return AKEY_STATE_UNKNOWN; } int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { return AKEY_STATE_UNKNOWN; } bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { return false; } void InputMapper::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat, int32_t token) { } void InputMapper::cancelVibrate(int32_t token) { } int32_t InputMapper::getMetaState() { return 0; } void InputMapper::fadePointer() { } status_t InputMapper::getAbsoluteAxisInfo(int32_t axis, RawAbsoluteAxisInfo* axisInfo) { return getEventHub()->getAbsoluteAxisInfo(getDeviceId(), axis, axisInfo); } void InputMapper::bumpGeneration() { mDevice->bumpGeneration(); } void InputMapper::dumpRawAbsoluteAxisInfo(String8& dump, const RawAbsoluteAxisInfo& axis, const char* name) { if (axis.valid) { dump.appendFormat(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d, resolution=%d\n", name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz, axis.resolution); } else { dump.appendFormat(INDENT4 "%s: unknown range\n", name); } } // --- SwitchInputMapper --- SwitchInputMapper::SwitchInputMapper(InputDevice* device) : InputMapper(device), mUpdatedSwitchValues(0), mUpdatedSwitchMask(0) { } SwitchInputMapper::~SwitchInputMapper() { } uint32_t SwitchInputMapper::getSources() { return AINPUT_SOURCE_SWITCH; } void SwitchInputMapper::process(const RawEvent* rawEvent) { switch (rawEvent->type) { case EV_SW: processSwitch(rawEvent->code, rawEvent->value); break; case EV_SYN: if (rawEvent->code == SYN_REPORT) { sync(rawEvent->when); } } } void SwitchInputMapper::processSwitch(int32_t switchCode, int32_t switchValue) { if (switchCode >= 0 && switchCode < 32) { if (switchValue) { mUpdatedSwitchValues |= 1 << switchCode; } mUpdatedSwitchMask |= 1 << switchCode; } } void SwitchInputMapper::sync(nsecs_t when) { if (mUpdatedSwitchMask) { NotifySwitchArgs args(when, 0, mUpdatedSwitchValues, mUpdatedSwitchMask); getListener()->notifySwitch(&args); mUpdatedSwitchValues = 0; mUpdatedSwitchMask = 0; } } int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { return getEventHub()->getSwitchState(getDeviceId(), switchCode); } // --- VibratorInputMapper --- VibratorInputMapper::VibratorInputMapper(InputDevice* device) : InputMapper(device), mVibrating(false) { } VibratorInputMapper::~VibratorInputMapper() { } uint32_t VibratorInputMapper::getSources() { return 0; } void VibratorInputMapper::populateDeviceInfo(InputDeviceInfo* info) { InputMapper::populateDeviceInfo(info); info->setVibrator(true); } void VibratorInputMapper::process(const RawEvent* rawEvent) { // TODO: Handle FF_STATUS, although it does not seem to be widely supported. } void VibratorInputMapper::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat, int32_t token) { #if DEBUG_VIBRATOR String8 patternStr; for (size_t i = 0; i < patternSize; i++) { if (i != 0) { patternStr.append(", "); } patternStr.appendFormat("%lld", pattern[i]); } ALOGD("vibrate: deviceId=%d, pattern=[%s], repeat=%ld, token=%d", getDeviceId(), patternStr.string(), repeat, token); #endif mVibrating = true; memcpy(mPattern, pattern, patternSize * sizeof(nsecs_t)); mPatternSize = patternSize; mRepeat = repeat; mToken = token; mIndex = -1; nextStep(); } void VibratorInputMapper::cancelVibrate(int32_t token) { #if DEBUG_VIBRATOR ALOGD("cancelVibrate: deviceId=%d, token=%d", getDeviceId(), token); #endif if (mVibrating && mToken == token) { stopVibrating(); } } void VibratorInputMapper::timeoutExpired(nsecs_t when) { if (mVibrating) { if (when >= mNextStepTime) { nextStep(); } else { getContext()->requestTimeoutAtTime(mNextStepTime); } } } void VibratorInputMapper::nextStep() { mIndex += 1; if (size_t(mIndex) >= mPatternSize) { if (mRepeat < 0) { // We are done. stopVibrating(); return; } mIndex = mRepeat; } bool vibratorOn = mIndex & 1; nsecs_t duration = mPattern[mIndex]; if (vibratorOn) { #if DEBUG_VIBRATOR ALOGD("nextStep: sending vibrate deviceId=%d, duration=%lld", getDeviceId(), duration); #endif getEventHub()->vibrate(getDeviceId(), duration); } else { #if DEBUG_VIBRATOR ALOGD("nextStep: sending cancel vibrate deviceId=%d", getDeviceId()); #endif getEventHub()->cancelVibrate(getDeviceId()); } nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); mNextStepTime = now + duration; getContext()->requestTimeoutAtTime(mNextStepTime); #if DEBUG_VIBRATOR ALOGD("nextStep: scheduled timeout in %0.3fms", duration * 0.000001f); #endif } void VibratorInputMapper::stopVibrating() { mVibrating = false; #if DEBUG_VIBRATOR ALOGD("stopVibrating: sending cancel vibrate deviceId=%d", getDeviceId()); #endif getEventHub()->cancelVibrate(getDeviceId()); } void VibratorInputMapper::dump(String8& dump) { dump.append(INDENT2 "Vibrator Input Mapper:\n"); dump.appendFormat(INDENT3 "Vibrating: %s\n", toString(mVibrating)); } // --- KeyboardInputMapper --- KeyboardInputMapper::KeyboardInputMapper(InputDevice* device, uint32_t source, int32_t keyboardType) : InputMapper(device), mSource(source), mKeyboardType(keyboardType) { } KeyboardInputMapper::~KeyboardInputMapper() { } uint32_t KeyboardInputMapper::getSources() { return mSource; } void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) { InputMapper::populateDeviceInfo(info); info->setKeyboardType(mKeyboardType); info->setKeyCharacterMap(getEventHub()->getKeyCharacterMap(getDeviceId())); } void KeyboardInputMapper::dump(String8& dump) { dump.append(INDENT2 "Keyboard Input Mapper:\n"); dumpParameters(dump); dump.appendFormat(INDENT3 "KeyboardType: %d\n", mKeyboardType); dump.appendFormat(INDENT3 "Orientation: %d\n", mOrientation); dump.appendFormat(INDENT3 "KeyDowns: %d keys currently down\n", mKeyDowns.size()); dump.appendFormat(INDENT3 "MetaState: 0x%0x\n", mMetaState); dump.appendFormat(INDENT3 "DownTime: %lld\n", mDownTime); } void KeyboardInputMapper::configure(nsecs_t when, const InputReaderConfiguration* config, uint32_t changes) { InputMapper::configure(when, config, changes); if (!changes) { // first time only // Configure basic parameters. configureParameters(); } if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) { if (mParameters.orientationAware && mParameters.hasAssociatedDisplay) { DisplayViewport v; if (config->getDisplayInfo(false /*external*/, &v)) { mOrientation = v.orientation; } else { mOrientation = DISPLAY_ORIENTATION_0; } } else { mOrientation = DISPLAY_ORIENTATION_0; } } } void KeyboardInputMapper::configureParameters() { mParameters.orientationAware = false; getDevice()->getConfiguration().tryGetProperty(String8("keyboard.orientationAware"), mParameters.orientationAware); mParameters.hasAssociatedDisplay = false; if (mParameters.orientationAware) { mParameters.hasAssociatedDisplay = true; } } void KeyboardInputMapper::dumpParameters(String8& dump) { dump.append(INDENT3 "Parameters:\n"); dump.appendFormat(INDENT4 "HasAssociatedDisplay: %s\n", toString(mParameters.hasAssociatedDisplay)); dump.appendFormat(INDENT4 "OrientationAware: %s\n", toString(mParameters.orientationAware)); } void KeyboardInputMapper::reset(nsecs_t when) { mMetaState = AMETA_NONE; mDownTime = 0; mKeyDowns.clear(); mCurrentHidUsage = 0; resetLedState(); InputMapper::reset(when); } void KeyboardInputMapper::process(const RawEvent* rawEvent) { switch (rawEvent->type) { case EV_KEY: { int32_t scanCode = rawEvent->code; int32_t usageCode = mCurrentHidUsage; mCurrentHidUsage = 0; if (isKeyboardOrGamepadKey(scanCode)) { int32_t keyCode; uint32_t flags; if (getEventHub()->mapKey(getDeviceId(), scanCode, usageCode, &keyCode, &flags)) { keyCode = AKEYCODE_UNKNOWN; flags = 0; } processKey(rawEvent->when, rawEvent->value != 0, keyCode, scanCode, flags); } break; } case EV_MSC: { if (rawEvent->code == MSC_SCAN) { mCurrentHidUsage = rawEvent->value; } break; } case EV_SYN: { if (rawEvent->code == SYN_REPORT) { mCurrentHidUsage = 0; } } } } bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) { return scanCode < BTN_MOUSE || scanCode >= KEY_OK || (scanCode >= BTN_MISC && scanCode < BTN_MOUSE) || (scanCode >= BTN_JOYSTICK && scanCode < BTN_DIGI); } void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode, int32_t scanCode, uint32_t policyFlags) { if (down) { // Rotate key codes according to orientation if needed. if (mParameters.orientationAware && mParameters.hasAssociatedDisplay) { keyCode = rotateKeyCode(keyCode, mOrientation); } // Add key down. ssize_t keyDownIndex = findKeyDown(scanCode); if (keyDownIndex >= 0) { // key repeat, be sure to use same keycode as before in case of rotation keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode; } else { // key down if ((policyFlags & POLICY_FLAG_VIRTUAL) && mContext->shouldDropVirtualKey(when, getDevice(), keyCode, scanCode)) { return; } mKeyDowns.push(); KeyDown& keyDown = mKeyDowns.editTop(); keyDown.keyCode = keyCode; keyDown.scanCode = scanCode; } mDownTime = when; } else { // Remove key down. ssize_t keyDownIndex = findKeyDown(scanCode); if (keyDownIndex >= 0) { // key up, be sure to use same keycode as before in case of rotation keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode; mKeyDowns.removeAt(size_t(keyDownIndex)); } else { // key was not actually down ALOGI("Dropping key up from device %s because the key was not down. " "keyCode=%d, scanCode=%d", getDeviceName().string(), keyCode, scanCode); return; } } int32_t oldMetaState = mMetaState; int32_t newMetaState = updateMetaState(keyCode, down, oldMetaState); bool metaStateChanged = oldMetaState != newMetaState; if (metaStateChanged) { mMetaState = newMetaState; updateLedState(false); } nsecs_t downTime = mDownTime; // Key down on external an keyboard should wake the device. // We don't do this for internal keyboards to prevent them from waking up in your pocket. // For internal keyboards, the key layout file should specify the policy flags for // each wake key individually. // TODO: Use the input device configuration to control this behavior more finely. if (down && getDevice()->isExternal() && !(policyFlags & (POLICY_FLAG_WAKE | POLICY_FLAG_WAKE_DROPPED))) { policyFlags |= POLICY_FLAG_WAKE_DROPPED; } if (metaStateChanged) { getContext()->updateGlobalMetaState(); } if (down && !isMetaKey(keyCode)) { getContext()->fadePointer(); } NotifyKeyArgs args(when, getDeviceId(), mSource, policyFlags, down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP, AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime); getListener()->notifyKey(&args); } ssize_t KeyboardInputMapper::findKeyDown(int32_t scanCode) { size_t n = mKeyDowns.size(); for (size_t i = 0; i < n; i++) { if (mKeyDowns[i].scanCode == scanCode) { return i; } } return -1; } int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { return getEventHub()->getKeyCodeState(getDeviceId(), keyCode); } int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { return getEventHub()->getScanCodeState(getDeviceId(), scanCode); } bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags); } int32_t KeyboardInputMapper::getMetaState() { return mMetaState; } void KeyboardInputMapper::resetLedState() { initializeLedState(mCapsLockLedState, LED_CAPSL); initializeLedState(mNumLockLedState, LED_NUML); initializeLedState(mScrollLockLedState, LED_SCROLLL); updateLedState(true); } void KeyboardInputMapper::initializeLedState(LedState& ledState, int32_t led) { ledState.avail = getEventHub()->hasLed(getDeviceId(), led); ledState.on = false; } void KeyboardInputMapper::updateLedState(bool reset) { updateLedStateForModifier(mCapsLockLedState, LED_CAPSL, AMETA_CAPS_LOCK_ON, reset); updateLedStateForModifier(mNumLockLedState, LED_NUML, AMETA_NUM_LOCK_ON, reset); updateLedStateForModifier(mScrollLockLedState, LED_SCROLLL, AMETA_SCROLL_LOCK_ON, reset); } void KeyboardInputMapper::updateLedStateForModifier(LedState& ledState, int32_t led, int32_t modifier, bool reset) { if (ledState.avail) { bool desiredState = (mMetaState & modifier) != 0; if (reset || ledState.on != desiredState) { getEventHub()->setLedState(getDeviceId(), led, desiredState); ledState.on = desiredState; } } } // --- CursorInputMapper --- CursorInputMapper::CursorInputMapper(InputDevice* device) : InputMapper(device) { } CursorInputMapper::~CursorInputMapper() { } uint32_t CursorInputMapper::getSources() { return mSource; } void CursorInputMapper::populateDeviceInfo(InputDeviceInfo* info) { InputMapper::populateDeviceInfo(info); if (mParameters.mode == Parameters::MODE_POINTER) { float minX, minY, maxX, maxY; if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) { info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, minX, maxX, 0.0f, 0.0f, 0.0f); info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, minY, maxY, 0.0f, 0.0f, 0.0f); } } else { info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, -1.0f, 1.0f, 0.0f, mXScale, 0.0f); info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, -1.0f, 1.0f, 0.0f, mYScale, 0.0f); } info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mSource, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f); if (mCursorScrollAccumulator.haveRelativeVWheel()) { info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); } if (mCursorScrollAccumulator.haveRelativeHWheel()) { info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); } } void CursorInputMapper::dump(String8& dump) { dump.append(INDENT2 "Cursor Input Mapper:\n"); dumpParameters(dump); dump.appendFormat(INDENT3 "XScale: %0.3f\n", mXScale); dump.appendFormat(INDENT3 "YScale: %0.3f\n", mYScale); dump.appendFormat(INDENT3 "XPrecision: %0.3f\n", mXPrecision); dump.appendFormat(INDENT3 "YPrecision: %0.3f\n", mYPrecision); dump.appendFormat(INDENT3 "HaveVWheel: %s\n", toString(mCursorScrollAccumulator.haveRelativeVWheel())); dump.appendFormat(INDENT3 "HaveHWheel: %s\n", toString(mCursorScrollAccumulator.haveRelativeHWheel())); dump.appendFormat(INDENT3 "VWheelScale: %0.3f\n", mVWheelScale); dump.appendFormat(INDENT3 "HWheelScale: %0.3f\n", mHWheelScale); dump.appendFormat(INDENT3 "Orientation: %d\n", mOrientation); dump.appendFormat(INDENT3 "ButtonState: 0x%08x\n", mButtonState); dump.appendFormat(INDENT3 "Down: %s\n", toString(isPointerDown(mButtonState))); dump.appendFormat(INDENT3 "DownTime: %lld\n", mDownTime); } void CursorInputMapper::configure(nsecs_t when, const InputReaderConfiguration* config, uint32_t changes) { InputMapper::configure(when, config, changes); if (!changes) { // first time only mCursorScrollAccumulator.configure(getDevice()); // Configure basic parameters. configureParameters(); // Configure device mode. switch (mParameters.mode) { case Parameters::MODE_POINTER: mSource = AINPUT_SOURCE_MOUSE; mXPrecision = 1.0f; mYPrecision = 1.0f; mXScale = 1.0f; mYScale = 1.0f; mPointerController = getPolicy()->obtainPointerController(getDeviceId()); break; case Parameters::MODE_NAVIGATION: mSource = AINPUT_SOURCE_TRACKBALL; mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD; mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD; mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; break; } mVWheelScale = 1.0f; mHWheelScale = 1.0f; } if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) { mPointerVelocityControl.setParameters(config->pointerVelocityControlParameters); mWheelXVelocityControl.setParameters(config->wheelVelocityControlParameters); mWheelYVelocityControl.setParameters(config->wheelVelocityControlParameters); } if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) { if (mParameters.orientationAware && mParameters.hasAssociatedDisplay) { DisplayViewport v; if (config->getDisplayInfo(false /*external*/, &v)) { mOrientation = v.orientation; } else { mOrientation = DISPLAY_ORIENTATION_0; } } else { mOrientation = DISPLAY_ORIENTATION_0; } bumpGeneration(); } } void CursorInputMapper::configureParameters() { mParameters.mode = Parameters::MODE_POINTER; String8 cursorModeString; if (getDevice()->getConfiguration().tryGetProperty(String8("cursor.mode"), cursorModeString)) { if (cursorModeString == "navigation") { mParameters.mode = Parameters::MODE_NAVIGATION; } else if (cursorModeString != "pointer" && cursorModeString != "default") { ALOGW("Invalid value for cursor.mode: '%s'", cursorModeString.string()); } } mParameters.orientationAware = false; getDevice()->getConfiguration().tryGetProperty(String8("cursor.orientationAware"), mParameters.orientationAware); mParameters.hasAssociatedDisplay = false; if (mParameters.mode == Parameters::MODE_POINTER || mParameters.orientationAware) { mParameters.hasAssociatedDisplay = true; } } void CursorInputMapper::dumpParameters(String8& dump) { dump.append(INDENT3 "Parameters:\n"); dump.appendFormat(INDENT4 "HasAssociatedDisplay: %s\n", toString(mParameters.hasAssociatedDisplay)); switch (mParameters.mode) { case Parameters::MODE_POINTER: dump.append(INDENT4 "Mode: pointer\n"); break; case Parameters::MODE_NAVIGATION: dump.append(INDENT4 "Mode: navigation\n"); break; default: ALOG_ASSERT(false); } dump.appendFormat(INDENT4 "OrientationAware: %s\n", toString(mParameters.orientationAware)); } void CursorInputMapper::reset(nsecs_t when) { mButtonState = 0; mDownTime = 0; mPointerVelocityControl.reset(); mWheelXVelocityControl.reset(); mWheelYVelocityControl.reset(); mCursorButtonAccumulator.reset(getDevice()); mCursorMotionAccumulator.reset(getDevice()); mCursorScrollAccumulator.reset(getDevice()); InputMapper::reset(when); } void CursorInputMapper::process(const RawEvent* rawEvent) { mCursorButtonAccumulator.process(rawEvent); mCursorMotionAccumulator.process(rawEvent); mCursorScrollAccumulator.process(rawEvent); if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { sync(rawEvent->when); } } void CursorInputMapper::sync(nsecs_t when) { int32_t lastButtonState = mButtonState; int32_t currentButtonState = mCursorButtonAccumulator.getButtonState(); mButtonState = currentButtonState; bool wasDown = isPointerDown(lastButtonState); bool down = isPointerDown(currentButtonState); bool downChanged; if (!wasDown && down) { mDownTime = when; downChanged = true; } else if (wasDown && !down) { downChanged = true; } else { downChanged = false; } nsecs_t downTime = mDownTime; bool buttonsChanged = currentButtonState != lastButtonState; bool buttonsPressed = currentButtonState & ~lastButtonState; float deltaX = mCursorMotionAccumulator.getRelativeX() * mXScale; float deltaY = mCursorMotionAccumulator.getRelativeY() * mYScale; bool moved = deltaX != 0 || deltaY != 0; // Rotate delta according to orientation if needed. if (mParameters.orientationAware && mParameters.hasAssociatedDisplay && (deltaX != 0.0f || deltaY != 0.0f)) { rotateDelta(mOrientation, &deltaX, &deltaY); } // Move the pointer. PointerProperties pointerProperties; pointerProperties.clear(); pointerProperties.id = 0; pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_MOUSE; PointerCoords pointerCoords; pointerCoords.clear(); float vscroll = mCursorScrollAccumulator.getRelativeVWheel(); float hscroll = mCursorScrollAccumulator.getRelativeHWheel(); bool scrolled = vscroll != 0 || hscroll != 0; mWheelYVelocityControl.move(when, NULL, &vscroll); mWheelXVelocityControl.move(when, &hscroll, NULL); mPointerVelocityControl.move(when, &deltaX, &deltaY); int32_t displayId; if (mPointerController != NULL) { if (moved || scrolled || buttonsChanged) { mPointerController->setPresentation( PointerControllerInterface::PRESENTATION_POINTER); if (moved) { mPointerController->move(deltaX, deltaY); } if (buttonsChanged) { mPointerController->setButtonState(currentButtonState); } mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); } float x, y; mPointerController->getPosition(&x, &y); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); displayId = ADISPLAY_ID_DEFAULT; } else { pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, deltaX); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, deltaY); displayId = ADISPLAY_ID_NONE; } pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f); // Moving an external trackball or mouse should wake the device. // We don't do this for internal cursor devices to prevent them from waking up // the device in your pocket. // TODO: Use the input device configuration to control this behavior more finely. uint32_t policyFlags = 0; if ((buttonsPressed || moved || scrolled) && getDevice()->isExternal()) { policyFlags |= POLICY_FLAG_WAKE_DROPPED; } // Synthesize key down from buttons if needed. synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource, policyFlags, lastButtonState, currentButtonState); // Send motion event. if (downChanged || moved || scrolled || buttonsChanged) { int32_t metaState = mContext->getGlobalMetaState(); int32_t motionEventAction; if (downChanged) { motionEventAction = down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP; } else if (down || mPointerController == NULL) { motionEventAction = AMOTION_EVENT_ACTION_MOVE; } else { motionEventAction = AMOTION_EVENT_ACTION_HOVER_MOVE; } NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, motionEventAction, 0, metaState, currentButtonState, 0, displayId, 1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime); getListener()->notifyMotion(&args); // Send hover move after UP to tell the application that the mouse is hovering now. if (motionEventAction == AMOTION_EVENT_ACTION_UP && mPointerController != NULL) { NotifyMotionArgs hoverArgs(when, getDeviceId(), mSource, policyFlags, AMOTION_EVENT_ACTION_HOVER_MOVE, 0, metaState, currentButtonState, AMOTION_EVENT_EDGE_FLAG_NONE, displayId, 1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime); getListener()->notifyMotion(&hoverArgs); } // Send scroll events. if (scrolled) { pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll); NotifyMotionArgs scrollArgs(when, getDeviceId(), mSource, policyFlags, AMOTION_EVENT_ACTION_SCROLL, 0, metaState, currentButtonState, AMOTION_EVENT_EDGE_FLAG_NONE, displayId, 1, &pointerProperties, &pointerCoords, mXPrecision, mYPrecision, downTime); getListener()->notifyMotion(&scrollArgs); } } // Synthesize key up from buttons if needed. synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource, policyFlags, lastButtonState, currentButtonState); mCursorMotionAccumulator.finishSync(); mCursorScrollAccumulator.finishSync(); } int32_t CursorInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) { return getEventHub()->getScanCodeState(getDeviceId(), scanCode); } else { return AKEY_STATE_UNKNOWN; } } void CursorInputMapper::fadePointer() { if (mPointerController != NULL) { mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); } } // --- TouchInputMapper --- TouchInputMapper::TouchInputMapper(InputDevice* device) : InputMapper(device), mSource(0), mDeviceMode(DEVICE_MODE_DISABLED), mSurfaceWidth(-1), mSurfaceHeight(-1), mSurfaceLeft(0), mSurfaceTop(0), mSurfaceOrientation(DISPLAY_ORIENTATION_0) { } TouchInputMapper::~TouchInputMapper() { } uint32_t TouchInputMapper::getSources() { return mSource; } void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) { InputMapper::populateDeviceInfo(info); if (mDeviceMode != DEVICE_MODE_DISABLED) { info->addMotionRange(mOrientedRanges.x); info->addMotionRange(mOrientedRanges.y); info->addMotionRange(mOrientedRanges.pressure); if (mOrientedRanges.haveSize) { info->addMotionRange(mOrientedRanges.size); } if (mOrientedRanges.haveTouchSize) { info->addMotionRange(mOrientedRanges.touchMajor); info->addMotionRange(mOrientedRanges.touchMinor); } if (mOrientedRanges.haveToolSize) { info->addMotionRange(mOrientedRanges.toolMajor); info->addMotionRange(mOrientedRanges.toolMinor); } if (mOrientedRanges.haveOrientation) { info->addMotionRange(mOrientedRanges.orientation); } if (mOrientedRanges.haveDistance) { info->addMotionRange(mOrientedRanges.distance); } if (mOrientedRanges.haveTilt) { info->addMotionRange(mOrientedRanges.tilt); } if (mCursorScrollAccumulator.haveRelativeVWheel()) { info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); } if (mCursorScrollAccumulator.haveRelativeHWheel()) { info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); } if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_BOX) { const InputDeviceInfo::MotionRange& x = mOrientedRanges.x; const InputDeviceInfo::MotionRange& y = mOrientedRanges.y; info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_1, mSource, x.min, x.max, x.flat, x.fuzz, x.resolution); info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_2, mSource, y.min, y.max, y.flat, y.fuzz, y.resolution); info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_3, mSource, x.min, x.max, x.flat, x.fuzz, x.resolution); info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_4, mSource, y.min, y.max, y.flat, y.fuzz, y.resolution); } info->setButtonUnderPad(mParameters.hasButtonUnderPad); } } void TouchInputMapper::dump(String8& dump) { dump.append(INDENT2 "Touch Input Mapper:\n"); dumpParameters(dump); dumpVirtualKeys(dump); dumpRawPointerAxes(dump); dumpCalibration(dump); dumpSurface(dump); dump.appendFormat(INDENT3 "Translation and Scaling Factors:\n"); dump.appendFormat(INDENT4 "XTranslate: %0.3f\n", mXTranslate); dump.appendFormat(INDENT4 "YTranslate: %0.3f\n", mYTranslate); dump.appendFormat(INDENT4 "XScale: %0.3f\n", mXScale); dump.appendFormat(INDENT4 "YScale: %0.3f\n", mYScale); dump.appendFormat(INDENT4 "XPrecision: %0.3f\n", mXPrecision); dump.appendFormat(INDENT4 "YPrecision: %0.3f\n", mYPrecision); dump.appendFormat(INDENT4 "GeometricScale: %0.3f\n", mGeometricScale); dump.appendFormat(INDENT4 "PressureScale: %0.3f\n", mPressureScale); dump.appendFormat(INDENT4 "SizeScale: %0.3f\n", mSizeScale); dump.appendFormat(INDENT4 "OrientationScale: %0.3f\n", mOrientationScale); dump.appendFormat(INDENT4 "DistanceScale: %0.3f\n", mDistanceScale); dump.appendFormat(INDENT4 "HaveTilt: %s\n", toString(mHaveTilt)); dump.appendFormat(INDENT4 "TiltXCenter: %0.3f\n", mTiltXCenter); dump.appendFormat(INDENT4 "TiltXScale: %0.3f\n", mTiltXScale); dump.appendFormat(INDENT4 "TiltYCenter: %0.3f\n", mTiltYCenter); dump.appendFormat(INDENT4 "TiltYScale: %0.3f\n", mTiltYScale); dump.appendFormat(INDENT3 "Last Button State: 0x%08x\n", mLastButtonState); dump.appendFormat(INDENT3 "Last Raw Touch: pointerCount=%d\n", mLastRawPointerData.pointerCount); for (uint32_t i = 0; i < mLastRawPointerData.pointerCount; i++) { const RawPointerData::Pointer& pointer = mLastRawPointerData.pointers[i]; dump.appendFormat(INDENT4 "[%d]: id=%d, x=%d, y=%d, pressure=%d, " "touchMajor=%d, touchMinor=%d, toolMajor=%d, toolMinor=%d, " "orientation=%d, tiltX=%d, tiltY=%d, distance=%d, " "toolType=%d, isHovering=%s\n", i, pointer.id, pointer.x, pointer.y, pointer.pressure, pointer.touchMajor, pointer.touchMinor, pointer.toolMajor, pointer.toolMinor, pointer.orientation, pointer.tiltX, pointer.tiltY, pointer.distance, pointer.toolType, toString(pointer.isHovering)); } dump.appendFormat(INDENT3 "Last Cooked Touch: pointerCount=%d\n", mLastCookedPointerData.pointerCount); for (uint32_t i = 0; i < mLastCookedPointerData.pointerCount; i++) { const PointerProperties& pointerProperties = mLastCookedPointerData.pointerProperties[i]; const PointerCoords& pointerCoords = mLastCookedPointerData.pointerCoords[i]; dump.appendFormat(INDENT4 "[%d]: id=%d, x=%0.3f, y=%0.3f, pressure=%0.3f, " "touchMajor=%0.3f, touchMinor=%0.3f, toolMajor=%0.3f, toolMinor=%0.3f, " "orientation=%0.3f, tilt=%0.3f, distance=%0.3f, " "toolType=%d, isHovering=%s\n", i, pointerProperties.id, pointerCoords.getX(), pointerCoords.getY(), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TILT), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_DISTANCE), pointerProperties.toolType, toString(mLastCookedPointerData.isHovering(i))); } if (mDeviceMode == DEVICE_MODE_POINTER) { dump.appendFormat(INDENT3 "Pointer Gesture Detector:\n"); dump.appendFormat(INDENT4 "XMovementScale: %0.3f\n", mPointerXMovementScale); dump.appendFormat(INDENT4 "YMovementScale: %0.3f\n", mPointerYMovementScale); dump.appendFormat(INDENT4 "XZoomScale: %0.3f\n", mPointerXZoomScale); dump.appendFormat(INDENT4 "YZoomScale: %0.3f\n", mPointerYZoomScale); dump.appendFormat(INDENT4 "MaxSwipeWidth: %f\n", mPointerGestureMaxSwipeWidth); } } void TouchInputMapper::configure(nsecs_t when, const InputReaderConfiguration* config, uint32_t changes) { InputMapper::configure(when, config, changes); mConfig = *config; if (!changes) { // first time only // Configure basic parameters. configureParameters(); // Configure common accumulators. mCursorScrollAccumulator.configure(getDevice()); mTouchButtonAccumulator.configure(getDevice()); // Configure absolute axis information. configureRawPointerAxes(); // Prepare input device calibration. parseCalibration(); resolveCalibration(); } if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) { // Update pointer speed. mPointerVelocityControl.setParameters(mConfig.pointerVelocityControlParameters); mWheelXVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); mWheelYVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); } bool resetNeeded = false; if (!changes || (changes & (InputReaderConfiguration::CHANGE_DISPLAY_INFO | InputReaderConfiguration::CHANGE_POINTER_GESTURE_ENABLEMENT | InputReaderConfiguration::CHANGE_SHOW_TOUCHES))) { // Configure device sources, surface dimensions, orientation and // scaling factors. configureSurface(when, &resetNeeded); } if (changes && resetNeeded) { // Send reset, unless this is the first time the device has been configured, // in which case the reader will call reset itself after all mappers are ready. getDevice()->notifyReset(when); } } void TouchInputMapper::configureParameters() { // Use the pointer presentation mode for devices that do not support distinct // multitouch. The spot-based presentation relies on being able to accurately // locate two or more fingers on the touch pad. mParameters.gestureMode = getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_SEMI_MT) ? Parameters::GESTURE_MODE_POINTER : Parameters::GESTURE_MODE_SPOTS; String8 gestureModeString; if (getDevice()->getConfiguration().tryGetProperty(String8("touch.gestureMode"), gestureModeString)) { if (gestureModeString == "pointer") { mParameters.gestureMode = Parameters::GESTURE_MODE_POINTER; } else if (gestureModeString == "spots") { mParameters.gestureMode = Parameters::GESTURE_MODE_SPOTS; } else if (gestureModeString != "default") { ALOGW("Invalid value for touch.gestureMode: '%s'", gestureModeString.string()); } } if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_DIRECT)) { // The device is a touch screen. mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN; } else if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_POINTER)) { // The device is a pointing device like a track pad. mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; } else if (getEventHub()->hasRelativeAxis(getDeviceId(), REL_X) || getEventHub()->hasRelativeAxis(getDeviceId(), REL_Y)) { // The device is a cursor device with a touch pad attached. // By default don't use the touch pad to move the pointer. mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD; } else { // The device is a touch pad of unknown purpose. mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; } mParameters.hasButtonUnderPad= getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_BUTTONPAD); String8 deviceTypeString; if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"), deviceTypeString)) { if (deviceTypeString == "touchScreen") { mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN; } else if (deviceTypeString == "touchPad") { mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD; } else if (deviceTypeString == "touchNavigation") { mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_NAVIGATION; } else if (deviceTypeString == "pointer") { mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; } else if (deviceTypeString != "default") { ALOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string()); } } mParameters.orientationAware = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN; getDevice()->getConfiguration().tryGetProperty(String8("touch.orientationAware"), mParameters.orientationAware); mParameters.hasAssociatedDisplay = false; mParameters.associatedDisplayIsExternal = false; if (mParameters.orientationAware || mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN || mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) { mParameters.hasAssociatedDisplay = true; mParameters.associatedDisplayIsExternal = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN && getDevice()->isExternal(); } } void TouchInputMapper::dumpParameters(String8& dump) { dump.append(INDENT3 "Parameters:\n"); switch (mParameters.gestureMode) { case Parameters::GESTURE_MODE_POINTER: dump.append(INDENT4 "GestureMode: pointer\n"); break; case Parameters::GESTURE_MODE_SPOTS: dump.append(INDENT4 "GestureMode: spots\n"); break; default: assert(false); } switch (mParameters.deviceType) { case Parameters::DEVICE_TYPE_TOUCH_SCREEN: dump.append(INDENT4 "DeviceType: touchScreen\n"); break; case Parameters::DEVICE_TYPE_TOUCH_PAD: dump.append(INDENT4 "DeviceType: touchPad\n"); break; case Parameters::DEVICE_TYPE_TOUCH_NAVIGATION: dump.append(INDENT4 "DeviceType: touchNavigation\n"); break; case Parameters::DEVICE_TYPE_POINTER: dump.append(INDENT4 "DeviceType: pointer\n"); break; default: ALOG_ASSERT(false); } dump.appendFormat(INDENT4 "AssociatedDisplay: hasAssociatedDisplay=%s, isExternal=%s\n", toString(mParameters.hasAssociatedDisplay), toString(mParameters.associatedDisplayIsExternal)); dump.appendFormat(INDENT4 "OrientationAware: %s\n", toString(mParameters.orientationAware)); } void TouchInputMapper::configureRawPointerAxes() { mRawPointerAxes.clear(); } void TouchInputMapper::dumpRawPointerAxes(String8& dump) { dump.append(INDENT3 "Raw Touch Axes:\n"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.x, "X"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.y, "Y"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.pressure, "Pressure"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMajor, "TouchMajor"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMinor, "TouchMinor"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMajor, "ToolMajor"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMinor, "ToolMinor"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.orientation, "Orientation"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.distance, "Distance"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltX, "TiltX"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltY, "TiltY"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.trackingId, "TrackingId"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.slot, "Slot"); } void TouchInputMapper::configureSurface(nsecs_t when, bool* outResetNeeded) { int32_t oldDeviceMode = mDeviceMode; // Determine device mode. if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER && mConfig.pointerGesturesEnabled) { mSource = AINPUT_SOURCE_MOUSE; mDeviceMode = DEVICE_MODE_POINTER; if (hasStylus()) { mSource |= AINPUT_SOURCE_STYLUS; } } else if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN && mParameters.hasAssociatedDisplay) { mSource = AINPUT_SOURCE_TOUCHSCREEN; mDeviceMode = DEVICE_MODE_DIRECT; if (hasStylus()) { mSource |= AINPUT_SOURCE_STYLUS; } } else if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_NAVIGATION) { mSource = AINPUT_SOURCE_TOUCH_NAVIGATION; mDeviceMode = DEVICE_MODE_NAVIGATION; } else { mSource = AINPUT_SOURCE_TOUCHPAD; mDeviceMode = DEVICE_MODE_UNSCALED; } // Ensure we have valid X and Y axes. if (!mRawPointerAxes.x.valid || !mRawPointerAxes.y.valid) { ALOGW(INDENT "Touch device '%s' did not report support for X or Y axis! " "The device will be inoperable.", getDeviceName().string()); mDeviceMode = DEVICE_MODE_DISABLED; return; } // Raw width and height in the natural orientation. int32_t rawWidth = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1; int32_t rawHeight = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1; // Get associated display dimensions. DisplayViewport newViewport; if (mParameters.hasAssociatedDisplay) { if (!mConfig.getDisplayInfo(mParameters.associatedDisplayIsExternal, &newViewport)) { ALOGI(INDENT "Touch device '%s' could not query the properties of its associated " "display. The device will be inoperable until the display size " "becomes available.", getDeviceName().string()); mDeviceMode = DEVICE_MODE_DISABLED; return; } } else { newViewport.setNonDisplayViewport(rawWidth, rawHeight); } bool viewportChanged = mViewport != newViewport; if (viewportChanged) { mViewport = newViewport; if (mDeviceMode == DEVICE_MODE_DIRECT || mDeviceMode == DEVICE_MODE_POINTER) { // Convert rotated viewport to natural surface coordinates. int32_t naturalLogicalWidth, naturalLogicalHeight; int32_t naturalPhysicalWidth, naturalPhysicalHeight; int32_t naturalPhysicalLeft, naturalPhysicalTop; int32_t naturalDeviceWidth, naturalDeviceHeight; switch (mViewport.orientation) { case DISPLAY_ORIENTATION_90: naturalLogicalWidth = mViewport.logicalBottom - mViewport.logicalTop; naturalLogicalHeight = mViewport.logicalRight - mViewport.logicalLeft; naturalPhysicalWidth = mViewport.physicalBottom - mViewport.physicalTop; naturalPhysicalHeight = mViewport.physicalRight - mViewport.physicalLeft; naturalPhysicalLeft = mViewport.deviceHeight - mViewport.physicalBottom; naturalPhysicalTop = mViewport.physicalLeft; naturalDeviceWidth = mViewport.deviceHeight; naturalDeviceHeight = mViewport.deviceWidth; break; case DISPLAY_ORIENTATION_180: naturalLogicalWidth = mViewport.logicalRight - mViewport.logicalLeft; naturalLogicalHeight = mViewport.logicalBottom - mViewport.logicalTop; naturalPhysicalWidth = mViewport.physicalRight - mViewport.physicalLeft; naturalPhysicalHeight = mViewport.physicalBottom - mViewport.physicalTop; naturalPhysicalLeft = mViewport.deviceWidth - mViewport.physicalRight; naturalPhysicalTop = mViewport.deviceHeight - mViewport.physicalBottom; naturalDeviceWidth = mViewport.deviceWidth; naturalDeviceHeight = mViewport.deviceHeight; break; case DISPLAY_ORIENTATION_270: naturalLogicalWidth = mViewport.logicalBottom - mViewport.logicalTop; naturalLogicalHeight = mViewport.logicalRight - mViewport.logicalLeft; naturalPhysicalWidth = mViewport.physicalBottom - mViewport.physicalTop; naturalPhysicalHeight = mViewport.physicalRight - mViewport.physicalLeft; naturalPhysicalLeft = mViewport.physicalTop; naturalPhysicalTop = mViewport.deviceWidth - mViewport.physicalRight; naturalDeviceWidth = mViewport.deviceHeight; naturalDeviceHeight = mViewport.deviceWidth; break; case DISPLAY_ORIENTATION_0: default: naturalLogicalWidth = mViewport.logicalRight - mViewport.logicalLeft; naturalLogicalHeight = mViewport.logicalBottom - mViewport.logicalTop; naturalPhysicalWidth = mViewport.physicalRight - mViewport.physicalLeft; naturalPhysicalHeight = mViewport.physicalBottom - mViewport.physicalTop; naturalPhysicalLeft = mViewport.physicalLeft; naturalPhysicalTop = mViewport.physicalTop; naturalDeviceWidth = mViewport.deviceWidth; naturalDeviceHeight = mViewport.deviceHeight; break; } mSurfaceWidth = naturalLogicalWidth * naturalDeviceWidth / naturalPhysicalWidth; mSurfaceHeight = naturalLogicalHeight * naturalDeviceHeight / naturalPhysicalHeight; mSurfaceLeft = naturalPhysicalLeft * naturalLogicalWidth / naturalPhysicalWidth; mSurfaceTop = naturalPhysicalTop * naturalLogicalHeight / naturalPhysicalHeight; mSurfaceOrientation = mParameters.orientationAware ? mViewport.orientation : DISPLAY_ORIENTATION_0; } else { mSurfaceWidth = rawWidth; mSurfaceHeight = rawHeight; mSurfaceLeft = 0; mSurfaceTop = 0; mSurfaceOrientation = DISPLAY_ORIENTATION_0; } } // If moving between pointer modes, need to reset some state. bool deviceModeChanged = mDeviceMode != oldDeviceMode; if (deviceModeChanged) { mOrientedRanges.clear(); } // Create pointer controller if needed. if (mDeviceMode == DEVICE_MODE_POINTER || (mDeviceMode == DEVICE_MODE_DIRECT && mConfig.showTouches)) { if (mPointerController == NULL) { mPointerController = getPolicy()->obtainPointerController(getDeviceId()); } } else { mPointerController.clear(); } if (viewportChanged || deviceModeChanged) { ALOGI("Device reconfigured: id=%d, name='%s', size %dx%d, orientation %d, mode %d, " "display id %d", getDeviceId(), getDeviceName().string(), mSurfaceWidth, mSurfaceHeight, mSurfaceOrientation, mDeviceMode, mViewport.displayId); // Configure X and Y factors. mXScale = float(mSurfaceWidth) / rawWidth; mYScale = float(mSurfaceHeight) / rawHeight; mXTranslate = -mSurfaceLeft; mYTranslate = -mSurfaceTop; mXPrecision = 1.0f / mXScale; mYPrecision = 1.0f / mYScale; mOrientedRanges.x.axis = AMOTION_EVENT_AXIS_X; mOrientedRanges.x.source = mSource; mOrientedRanges.y.axis = AMOTION_EVENT_AXIS_Y; mOrientedRanges.y.source = mSource; configureVirtualKeys(); // Scale factor for terms that are not oriented in a particular axis. // If the pixels are square then xScale == yScale otherwise we fake it // by choosing an average. mGeometricScale = avg(mXScale, mYScale); // Size of diagonal axis. float diagonalSize = hypotf(mSurfaceWidth, mSurfaceHeight); // Size factors. if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) { if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.touchMajor.maxValue != 0) { mSizeScale = 1.0f / mRawPointerAxes.touchMajor.maxValue; } else if (mRawPointerAxes.toolMajor.valid && mRawPointerAxes.toolMajor.maxValue != 0) { mSizeScale = 1.0f / mRawPointerAxes.toolMajor.maxValue; } else { mSizeScale = 0.0f; } mOrientedRanges.haveTouchSize = true; mOrientedRanges.haveToolSize = true; mOrientedRanges.haveSize = true; mOrientedRanges.touchMajor.axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR; mOrientedRanges.touchMajor.source = mSource; mOrientedRanges.touchMajor.min = 0; mOrientedRanges.touchMajor.max = diagonalSize; mOrientedRanges.touchMajor.flat = 0; mOrientedRanges.touchMajor.fuzz = 0; mOrientedRanges.touchMajor.resolution = 0; mOrientedRanges.touchMinor = mOrientedRanges.touchMajor; mOrientedRanges.touchMinor.axis = AMOTION_EVENT_AXIS_TOUCH_MINOR; mOrientedRanges.toolMajor.axis = AMOTION_EVENT_AXIS_TOOL_MAJOR; mOrientedRanges.toolMajor.source = mSource; mOrientedRanges.toolMajor.min = 0; mOrientedRanges.toolMajor.max = diagonalSize; mOrientedRanges.toolMajor.flat = 0; mOrientedRanges.toolMajor.fuzz = 0; mOrientedRanges.toolMajor.resolution = 0; mOrientedRanges.toolMinor = mOrientedRanges.toolMajor; mOrientedRanges.toolMinor.axis = AMOTION_EVENT_AXIS_TOOL_MINOR; mOrientedRanges.size.axis = AMOTION_EVENT_AXIS_SIZE; mOrientedRanges.size.source = mSource; mOrientedRanges.size.min = 0; mOrientedRanges.size.max = 1.0; mOrientedRanges.size.flat = 0; mOrientedRanges.size.fuzz = 0; mOrientedRanges.size.resolution = 0; } else { mSizeScale = 0.0f; } // Pressure factors. mPressureScale = 0; if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL || mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_AMPLITUDE) { if (mCalibration.havePressureScale) { mPressureScale = mCalibration.pressureScale; } else if (mRawPointerAxes.pressure.valid && mRawPointerAxes.pressure.maxValue != 0) { mPressureScale = 1.0f / mRawPointerAxes.pressure.maxValue; } } mOrientedRanges.pressure.axis = AMOTION_EVENT_AXIS_PRESSURE; mOrientedRanges.pressure.source = mSource; mOrientedRanges.pressure.min = 0; mOrientedRanges.pressure.max = 1.0; mOrientedRanges.pressure.flat = 0; mOrientedRanges.pressure.fuzz = 0; mOrientedRanges.pressure.resolution = 0; // Tilt mTiltXCenter = 0; mTiltXScale = 0; mTiltYCenter = 0; mTiltYScale = 0; mHaveTilt = mRawPointerAxes.tiltX.valid && mRawPointerAxes.tiltY.valid; if (mHaveTilt) { mTiltXCenter = avg(mRawPointerAxes.tiltX.minValue, mRawPointerAxes.tiltX.maxValue); mTiltYCenter = avg(mRawPointerAxes.tiltY.minValue, mRawPointerAxes.tiltY.maxValue); mTiltXScale = M_PI / 180; mTiltYScale = M_PI / 180; mOrientedRanges.haveTilt = true; mOrientedRanges.tilt.axis = AMOTION_EVENT_AXIS_TILT; mOrientedRanges.tilt.source = mSource; mOrientedRanges.tilt.min = 0; mOrientedRanges.tilt.max = M_PI_2; mOrientedRanges.tilt.flat = 0; mOrientedRanges.tilt.fuzz = 0; mOrientedRanges.tilt.resolution = 0; } // Orientation mOrientationScale = 0; if (mHaveTilt) { mOrientedRanges.haveOrientation = true; mOrientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION; mOrientedRanges.orientation.source = mSource; mOrientedRanges.orientation.min = -M_PI; mOrientedRanges.orientation.max = M_PI; mOrientedRanges.orientation.flat = 0; mOrientedRanges.orientation.fuzz = 0; mOrientedRanges.orientation.resolution = 0; } else if (mCalibration.orientationCalibration != Calibration::ORIENTATION_CALIBRATION_NONE) { if (mCalibration.orientationCalibration == Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) { if (mRawPointerAxes.orientation.valid) { if (mRawPointerAxes.orientation.maxValue > 0) { mOrientationScale = M_PI_2 / mRawPointerAxes.orientation.maxValue; } else if (mRawPointerAxes.orientation.minValue < 0) { mOrientationScale = -M_PI_2 / mRawPointerAxes.orientation.minValue; } else { mOrientationScale = 0; } } } mOrientedRanges.haveOrientation = true; mOrientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION; mOrientedRanges.orientation.source = mSource; mOrientedRanges.orientation.min = -M_PI_2; mOrientedRanges.orientation.max = M_PI_2; mOrientedRanges.orientation.flat = 0; mOrientedRanges.orientation.fuzz = 0; mOrientedRanges.orientation.resolution = 0; } // Distance mDistanceScale = 0; if (mCalibration.distanceCalibration != Calibration::DISTANCE_CALIBRATION_NONE) { if (mCalibration.distanceCalibration == Calibration::DISTANCE_CALIBRATION_SCALED) { if (mCalibration.haveDistanceScale) { mDistanceScale = mCalibration.distanceScale; } else { mDistanceScale = 1.0f; } } mOrientedRanges.haveDistance = true; mOrientedRanges.distance.axis = AMOTION_EVENT_AXIS_DISTANCE; mOrientedRanges.distance.source = mSource; mOrientedRanges.distance.min = mRawPointerAxes.distance.minValue * mDistanceScale; mOrientedRanges.distance.max = mRawPointerAxes.distance.maxValue * mDistanceScale; mOrientedRanges.distance.flat = 0; mOrientedRanges.distance.fuzz = mRawPointerAxes.distance.fuzz * mDistanceScale; mOrientedRanges.distance.resolution = 0; } // Compute oriented precision, scales and ranges. // Note that the maximum value reported is an inclusive maximum value so it is one // unit less than the total width or height of surface. switch (mSurfaceOrientation) { case DISPLAY_ORIENTATION_90: case DISPLAY_ORIENTATION_270: mOrientedXPrecision = mYPrecision; mOrientedYPrecision = mXPrecision; mOrientedRanges.x.min = mYTranslate; mOrientedRanges.x.max = mSurfaceHeight + mYTranslate - 1; mOrientedRanges.x.flat = 0; mOrientedRanges.x.fuzz = 0; mOrientedRanges.x.resolution = mRawPointerAxes.y.resolution * mYScale; mOrientedRanges.y.min = mXTranslate; mOrientedRanges.y.max = mSurfaceWidth + mXTranslate - 1; mOrientedRanges.y.flat = 0; mOrientedRanges.y.fuzz = 0; mOrientedRanges.y.resolution = mRawPointerAxes.x.resolution * mXScale; break; default: mOrientedXPrecision = mXPrecision; mOrientedYPrecision = mYPrecision; mOrientedRanges.x.min = mXTranslate; mOrientedRanges.x.max = mSurfaceWidth + mXTranslate - 1; mOrientedRanges.x.flat = 0; mOrientedRanges.x.fuzz = 0; mOrientedRanges.x.resolution = mRawPointerAxes.x.resolution * mXScale; mOrientedRanges.y.min = mYTranslate; mOrientedRanges.y.max = mSurfaceHeight + mYTranslate - 1; mOrientedRanges.y.flat = 0; mOrientedRanges.y.fuzz = 0; mOrientedRanges.y.resolution = mRawPointerAxes.y.resolution * mYScale; break; } if (mDeviceMode == DEVICE_MODE_POINTER) { // Compute pointer gesture detection parameters. float rawDiagonal = hypotf(rawWidth, rawHeight); float displayDiagonal = hypotf(mSurfaceWidth, mSurfaceHeight); // Scale movements such that one whole swipe of the touch pad covers a // given area relative to the diagonal size of the display when no acceleration // is applied. // Assume that the touch pad has a square aspect ratio such that movements in // X and Y of the same number of raw units cover the same physical distance. mPointerXMovementScale = mConfig.pointerGestureMovementSpeedRatio * displayDiagonal / rawDiagonal; mPointerYMovementScale = mPointerXMovementScale; // Scale zooms to cover a smaller range of the display than movements do. // This value determines the area around the pointer that is affected by freeform // pointer gestures. mPointerXZoomScale = mConfig.pointerGestureZoomSpeedRatio * displayDiagonal / rawDiagonal; mPointerYZoomScale = mPointerXZoomScale; // Max width between pointers to detect a swipe gesture is more than some fraction // of the diagonal axis of the touch pad. Touches that are wider than this are // translated into freeform gestures. mPointerGestureMaxSwipeWidth = mConfig.pointerGestureSwipeMaxWidthRatio * rawDiagonal; // Abort current pointer usages because the state has changed. abortPointerUsage(when, 0 /*policyFlags*/); } // Inform the dispatcher about the changes. *outResetNeeded = true; bumpGeneration(); } } void TouchInputMapper::dumpSurface(String8& dump) { dump.appendFormat(INDENT3 "Viewport: displayId=%d, orientation=%d, " "logicalFrame=[%d, %d, %d, %d], " "physicalFrame=[%d, %d, %d, %d], " "deviceSize=[%d, %d]\n", mViewport.displayId, mViewport.orientation, mViewport.logicalLeft, mViewport.logicalTop, mViewport.logicalRight, mViewport.logicalBottom, mViewport.physicalLeft, mViewport.physicalTop, mViewport.physicalRight, mViewport.physicalBottom, mViewport.deviceWidth, mViewport.deviceHeight); dump.appendFormat(INDENT3 "SurfaceWidth: %dpx\n", mSurfaceWidth); dump.appendFormat(INDENT3 "SurfaceHeight: %dpx\n", mSurfaceHeight); dump.appendFormat(INDENT3 "SurfaceLeft: %d\n", mSurfaceLeft); dump.appendFormat(INDENT3 "SurfaceTop: %d\n", mSurfaceTop); dump.appendFormat(INDENT3 "SurfaceOrientation: %d\n", mSurfaceOrientation); } void TouchInputMapper::configureVirtualKeys() { Vector<VirtualKeyDefinition> virtualKeyDefinitions; getEventHub()->getVirtualKeyDefinitions(getDeviceId(), virtualKeyDefinitions); mVirtualKeys.clear(); if (virtualKeyDefinitions.size() == 0) { return; } mVirtualKeys.setCapacity(virtualKeyDefinitions.size()); int32_t touchScreenLeft = mRawPointerAxes.x.minValue; int32_t touchScreenTop = mRawPointerAxes.y.minValue; int32_t touchScreenWidth = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1; int32_t touchScreenHeight = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1; for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) { const VirtualKeyDefinition& virtualKeyDefinition = virtualKeyDefinitions[i]; mVirtualKeys.add(); VirtualKey& virtualKey = mVirtualKeys.editTop(); virtualKey.scanCode = virtualKeyDefinition.scanCode; int32_t keyCode; uint32_t flags; if (getEventHub()->mapKey(getDeviceId(), virtualKey.scanCode, 0, &keyCode, &flags)) { ALOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring", virtualKey.scanCode); mVirtualKeys.pop(); // drop the key continue; } virtualKey.keyCode = keyCode; virtualKey.flags = flags; // convert the key definition's display coordinates into touch coordinates for a hit box int32_t halfWidth = virtualKeyDefinition.width / 2; int32_t halfHeight = virtualKeyDefinition.height / 2; virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth) * touchScreenWidth / mSurfaceWidth + touchScreenLeft; virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth) * touchScreenWidth / mSurfaceWidth + touchScreenLeft; virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight) * touchScreenHeight / mSurfaceHeight + touchScreenTop; virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight) * touchScreenHeight / mSurfaceHeight + touchScreenTop; } } void TouchInputMapper::dumpVirtualKeys(String8& dump) { if (!mVirtualKeys.isEmpty()) { dump.append(INDENT3 "Virtual Keys:\n"); for (size_t i = 0; i < mVirtualKeys.size(); i++) { const VirtualKey& virtualKey = mVirtualKeys.itemAt(i); dump.appendFormat(INDENT4 "%d: scanCode=%d, keyCode=%d, " "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n", i, virtualKey.scanCode, virtualKey.keyCode, virtualKey.hitLeft, virtualKey.hitRight, virtualKey.hitTop, virtualKey.hitBottom); } } } void TouchInputMapper::parseCalibration() { const PropertyMap& in = getDevice()->getConfiguration(); Calibration& out = mCalibration; // Size out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT; String8 sizeCalibrationString; if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) { if (sizeCalibrationString == "none") { out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; } else if (sizeCalibrationString == "geometric") { out.sizeCalibration = Calibration::SIZE_CALIBRATION_GEOMETRIC; } else if (sizeCalibrationString == "diameter") { out.sizeCalibration = Calibration::SIZE_CALIBRATION_DIAMETER; } else if (sizeCalibrationString == "box") { out.sizeCalibration = Calibration::SIZE_CALIBRATION_BOX; } else if (sizeCalibrationString == "area") { out.sizeCalibration = Calibration::SIZE_CALIBRATION_AREA; } else if (sizeCalibrationString != "default") { ALOGW("Invalid value for touch.size.calibration: '%s'", sizeCalibrationString.string()); } } out.haveSizeScale = in.tryGetProperty(String8("touch.size.scale"), out.sizeScale); out.haveSizeBias = in.tryGetProperty(String8("touch.size.bias"), out.sizeBias); out.haveSizeIsSummed = in.tryGetProperty(String8("touch.size.isSummed"), out.sizeIsSummed); // Pressure out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT; String8 pressureCalibrationString; if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) { if (pressureCalibrationString == "none") { out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; } else if (pressureCalibrationString == "physical") { out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL; } else if (pressureCalibrationString == "amplitude") { out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE; } else if (pressureCalibrationString != "default") { ALOGW("Invalid value for touch.pressure.calibration: '%s'", pressureCalibrationString.string()); } } out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"), out.pressureScale); // Orientation out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT; String8 orientationCalibrationString; if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) { if (orientationCalibrationString == "none") { out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; } else if (orientationCalibrationString == "interpolated") { out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; } else if (orientationCalibrationString == "vector") { out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_VECTOR; } else if (orientationCalibrationString != "default") { ALOGW("Invalid value for touch.orientation.calibration: '%s'", orientationCalibrationString.string()); } } // Distance out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_DEFAULT; String8 distanceCalibrationString; if (in.tryGetProperty(String8("touch.distance.calibration"), distanceCalibrationString)) { if (distanceCalibrationString == "none") { out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE; } else if (distanceCalibrationString == "scaled") { out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED; } else if (distanceCalibrationString != "default") { ALOGW("Invalid value for touch.distance.calibration: '%s'", distanceCalibrationString.string()); } } out.haveDistanceScale = in.tryGetProperty(String8("touch.distance.scale"), out.distanceScale); out.coverageCalibration = Calibration::COVERAGE_CALIBRATION_DEFAULT; String8 coverageCalibrationString; if (in.tryGetProperty(String8("touch.coverage.calibration"), coverageCalibrationString)) { if (coverageCalibrationString == "none") { out.coverageCalibration = Calibration::COVERAGE_CALIBRATION_NONE; } else if (coverageCalibrationString == "box") { out.coverageCalibration = Calibration::COVERAGE_CALIBRATION_BOX; } else if (coverageCalibrationString != "default") { ALOGW("Invalid value for touch.coverage.calibration: '%s'", coverageCalibrationString.string()); } } } void TouchInputMapper::resolveCalibration() { // Size if (mRawPointerAxes.touchMajor.valid || mRawPointerAxes.toolMajor.valid) { if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_DEFAULT) { mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_GEOMETRIC; } } else { mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; } // Pressure if (mRawPointerAxes.pressure.valid) { if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_DEFAULT) { mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL; } } else { mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; } // Orientation if (mRawPointerAxes.orientation.valid) { if (mCalibration.orientationCalibration == Calibration::ORIENTATION_CALIBRATION_DEFAULT) { mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; } } else { mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; } // Distance if (mRawPointerAxes.distance.valid) { if (mCalibration.distanceCalibration == Calibration::DISTANCE_CALIBRATION_DEFAULT) { mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED; } } else { mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE; } // Coverage if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_DEFAULT) { mCalibration.coverageCalibration = Calibration::COVERAGE_CALIBRATION_NONE; } } void TouchInputMapper::dumpCalibration(String8& dump) { dump.append(INDENT3 "Calibration:\n"); // Size switch (mCalibration.sizeCalibration) { case Calibration::SIZE_CALIBRATION_NONE: dump.append(INDENT4 "touch.size.calibration: none\n"); break; case Calibration::SIZE_CALIBRATION_GEOMETRIC: dump.append(INDENT4 "touch.size.calibration: geometric\n"); break; case Calibration::SIZE_CALIBRATION_DIAMETER: dump.append(INDENT4 "touch.size.calibration: diameter\n"); break; case Calibration::SIZE_CALIBRATION_BOX: dump.append(INDENT4 "touch.size.calibration: box\n"); break; case Calibration::SIZE_CALIBRATION_AREA: dump.append(INDENT4 "touch.size.calibration: area\n"); break; default: ALOG_ASSERT(false); } if (mCalibration.haveSizeScale) { dump.appendFormat(INDENT4 "touch.size.scale: %0.3f\n", mCalibration.sizeScale); } if (mCalibration.haveSizeBias) { dump.appendFormat(INDENT4 "touch.size.bias: %0.3f\n", mCalibration.sizeBias); } if (mCalibration.haveSizeIsSummed) { dump.appendFormat(INDENT4 "touch.size.isSummed: %s\n", toString(mCalibration.sizeIsSummed)); } // Pressure switch (mCalibration.pressureCalibration) { case Calibration::PRESSURE_CALIBRATION_NONE: dump.append(INDENT4 "touch.pressure.calibration: none\n"); break; case Calibration::PRESSURE_CALIBRATION_PHYSICAL: dump.append(INDENT4 "touch.pressure.calibration: physical\n"); break; case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: dump.append(INDENT4 "touch.pressure.calibration: amplitude\n"); break; default: ALOG_ASSERT(false); } if (mCalibration.havePressureScale) { dump.appendFormat(INDENT4 "touch.pressure.scale: %0.3f\n", mCalibration.pressureScale); } // Orientation switch (mCalibration.orientationCalibration) { case Calibration::ORIENTATION_CALIBRATION_NONE: dump.append(INDENT4 "touch.orientation.calibration: none\n"); break; case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: dump.append(INDENT4 "touch.orientation.calibration: interpolated\n"); break; case Calibration::ORIENTATION_CALIBRATION_VECTOR: dump.append(INDENT4 "touch.orientation.calibration: vector\n"); break; default: ALOG_ASSERT(false); } // Distance switch (mCalibration.distanceCalibration) { case Calibration::DISTANCE_CALIBRATION_NONE: dump.append(INDENT4 "touch.distance.calibration: none\n"); break; case Calibration::DISTANCE_CALIBRATION_SCALED: dump.append(INDENT4 "touch.distance.calibration: scaled\n"); break; default: ALOG_ASSERT(false); } if (mCalibration.haveDistanceScale) { dump.appendFormat(INDENT4 "touch.distance.scale: %0.3f\n", mCalibration.distanceScale); } switch (mCalibration.coverageCalibration) { case Calibration::COVERAGE_CALIBRATION_NONE: dump.append(INDENT4 "touch.coverage.calibration: none\n"); break; case Calibration::COVERAGE_CALIBRATION_BOX: dump.append(INDENT4 "touch.coverage.calibration: box\n"); break; default: ALOG_ASSERT(false); } } void TouchInputMapper::reset(nsecs_t when) { mCursorButtonAccumulator.reset(getDevice()); mCursorScrollAccumulator.reset(getDevice()); mTouchButtonAccumulator.reset(getDevice()); mPointerVelocityControl.reset(); mWheelXVelocityControl.reset(); mWheelYVelocityControl.reset(); mCurrentRawPointerData.clear(); mLastRawPointerData.clear(); mCurrentCookedPointerData.clear(); mLastCookedPointerData.clear(); mCurrentButtonState = 0; mLastButtonState = 0; mCurrentRawVScroll = 0; mCurrentRawHScroll = 0; mCurrentFingerIdBits.clear(); mLastFingerIdBits.clear(); mCurrentStylusIdBits.clear(); mLastStylusIdBits.clear(); mCurrentMouseIdBits.clear(); mLastMouseIdBits.clear(); mPointerUsage = POINTER_USAGE_NONE; mSentHoverEnter = false; mDownTime = 0; mCurrentVirtualKey.down = false; mPointerGesture.reset(); mPointerSimple.reset(); if (mPointerController != NULL) { mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); mPointerController->clearSpots(); } InputMapper::reset(when); } void TouchInputMapper::process(const RawEvent* rawEvent) { mCursorButtonAccumulator.process(rawEvent); mCursorScrollAccumulator.process(rawEvent); mTouchButtonAccumulator.process(rawEvent); if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { sync(rawEvent->when); } } void TouchInputMapper::sync(nsecs_t when) { // Sync button state. mCurrentButtonState = mTouchButtonAccumulator.getButtonState() | mCursorButtonAccumulator.getButtonState(); // Sync scroll state. mCurrentRawVScroll = mCursorScrollAccumulator.getRelativeVWheel(); mCurrentRawHScroll = mCursorScrollAccumulator.getRelativeHWheel(); mCursorScrollAccumulator.finishSync(); // Sync touch state. bool havePointerIds = true; mCurrentRawPointerData.clear(); syncTouch(when, &havePointerIds); #if DEBUG_RAW_EVENTS if (!havePointerIds) { ALOGD("syncTouch: pointerCount %d -> %d, no pointer ids", mLastRawPointerData.pointerCount, mCurrentRawPointerData.pointerCount); } else { ALOGD("syncTouch: pointerCount %d -> %d, touching ids 0x%08x -> 0x%08x, " "hovering ids 0x%08x -> 0x%08x", mLastRawPointerData.pointerCount, mCurrentRawPointerData.pointerCount, mLastRawPointerData.touchingIdBits.value, mCurrentRawPointerData.touchingIdBits.value, mLastRawPointerData.hoveringIdBits.value, mCurrentRawPointerData.hoveringIdBits.value); } #endif // Reset state that we will compute below. mCurrentFingerIdBits.clear(); mCurrentStylusIdBits.clear(); mCurrentMouseIdBits.clear(); mCurrentCookedPointerData.clear(); if (mDeviceMode == DEVICE_MODE_DISABLED) { // Drop all input if the device is disabled. mCurrentRawPointerData.clear(); mCurrentButtonState = 0; } else { // Preprocess pointer data. if (!havePointerIds) { assignPointerIds(); } // Handle policy on initial down or hover events. uint32_t policyFlags = 0; bool initialDown = mLastRawPointerData.pointerCount == 0 && mCurrentRawPointerData.pointerCount != 0; bool buttonsPressed = mCurrentButtonState & ~mLastButtonState; if (initialDown || buttonsPressed) { // If this is a touch screen, hide the pointer on an initial down. if (mDeviceMode == DEVICE_MODE_DIRECT) { getContext()->fadePointer(); } // Initial downs on external touch devices should wake the device. // We don't do this for internal touch screens to prevent them from waking // up in your pocket. // TODO: Use the input device configuration to control this behavior more finely. if (getDevice()->isExternal()) { policyFlags |= POLICY_FLAG_WAKE_DROPPED; } } // Synthesize key down from raw buttons if needed. synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource, policyFlags, mLastButtonState, mCurrentButtonState); // Consume raw off-screen touches before cooking pointer data. // If touches are consumed, subsequent code will not receive any pointer data. if (consumeRawTouches(when, policyFlags)) { mCurrentRawPointerData.clear(); } // Cook pointer data. This call populates the mCurrentCookedPointerData structure // with cooked pointer data that has the same ids and indices as the raw data. // The following code can use either the raw or cooked data, as needed. cookPointerData(); // Dispatch the touches either directly or by translation through a pointer on screen. if (mDeviceMode == DEVICE_MODE_POINTER) { for (BitSet32 idBits(mCurrentRawPointerData.touchingIdBits); !idBits.isEmpty(); ) { uint32_t id = idBits.clearFirstMarkedBit(); const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id); if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) { mCurrentStylusIdBits.markBit(id); } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_FINGER || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { mCurrentFingerIdBits.markBit(id); } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_MOUSE) { mCurrentMouseIdBits.markBit(id); } } for (BitSet32 idBits(mCurrentRawPointerData.hoveringIdBits); !idBits.isEmpty(); ) { uint32_t id = idBits.clearFirstMarkedBit(); const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id); if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) { mCurrentStylusIdBits.markBit(id); } } // Stylus takes precedence over all tools, then mouse, then finger. PointerUsage pointerUsage = mPointerUsage; if (!mCurrentStylusIdBits.isEmpty()) { mCurrentMouseIdBits.clear(); mCurrentFingerIdBits.clear(); pointerUsage = POINTER_USAGE_STYLUS; } else if (!mCurrentMouseIdBits.isEmpty()) { mCurrentFingerIdBits.clear(); pointerUsage = POINTER_USAGE_MOUSE; } else if (!mCurrentFingerIdBits.isEmpty() || isPointerDown(mCurrentButtonState)) { pointerUsage = POINTER_USAGE_GESTURES; } dispatchPointerUsage(when, policyFlags, pointerUsage); } else { if (mDeviceMode == DEVICE_MODE_DIRECT && mConfig.showTouches && mPointerController != NULL) { mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_SPOT); mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); mPointerController->setButtonState(mCurrentButtonState); mPointerController->setSpots(mCurrentCookedPointerData.pointerCoords, mCurrentCookedPointerData.idToIndex, mCurrentCookedPointerData.touchingIdBits); } dispatchHoverExit(when, policyFlags); dispatchTouches(when, policyFlags); dispatchHoverEnterAndMove(when, policyFlags); } // Synthesize key up from raw buttons if needed. synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource, policyFlags, mLastButtonState, mCurrentButtonState); } // Copy current touch to last touch in preparation for the next cycle. mLastRawPointerData.copyFrom(mCurrentRawPointerData); mLastCookedPointerData.copyFrom(mCurrentCookedPointerData); mLastButtonState = mCurrentButtonState; mLastFingerIdBits = mCurrentFingerIdBits; mLastStylusIdBits = mCurrentStylusIdBits; mLastMouseIdBits = mCurrentMouseIdBits; // Clear some transient state. mCurrentRawVScroll = 0; mCurrentRawHScroll = 0; } void TouchInputMapper::timeoutExpired(nsecs_t when) { if (mDeviceMode == DEVICE_MODE_POINTER) { if (mPointerUsage == POINTER_USAGE_GESTURES) { dispatchPointerGestures(when, 0 /*policyFlags*/, true /*isTimeout*/); } } } bool TouchInputMapper::consumeRawTouches(nsecs_t when, uint32_t policyFlags) { // Check for release of a virtual key. if (mCurrentVirtualKey.down) { if (mCurrentRawPointerData.touchingIdBits.isEmpty()) { // Pointer went up while virtual key was down. mCurrentVirtualKey.down = false; if (!mCurrentVirtualKey.ignored) { #if DEBUG_VIRTUAL_KEYS ALOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d", mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); #endif dispatchVirtualKey(when, policyFlags, AKEY_EVENT_ACTION_UP, AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY); } return true; } if (mCurrentRawPointerData.touchingIdBits.count() == 1) { uint32_t id = mCurrentRawPointerData.touchingIdBits.firstMarkedBit(); const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id); const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); if (virtualKey && virtualKey->keyCode == mCurrentVirtualKey.keyCode) { // Pointer is still within the space of the virtual key. return true; } } // Pointer left virtual key area or another pointer also went down. // Send key cancellation but do not consume the touch yet. // This is useful when the user swipes through from the virtual key area // into the main display surface. mCurrentVirtualKey.down = false; if (!mCurrentVirtualKey.ignored) { #if DEBUG_VIRTUAL_KEYS ALOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d", mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); #endif dispatchVirtualKey(when, policyFlags, AKEY_EVENT_ACTION_UP, AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY | AKEY_EVENT_FLAG_CANCELED); } } if (mLastRawPointerData.touchingIdBits.isEmpty() && !mCurrentRawPointerData.touchingIdBits.isEmpty()) { // Pointer just went down. Check for virtual key press or off-screen touches. uint32_t id = mCurrentRawPointerData.touchingIdBits.firstMarkedBit(); const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id); if (!isPointInsideSurface(pointer.x, pointer.y)) { // If exactly one pointer went down, check for virtual key hit. // Otherwise we will drop the entire stroke. if (mCurrentRawPointerData.touchingIdBits.count() == 1) { const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); if (virtualKey) { mCurrentVirtualKey.down = true; mCurrentVirtualKey.downTime = when; mCurrentVirtualKey.keyCode = virtualKey->keyCode; mCurrentVirtualKey.scanCode = virtualKey->scanCode; mCurrentVirtualKey.ignored = mContext->shouldDropVirtualKey( when, getDevice(), virtualKey->keyCode, virtualKey->scanCode); if (!mCurrentVirtualKey.ignored) { #if DEBUG_VIRTUAL_KEYS ALOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d", mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); #endif dispatchVirtualKey(when, policyFlags, AKEY_EVENT_ACTION_DOWN, AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY); } } } return true; } } // Disable all virtual key touches that happen within a short time interval of the // most recent touch within the screen area. The idea is to filter out stray // virtual key presses when interacting with the touch screen. // // Problems we're trying to solve: // // 1. While scrolling a list or dragging the window shade, the user swipes down into a // virtual key area that is implemented by a separate touch panel and accidentally // triggers a virtual key. // // 2. While typing in the on screen keyboard, the user taps slightly outside the screen // area and accidentally triggers a virtual key. This often happens when virtual keys // are layed out below the screen near to where the on screen keyboard's space bar // is displayed. if (mConfig.virtualKeyQuietTime > 0 && !mCurrentRawPointerData.touchingIdBits.isEmpty()) { mContext->disableVirtualKeysUntil(when + mConfig.virtualKeyQuietTime); } return false; } void TouchInputMapper::dispatchVirtualKey(nsecs_t when, uint32_t policyFlags, int32_t keyEventAction, int32_t keyEventFlags) { int32_t keyCode = mCurrentVirtualKey.keyCode; int32_t scanCode = mCurrentVirtualKey.scanCode; nsecs_t downTime = mCurrentVirtualKey.downTime; int32_t metaState = mContext->getGlobalMetaState(); policyFlags |= POLICY_FLAG_VIRTUAL; NotifyKeyArgs args(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags, keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime); getListener()->notifyKey(&args); } void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) { BitSet32 currentIdBits = mCurrentCookedPointerData.touchingIdBits; BitSet32 lastIdBits = mLastCookedPointerData.touchingIdBits; int32_t metaState = getContext()->getGlobalMetaState(); int32_t buttonState = mCurrentButtonState; if (currentIdBits == lastIdBits) { if (!currentIdBits.isEmpty()) { // No pointer id changes so this is a move event. // The listener takes care of batching moves so we don't have to deal with that here. dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mCurrentCookedPointerData.pointerProperties, mCurrentCookedPointerData.pointerCoords, mCurrentCookedPointerData.idToIndex, currentIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); } } else { // There may be pointers going up and pointers going down and pointers moving // all at the same time. BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value); BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value); BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value); BitSet32 dispatchedIdBits(lastIdBits.value); // Update last coordinates of pointers that have moved so that we observe the new // pointer positions at the same time as other pointers that have just gone up. bool moveNeeded = updateMovedPointers( mCurrentCookedPointerData.pointerProperties, mCurrentCookedPointerData.pointerCoords, mCurrentCookedPointerData.idToIndex, mLastCookedPointerData.pointerProperties, mLastCookedPointerData.pointerCoords, mLastCookedPointerData.idToIndex, moveIdBits); if (buttonState != mLastButtonState) { moveNeeded = true; } // Dispatch pointer up events. while (!upIdBits.isEmpty()) { uint32_t upId = upIdBits.clearFirstMarkedBit(); dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_POINTER_UP, 0, metaState, buttonState, 0, mLastCookedPointerData.pointerProperties, mLastCookedPointerData.pointerCoords, mLastCookedPointerData.idToIndex, dispatchedIdBits, upId, mOrientedXPrecision, mOrientedYPrecision, mDownTime); dispatchedIdBits.clearBit(upId); } // Dispatch move events if any of the remaining pointers moved from their old locations. // Although applications receive new locations as part of individual pointer up // events, they do not generally handle them except when presented in a move event. if (moveNeeded) { ALOG_ASSERT(moveIdBits.value == dispatchedIdBits.value); dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, 0, mCurrentCookedPointerData.pointerProperties, mCurrentCookedPointerData.pointerCoords, mCurrentCookedPointerData.idToIndex, dispatchedIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); } // Dispatch pointer down events using the new pointer locations. while (!downIdBits.isEmpty()) { uint32_t downId = downIdBits.clearFirstMarkedBit(); dispatchedIdBits.markBit(downId); if (dispatchedIdBits.count() == 1) { // First pointer is going down. Set down time. mDownTime = when; } dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, 0, mCurrentCookedPointerData.pointerProperties, mCurrentCookedPointerData.pointerCoords, mCurrentCookedPointerData.idToIndex, dispatchedIdBits, downId, mOrientedXPrecision, mOrientedYPrecision, mDownTime); } } } void TouchInputMapper::dispatchHoverExit(nsecs_t when, uint32_t policyFlags) { if (mSentHoverEnter && (mCurrentCookedPointerData.hoveringIdBits.isEmpty() || !mCurrentCookedPointerData.touchingIdBits.isEmpty())) { int32_t metaState = getContext()->getGlobalMetaState(); dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_HOVER_EXIT, 0, metaState, mLastButtonState, 0, mLastCookedPointerData.pointerProperties, mLastCookedPointerData.pointerCoords, mLastCookedPointerData.idToIndex, mLastCookedPointerData.hoveringIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); mSentHoverEnter = false; } } void TouchInputMapper::dispatchHoverEnterAndMove(nsecs_t when, uint32_t policyFlags) { if (mCurrentCookedPointerData.touchingIdBits.isEmpty() && !mCurrentCookedPointerData.hoveringIdBits.isEmpty()) { int32_t metaState = getContext()->getGlobalMetaState(); if (!mSentHoverEnter) { dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_HOVER_ENTER, 0, metaState, mCurrentButtonState, 0, mCurrentCookedPointerData.pointerProperties, mCurrentCookedPointerData.pointerCoords, mCurrentCookedPointerData.idToIndex, mCurrentCookedPointerData.hoveringIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); mSentHoverEnter = true; } dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_HOVER_MOVE, 0, metaState, mCurrentButtonState, 0, mCurrentCookedPointerData.pointerProperties, mCurrentCookedPointerData.pointerCoords, mCurrentCookedPointerData.idToIndex, mCurrentCookedPointerData.hoveringIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); } } void TouchInputMapper::cookPointerData() { uint32_t currentPointerCount = mCurrentRawPointerData.pointerCount; mCurrentCookedPointerData.clear(); mCurrentCookedPointerData.pointerCount = currentPointerCount; mCurrentCookedPointerData.hoveringIdBits = mCurrentRawPointerData.hoveringIdBits; mCurrentCookedPointerData.touchingIdBits = mCurrentRawPointerData.touchingIdBits; // Walk through the the active pointers and map device coordinates onto // surface coordinates and adjust for display orientation. for (uint32_t i = 0; i < currentPointerCount; i++) { const RawPointerData::Pointer& in = mCurrentRawPointerData.pointers[i]; // Size float touchMajor, touchMinor, toolMajor, toolMinor, size; switch (mCalibration.sizeCalibration) { case Calibration::SIZE_CALIBRATION_GEOMETRIC: case Calibration::SIZE_CALIBRATION_DIAMETER: case Calibration::SIZE_CALIBRATION_BOX: case Calibration::SIZE_CALIBRATION_AREA: if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.toolMajor.valid) { touchMajor = in.touchMajor; touchMinor = mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor; toolMajor = in.toolMajor; toolMinor = mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor; size = mRawPointerAxes.touchMinor.valid ? avg(in.touchMajor, in.touchMinor) : in.touchMajor; } else if (mRawPointerAxes.touchMajor.valid) { toolMajor = touchMajor = in.touchMajor; toolMinor = touchMinor = mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor; size = mRawPointerAxes.touchMinor.valid ? avg(in.touchMajor, in.touchMinor) : in.touchMajor; } else if (mRawPointerAxes.toolMajor.valid) { touchMajor = toolMajor = in.toolMajor; touchMinor = toolMinor = mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor; size = mRawPointerAxes.toolMinor.valid ? avg(in.toolMajor, in.toolMinor) : in.toolMajor; } else { ALOG_ASSERT(false, "No touch or tool axes. " "Size calibration should have been resolved to NONE."); touchMajor = 0; touchMinor = 0; toolMajor = 0; toolMinor = 0; size = 0; } if (mCalibration.haveSizeIsSummed && mCalibration.sizeIsSummed) { uint32_t touchingCount = mCurrentRawPointerData.touchingIdBits.count(); if (touchingCount > 1) { touchMajor /= touchingCount; touchMinor /= touchingCount; toolMajor /= touchingCount; toolMinor /= touchingCount; size /= touchingCount; } } if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_GEOMETRIC) { touchMajor *= mGeometricScale; touchMinor *= mGeometricScale; toolMajor *= mGeometricScale; toolMinor *= mGeometricScale; } else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_AREA) { touchMajor = touchMajor > 0 ? sqrtf(touchMajor) : 0; touchMinor = touchMajor; toolMajor = toolMajor > 0 ? sqrtf(toolMajor) : 0; toolMinor = toolMajor; } else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_DIAMETER) { touchMinor = touchMajor; toolMinor = toolMajor; } mCalibration.applySizeScaleAndBias(&touchMajor); mCalibration.applySizeScaleAndBias(&touchMinor); mCalibration.applySizeScaleAndBias(&toolMajor); mCalibration.applySizeScaleAndBias(&toolMinor); size *= mSizeScale; break; default: touchMajor = 0; touchMinor = 0; toolMajor = 0; toolMinor = 0; size = 0; break; } // Pressure float pressure; switch (mCalibration.pressureCalibration) { case Calibration::PRESSURE_CALIBRATION_PHYSICAL: case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: pressure = in.pressure * mPressureScale; break; default: pressure = in.isHovering ? 0 : 1; break; } // Tilt and Orientation float tilt; float orientation; if (mHaveTilt) { float tiltXAngle = (in.tiltX - mTiltXCenter) * mTiltXScale; float tiltYAngle = (in.tiltY - mTiltYCenter) * mTiltYScale; orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle)); tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle)); } else { tilt = 0; switch (mCalibration.orientationCalibration) { case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: orientation = in.orientation * mOrientationScale; break; case Calibration::ORIENTATION_CALIBRATION_VECTOR: { int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4); int32_t c2 = signExtendNybble(in.orientation & 0x0f); if (c1 != 0 || c2 != 0) { orientation = atan2f(c1, c2) * 0.5f; float confidence = hypotf(c1, c2); float scale = 1.0f + confidence / 16.0f; touchMajor *= scale; touchMinor /= scale; toolMajor *= scale; toolMinor /= scale; } else { orientation = 0; } break; } default: orientation = 0; } } // Distance float distance; switch (mCalibration.distanceCalibration) { case Calibration::DISTANCE_CALIBRATION_SCALED: distance = in.distance * mDistanceScale; break; default: distance = 0; } // Coverage int32_t rawLeft, rawTop, rawRight, rawBottom; switch (mCalibration.coverageCalibration) { case Calibration::COVERAGE_CALIBRATION_BOX: rawLeft = (in.toolMinor & 0xffff0000) >> 16; rawRight = in.toolMinor & 0x0000ffff; rawBottom = in.toolMajor & 0x0000ffff; rawTop = (in.toolMajor & 0xffff0000) >> 16; break; default: rawLeft = rawTop = rawRight = rawBottom = 0; break; } // X, Y, and the bounding box for coverage information // Adjust coords for surface orientation. float x, y, left, top, right, bottom; switch (mSurfaceOrientation) { case DISPLAY_ORIENTATION_90: x = float(in.y - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; y = float(mRawPointerAxes.x.maxValue - in.x) * mXScale + mXTranslate; left = float(rawTop - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; right = float(rawBottom- mRawPointerAxes.y.minValue) * mYScale + mYTranslate; bottom = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale + mXTranslate; top = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale + mXTranslate; orientation -= M_PI_2; if (orientation < mOrientedRanges.orientation.min) { orientation += (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min); } break; case DISPLAY_ORIENTATION_180: x = float(mRawPointerAxes.x.maxValue - in.x) * mXScale + mXTranslate; y = float(mRawPointerAxes.y.maxValue - in.y) * mYScale + mYTranslate; left = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale + mXTranslate; right = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale + mXTranslate; bottom = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale + mYTranslate; top = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale + mYTranslate; orientation -= M_PI; if (orientation < mOrientedRanges.orientation.min) { orientation += (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min); } break; case DISPLAY_ORIENTATION_270: x = float(mRawPointerAxes.y.maxValue - in.y) * mYScale + mYTranslate; y = float(in.x - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; left = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale + mYTranslate; right = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale + mYTranslate; bottom = float(rawRight - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; top = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; orientation += M_PI_2; if (orientation > mOrientedRanges.orientation.max) { orientation -= (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min); } break; default: x = float(in.x - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; y = float(in.y - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; left = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; right = float(rawRight - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; bottom = float(rawBottom - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; top = float(rawTop - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; break; } // Write output coords. PointerCoords& out = mCurrentCookedPointerData.pointerCoords[i]; out.clear(); out.setAxisValue(AMOTION_EVENT_AXIS_X, x); out.setAxisValue(AMOTION_EVENT_AXIS_Y, y); out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size); out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor); out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor); out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation); out.setAxisValue(AMOTION_EVENT_AXIS_TILT, tilt); out.setAxisValue(AMOTION_EVENT_AXIS_DISTANCE, distance); if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_BOX) { out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_1, left); out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_2, top); out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_3, right); out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_4, bottom); } else { out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor); out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor); } // Write output properties. PointerProperties& properties = mCurrentCookedPointerData.pointerProperties[i]; uint32_t id = in.id; properties.clear(); properties.id = id; properties.toolType = in.toolType; // Write id index. mCurrentCookedPointerData.idToIndex[id] = i; } } void TouchInputMapper::dispatchPointerUsage(nsecs_t when, uint32_t policyFlags, PointerUsage pointerUsage) { if (pointerUsage != mPointerUsage) { abortPointerUsage(when, policyFlags); mPointerUsage = pointerUsage; } switch (mPointerUsage) { case POINTER_USAGE_GESTURES: dispatchPointerGestures(when, policyFlags, false /*isTimeout*/); break; case POINTER_USAGE_STYLUS: dispatchPointerStylus(when, policyFlags); break; case POINTER_USAGE_MOUSE: dispatchPointerMouse(when, policyFlags); break; default: break; } } void TouchInputMapper::abortPointerUsage(nsecs_t when, uint32_t policyFlags) { switch (mPointerUsage) { case POINTER_USAGE_GESTURES: abortPointerGestures(when, policyFlags); break; case POINTER_USAGE_STYLUS: abortPointerStylus(when, policyFlags); break; case POINTER_USAGE_MOUSE: abortPointerMouse(when, policyFlags); break; default: break; } mPointerUsage = POINTER_USAGE_NONE; } void TouchInputMapper::dispatchPointerGestures(nsecs_t when, uint32_t policyFlags, bool isTimeout) { // Update current gesture coordinates. bool cancelPreviousGesture, finishPreviousGesture; bool sendEvents = preparePointerGestures(when, &cancelPreviousGesture, &finishPreviousGesture, isTimeout); if (!sendEvents) { return; } if (finishPreviousGesture) { cancelPreviousGesture = false; } // Update the pointer presentation and spots. if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_SPOT); if (finishPreviousGesture || cancelPreviousGesture) { mPointerController->clearSpots(); } mPointerController->setSpots(mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, mPointerGesture.currentGestureIdBits); } else { mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER); } // Show or hide the pointer if needed. switch (mPointerGesture.currentGestureMode) { case PointerGesture::NEUTRAL: case PointerGesture::QUIET: if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS && (mPointerGesture.lastGestureMode == PointerGesture::SWIPE || mPointerGesture.lastGestureMode == PointerGesture::FREEFORM)) { // Remind the user of where the pointer is after finishing a gesture with spots. mPointerController->unfade(PointerControllerInterface::TRANSITION_GRADUAL); } break; case PointerGesture::TAP: case PointerGesture::TAP_DRAG: case PointerGesture::BUTTON_CLICK_OR_DRAG: case PointerGesture::HOVER: case PointerGesture::PRESS: // Unfade the pointer when the current gesture manipulates the // area directly under the pointer. mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); break; case PointerGesture::SWIPE: case PointerGesture::FREEFORM: // Fade the pointer when the current gesture manipulates a different // area and there are spots to guide the user experience. if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); } else { mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); } break; } // Send events! int32_t metaState = getContext()->getGlobalMetaState(); int32_t buttonState = mCurrentButtonState; // Update last coordinates of pointers that have moved so that we observe the new // pointer positions at the same time as other pointers that have just gone up. bool down = mPointerGesture.currentGestureMode == PointerGesture::TAP || mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG || mPointerGesture.currentGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG || mPointerGesture.currentGestureMode == PointerGesture::PRESS || mPointerGesture.currentGestureMode == PointerGesture::SWIPE || mPointerGesture.currentGestureMode == PointerGesture::FREEFORM; bool moveNeeded = false; if (down && !cancelPreviousGesture && !finishPreviousGesture && !mPointerGesture.lastGestureIdBits.isEmpty() && !mPointerGesture.currentGestureIdBits.isEmpty()) { BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value & mPointerGesture.lastGestureIdBits.value); moveNeeded = updateMovedPointers(mPointerGesture.currentGestureProperties, mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, mPointerGesture.lastGestureProperties, mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, movedGestureIdBits); if (buttonState != mLastButtonState) { moveNeeded = true; } } // Send motion events for all pointers that went up or were canceled. BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits); if (!dispatchedGestureIdBits.isEmpty()) { if (cancelPreviousGesture) { dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_CANCEL, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.lastGestureProperties, mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, dispatchedGestureIdBits, -1, 0, 0, mPointerGesture.downTime); dispatchedGestureIdBits.clear(); } else { BitSet32 upGestureIdBits; if (finishPreviousGesture) { upGestureIdBits = dispatchedGestureIdBits; } else { upGestureIdBits.value = dispatchedGestureIdBits.value & ~mPointerGesture.currentGestureIdBits.value; } while (!upGestureIdBits.isEmpty()) { uint32_t id = upGestureIdBits.clearFirstMarkedBit(); dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_POINTER_UP, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.lastGestureProperties, mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, dispatchedGestureIdBits, id, 0, 0, mPointerGesture.downTime); dispatchedGestureIdBits.clearBit(id); } } } // Send motion events for all pointers that moved. if (moveNeeded) { dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.currentGestureProperties, mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, dispatchedGestureIdBits, -1, 0, 0, mPointerGesture.downTime); } // Send motion events for all pointers that went down. if (down) { BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value & ~dispatchedGestureIdBits.value); while (!downGestureIdBits.isEmpty()) { uint32_t id = downGestureIdBits.clearFirstMarkedBit(); dispatchedGestureIdBits.markBit(id); if (dispatchedGestureIdBits.count() == 1) { mPointerGesture.downTime = when; } dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, buttonState, 0, mPointerGesture.currentGestureProperties, mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, dispatchedGestureIdBits, id, 0, 0, mPointerGesture.downTime); } } // Send motion events for hover. if (mPointerGesture.currentGestureMode == PointerGesture::HOVER) { dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_HOVER_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.currentGestureProperties, mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, mPointerGesture.currentGestureIdBits, -1, 0, 0, mPointerGesture.downTime); } else if (dispatchedGestureIdBits.isEmpty() && !mPointerGesture.lastGestureIdBits.isEmpty()) { // Synthesize a hover move event after all pointers go up to indicate that // the pointer is hovering again even if the user is not currently touching // the touch pad. This ensures that a view will receive a fresh hover enter // event after a tap. float x, y; mPointerController->getPosition(&x, &y); PointerProperties pointerProperties; pointerProperties.clear(); pointerProperties.id = 0; pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; PointerCoords pointerCoords; pointerCoords.clear(); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, AMOTION_EVENT_ACTION_HOVER_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mViewport.displayId, 1, &pointerProperties, &pointerCoords, 0, 0, mPointerGesture.downTime); getListener()->notifyMotion(&args); } // Update state. mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode; if (!down) { mPointerGesture.lastGestureIdBits.clear(); } else { mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits; for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty(); ) { uint32_t id = idBits.clearFirstMarkedBit(); uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; mPointerGesture.lastGestureProperties[index].copyFrom( mPointerGesture.currentGestureProperties[index]); mPointerGesture.lastGestureCoords[index].copyFrom( mPointerGesture.currentGestureCoords[index]); mPointerGesture.lastGestureIdToIndex[id] = index; } } } void TouchInputMapper::abortPointerGestures(nsecs_t when, uint32_t policyFlags) { // Cancel previously dispatches pointers. if (!mPointerGesture.lastGestureIdBits.isEmpty()) { int32_t metaState = getContext()->getGlobalMetaState(); int32_t buttonState = mCurrentButtonState; dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_CANCEL, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.lastGestureProperties, mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, mPointerGesture.lastGestureIdBits, -1, 0, 0, mPointerGesture.downTime); } // Reset the current pointer gesture. mPointerGesture.reset(); mPointerVelocityControl.reset(); // Remove any current spots. if (mPointerController != NULL) { mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); mPointerController->clearSpots(); } } bool TouchInputMapper::preparePointerGestures(nsecs_t when, bool* outCancelPreviousGesture, bool* outFinishPreviousGesture, bool isTimeout) { *outCancelPreviousGesture = false; *outFinishPreviousGesture = false; // Handle TAP timeout. if (isTimeout) { #if DEBUG_GESTURES ALOGD("Gestures: Processing timeout"); #endif if (mPointerGesture.lastGestureMode == PointerGesture::TAP) { if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { // The tap/drag timeout has not yet expired. getContext()->requestTimeoutAtTime(mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval); } else { // The tap is finished. #if DEBUG_GESTURES ALOGD("Gestures: TAP finished"); #endif *outFinishPreviousGesture = true; mPointerGesture.activeGestureId = -1; mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL; mPointerGesture.currentGestureIdBits.clear(); mPointerVelocityControl.reset(); return true; } } // We did not handle this timeout. return false; } const uint32_t currentFingerCount = mCurrentFingerIdBits.count(); const uint32_t lastFingerCount = mLastFingerIdBits.count(); // Update the velocity tracker. { VelocityTracker::Position positions[MAX_POINTERS]; uint32_t count = 0; for (BitSet32 idBits(mCurrentFingerIdBits); !idBits.isEmpty(); count++) { uint32_t id = idBits.clearFirstMarkedBit(); const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(id); positions[count].x = pointer.x * mPointerXMovementScale; positions[count].y = pointer.y * mPointerYMovementScale; } mPointerGesture.velocityTracker.addMovement(when, mCurrentFingerIdBits, positions); } // If the gesture ever enters a mode other than TAP, HOVER or TAP_DRAG, without first returning // to NEUTRAL, then we should not generate tap event. if (mPointerGesture.lastGestureMode != PointerGesture::HOVER && mPointerGesture.lastGestureMode != PointerGesture::TAP && mPointerGesture.lastGestureMode != PointerGesture::TAP_DRAG) { mPointerGesture.resetTap(); } // Pick a new active touch id if needed. // Choose an arbitrary pointer that just went down, if there is one. // Otherwise choose an arbitrary remaining pointer. // This guarantees we always have an active touch id when there is at least one pointer. // We keep the same active touch id for as long as possible. bool activeTouchChanged = false; int32_t lastActiveTouchId = mPointerGesture.activeTouchId; int32_t activeTouchId = lastActiveTouchId; if (activeTouchId < 0) { if (!mCurrentFingerIdBits.isEmpty()) { activeTouchChanged = true; activeTouchId = mPointerGesture.activeTouchId = mCurrentFingerIdBits.firstMarkedBit(); mPointerGesture.firstTouchTime = when; } } else if (!mCurrentFingerIdBits.hasBit(activeTouchId)) { activeTouchChanged = true; if (!mCurrentFingerIdBits.isEmpty()) { activeTouchId = mPointerGesture.activeTouchId = mCurrentFingerIdBits.firstMarkedBit(); } else { activeTouchId = mPointerGesture.activeTouchId = -1; } } // Determine whether we are in quiet time. bool isQuietTime = false; if (activeTouchId < 0) { mPointerGesture.resetQuietTime(); } else { isQuietTime = when < mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval; if (!isQuietTime) { if ((mPointerGesture.lastGestureMode == PointerGesture::PRESS || mPointerGesture.lastGestureMode == PointerGesture::SWIPE || mPointerGesture.lastGestureMode == PointerGesture::FREEFORM) && currentFingerCount < 2) { // Enter quiet time when exiting swipe or freeform state. // This is to prevent accidentally entering the hover state and flinging the // pointer when finishing a swipe and there is still one pointer left onscreen. isQuietTime = true; } else if (mPointerGesture.lastGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG && currentFingerCount >= 2 && !isPointerDown(mCurrentButtonState)) { // Enter quiet time when releasing the button and there are still two or more // fingers down. This may indicate that one finger was used to press the button // but it has not gone up yet. isQuietTime = true; } if (isQuietTime) { mPointerGesture.quietTime = when; } } } // Switch states based on button and pointer state. if (isQuietTime) { // Case 1: Quiet time. (QUIET) #if DEBUG_GESTURES ALOGD("Gestures: QUIET for next %0.3fms", (mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval - when) * 0.000001f); #endif if (mPointerGesture.lastGestureMode != PointerGesture::QUIET) { *outFinishPreviousGesture = true; } mPointerGesture.activeGestureId = -1; mPointerGesture.currentGestureMode = PointerGesture::QUIET; mPointerGesture.currentGestureIdBits.clear(); mPointerVelocityControl.reset(); } else if (isPointerDown(mCurrentButtonState)) { // Case 2: Button is pressed. (BUTTON_CLICK_OR_DRAG) // The pointer follows the active touch point. // Emit DOWN, MOVE, UP events at the pointer location. // // Only the active touch matters; other fingers are ignored. This policy helps // to handle the case where the user places a second finger on the touch pad // to apply the necessary force to depress an integrated button below the surface. // We don't want the second finger to be delivered to applications. // // For this to work well, we need to make sure to track the pointer that is really // active. If the user first puts one finger down to click then adds another // finger to drag then the active pointer should switch to the finger that is // being dragged. #if DEBUG_GESTURES ALOGD("Gestures: BUTTON_CLICK_OR_DRAG activeTouchId=%d, " "currentFingerCount=%d", activeTouchId, currentFingerCount); #endif // Reset state when just starting. if (mPointerGesture.lastGestureMode != PointerGesture::BUTTON_CLICK_OR_DRAG) { *outFinishPreviousGesture = true; mPointerGesture.activeGestureId = 0; } // Switch pointers if needed. // Find the fastest pointer and follow it. if (activeTouchId >= 0 && currentFingerCount > 1) { int32_t bestId = -1; float bestSpeed = mConfig.pointerGestureDragMinSwitchSpeed; for (BitSet32 idBits(mCurrentFingerIdBits); !idBits.isEmpty(); ) { uint32_t id = idBits.clearFirstMarkedBit(); float vx, vy; if (mPointerGesture.velocityTracker.getVelocity(id, &vx, &vy)) { float speed = hypotf(vx, vy); if (speed > bestSpeed) { bestId = id; bestSpeed = speed; } } } if (bestId >= 0 && bestId != activeTouchId) { mPointerGesture.activeTouchId = activeTouchId = bestId; activeTouchChanged = true; #if DEBUG_GESTURES ALOGD("Gestures: BUTTON_CLICK_OR_DRAG switched pointers, " "bestId=%d, bestSpeed=%0.3f", bestId, bestSpeed); #endif } } if (activeTouchId >= 0 && mLastFingerIdBits.hasBit(activeTouchId)) { const RawPointerData::Pointer& currentPointer = mCurrentRawPointerData.pointerForId(activeTouchId); const RawPointerData::Pointer& lastPointer = mLastRawPointerData.pointerForId(activeTouchId); float deltaX = (currentPointer.x - lastPointer.x) * mPointerXMovementScale; float deltaY = (currentPointer.y - lastPointer.y) * mPointerYMovementScale; rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); mPointerVelocityControl.move(when, &deltaX, &deltaY); // Move the pointer using a relative motion. // When using spots, the click will occur at the position of the anchor // spot and all other spots will move there. mPointerController->move(deltaX, deltaY); } else { mPointerVelocityControl.reset(); } float x, y; mPointerController->getPosition(&x, &y); mPointerGesture.currentGestureMode = PointerGesture::BUTTON_CLICK_OR_DRAG; mPointerGesture.currentGestureIdBits.clear(); mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; mPointerGesture.currentGestureProperties[0].clear(); mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; mPointerGesture.currentGestureCoords[0].clear(); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); } else if (currentFingerCount == 0) { // Case 3. No fingers down and button is not pressed. (NEUTRAL) if (mPointerGesture.lastGestureMode != PointerGesture::NEUTRAL) { *outFinishPreviousGesture = true; } // Watch for taps coming out of HOVER or TAP_DRAG mode. // Checking for taps after TAP_DRAG allows us to detect double-taps. bool tapped = false; if ((mPointerGesture.lastGestureMode == PointerGesture::HOVER || mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) && lastFingerCount == 1) { if (when <= mPointerGesture.tapDownTime + mConfig.pointerGestureTapInterval) { float x, y; mPointerController->getPosition(&x, &y); if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop && fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { #if DEBUG_GESTURES ALOGD("Gestures: TAP"); #endif mPointerGesture.tapUpTime = when; getContext()->requestTimeoutAtTime(when + mConfig.pointerGestureTapDragInterval); mPointerGesture.activeGestureId = 0; mPointerGesture.currentGestureMode = PointerGesture::TAP; mPointerGesture.currentGestureIdBits.clear(); mPointerGesture.currentGestureIdBits.markBit( mPointerGesture.activeGestureId); mPointerGesture.currentGestureIdToIndex[ mPointerGesture.activeGestureId] = 0; mPointerGesture.currentGestureProperties[0].clear(); mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; mPointerGesture.currentGestureCoords[0].clear(); mPointerGesture.currentGestureCoords[0].setAxisValue( AMOTION_EVENT_AXIS_X, mPointerGesture.tapX); mPointerGesture.currentGestureCoords[0].setAxisValue( AMOTION_EVENT_AXIS_Y, mPointerGesture.tapY); mPointerGesture.currentGestureCoords[0].setAxisValue( AMOTION_EVENT_AXIS_PRESSURE, 1.0f); tapped = true; } else { #if DEBUG_GESTURES ALOGD("Gestures: Not a TAP, deltaX=%f, deltaY=%f", x - mPointerGesture.tapX, y - mPointerGesture.tapY); #endif } } else { #if DEBUG_GESTURES if (mPointerGesture.tapDownTime != LLONG_MIN) { ALOGD("Gestures: Not a TAP, %0.3fms since down", (when - mPointerGesture.tapDownTime) * 0.000001f); } else { ALOGD("Gestures: Not a TAP, incompatible mode transitions"); } #endif } } mPointerVelocityControl.reset(); if (!tapped) { #if DEBUG_GESTURES ALOGD("Gestures: NEUTRAL"); #endif mPointerGesture.activeGestureId = -1; mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL; mPointerGesture.currentGestureIdBits.clear(); } } else if (currentFingerCount == 1) { // Case 4. Exactly one finger down, button is not pressed. (HOVER or TAP_DRAG) // The pointer follows the active touch point. // When in HOVER, emit HOVER_MOVE events at the pointer location. // When in TAP_DRAG, emit MOVE events at the pointer location. ALOG_ASSERT(activeTouchId >= 0); mPointerGesture.currentGestureMode = PointerGesture::HOVER; if (mPointerGesture.lastGestureMode == PointerGesture::TAP) { if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { float x, y; mPointerController->getPosition(&x, &y); if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop && fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG; } else { #if DEBUG_GESTURES ALOGD("Gestures: Not a TAP_DRAG, deltaX=%f, deltaY=%f", x - mPointerGesture.tapX, y - mPointerGesture.tapY); #endif } } else { #if DEBUG_GESTURES ALOGD("Gestures: Not a TAP_DRAG, %0.3fms time since up", (when - mPointerGesture.tapUpTime) * 0.000001f); #endif } } else if (mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) { mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG; } if (mLastFingerIdBits.hasBit(activeTouchId)) { const RawPointerData::Pointer& currentPointer = mCurrentRawPointerData.pointerForId(activeTouchId); const RawPointerData::Pointer& lastPointer = mLastRawPointerData.pointerForId(activeTouchId); float deltaX = (currentPointer.x - lastPointer.x) * mPointerXMovementScale; float deltaY = (currentPointer.y - lastPointer.y) * mPointerYMovementScale; rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); mPointerVelocityControl.move(when, &deltaX, &deltaY); // Move the pointer using a relative motion. // When using spots, the hover or drag will occur at the position of the anchor spot. mPointerController->move(deltaX, deltaY); } else { mPointerVelocityControl.reset(); } bool down; if (mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG) { #if DEBUG_GESTURES ALOGD("Gestures: TAP_DRAG"); #endif down = true; } else { #if DEBUG_GESTURES ALOGD("Gestures: HOVER"); #endif if (mPointerGesture.lastGestureMode != PointerGesture::HOVER) { *outFinishPreviousGesture = true; } mPointerGesture.activeGestureId = 0; down = false; } float x, y; mPointerController->getPosition(&x, &y); mPointerGesture.currentGestureIdBits.clear(); mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; mPointerGesture.currentGestureProperties[0].clear(); mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; mPointerGesture.currentGestureCoords[0].clear(); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f); if (lastFingerCount == 0 && currentFingerCount != 0) { mPointerGesture.resetTap(); mPointerGesture.tapDownTime = when; mPointerGesture.tapX = x; mPointerGesture.tapY = y; } } else { // Case 5. At least two fingers down, button is not pressed. (PRESS, SWIPE or FREEFORM) // We need to provide feedback for each finger that goes down so we cannot wait // for the fingers to move before deciding what to do. // // The ambiguous case is deciding what to do when there are two fingers down but they // have not moved enough to determine whether they are part of a drag or part of a // freeform gesture, or just a press or long-press at the pointer location. // // When there are two fingers we start with the PRESS hypothesis and we generate a // down at the pointer location. // // When the two fingers move enough or when additional fingers are added, we make // a decision to transition into SWIPE or FREEFORM mode accordingly. ALOG_ASSERT(activeTouchId >= 0); bool settled = when >= mPointerGesture.firstTouchTime + mConfig.pointerGestureMultitouchSettleInterval; if (mPointerGesture.lastGestureMode != PointerGesture::PRESS && mPointerGesture.lastGestureMode != PointerGesture::SWIPE && mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) { *outFinishPreviousGesture = true; } else if (!settled && currentFingerCount > lastFingerCount) { // Additional pointers have gone down but not yet settled. // Reset the gesture. #if DEBUG_GESTURES ALOGD("Gestures: Resetting gesture since additional pointers went down for MULTITOUCH, " "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime + mConfig.pointerGestureMultitouchSettleInterval - when) * 0.000001f); #endif *outCancelPreviousGesture = true; } else { // Continue previous gesture. mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode; } if (*outFinishPreviousGesture || *outCancelPreviousGesture) { mPointerGesture.currentGestureMode = PointerGesture::PRESS; mPointerGesture.activeGestureId = 0; mPointerGesture.referenceIdBits.clear(); mPointerVelocityControl.reset(); // Use the centroid and pointer location as the reference points for the gesture. #if DEBUG_GESTURES ALOGD("Gestures: Using centroid as reference for MULTITOUCH, " "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime + mConfig.pointerGestureMultitouchSettleInterval - when) * 0.000001f); #endif mCurrentRawPointerData.getCentroidOfTouchingPointers( &mPointerGesture.referenceTouchX, &mPointerGesture.referenceTouchY); mPointerController->getPosition(&mPointerGesture.referenceGestureX, &mPointerGesture.referenceGestureY); } // Clear the reference deltas for fingers not yet included in the reference calculation. for (BitSet32 idBits(mCurrentFingerIdBits.value & ~mPointerGesture.referenceIdBits.value); !idBits.isEmpty(); ) { uint32_t id = idBits.clearFirstMarkedBit(); mPointerGesture.referenceDeltas[id].dx = 0; mPointerGesture.referenceDeltas[id].dy = 0; } mPointerGesture.referenceIdBits = mCurrentFingerIdBits; // Add delta for all fingers and calculate a common movement delta. float commonDeltaX = 0, commonDeltaY = 0; BitSet32 commonIdBits(mLastFingerIdBits.value & mCurrentFingerIdBits.value); for (BitSet32 idBits(commonIdBits); !idBits.isEmpty(); ) { bool first = (idBits == commonIdBits); uint32_t id = idBits.clearFirstMarkedBit(); const RawPointerData::Pointer& cpd = mCurrentRawPointerData.pointerForId(id); const RawPointerData::Pointer& lpd = mLastRawPointerData.pointerForId(id); PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; delta.dx += cpd.x - lpd.x; delta.dy += cpd.y - lpd.y; if (first) { commonDeltaX = delta.dx; commonDeltaY = delta.dy; } else { commonDeltaX = calculateCommonVector(commonDeltaX, delta.dx); commonDeltaY = calculateCommonVector(commonDeltaY, delta.dy); } } // Consider transitions from PRESS to SWIPE or MULTITOUCH. if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) { float dist[MAX_POINTER_ID + 1]; int32_t distOverThreshold = 0; for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) { uint32_t id = idBits.clearFirstMarkedBit(); PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; dist[id] = hypotf(delta.dx * mPointerXZoomScale, delta.dy * mPointerYZoomScale); if (dist[id] > mConfig.pointerGestureMultitouchMinDistance) { distOverThreshold += 1; } } // Only transition when at least two pointers have moved further than // the minimum distance threshold. if (distOverThreshold >= 2) { if (currentFingerCount > 2) { // There are more than two pointers, switch to FREEFORM. #if DEBUG_GESTURES ALOGD("Gestures: PRESS transitioned to FREEFORM, number of pointers %d > 2", currentFingerCount); #endif *outCancelPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; } else { // There are exactly two pointers. BitSet32 idBits(mCurrentFingerIdBits); uint32_t id1 = idBits.clearFirstMarkedBit(); uint32_t id2 = idBits.firstMarkedBit(); const RawPointerData::Pointer& p1 = mCurrentRawPointerData.pointerForId(id1); const RawPointerData::Pointer& p2 = mCurrentRawPointerData.pointerForId(id2); float mutualDistance = distance(p1.x, p1.y, p2.x, p2.y); if (mutualDistance > mPointerGestureMaxSwipeWidth) { // There are two pointers but they are too far apart for a SWIPE, // switch to FREEFORM. #if DEBUG_GESTURES ALOGD("Gestures: PRESS transitioned to FREEFORM, distance %0.3f > %0.3f", mutualDistance, mPointerGestureMaxSwipeWidth); #endif *outCancelPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; } else { // There are two pointers. Wait for both pointers to start moving // before deciding whether this is a SWIPE or FREEFORM gesture. float dist1 = dist[id1]; float dist2 = dist[id2]; if (dist1 >= mConfig.pointerGestureMultitouchMinDistance && dist2 >= mConfig.pointerGestureMultitouchMinDistance) { // Calculate the dot product of the displacement vectors. // When the vectors are oriented in approximately the same direction, // the angle betweeen them is near zero and the cosine of the angle // approches 1.0. Recall that dot(v1, v2) = cos(angle) * mag(v1) * mag(v2). PointerGesture::Delta& delta1 = mPointerGesture.referenceDeltas[id1]; PointerGesture::Delta& delta2 = mPointerGesture.referenceDeltas[id2]; float dx1 = delta1.dx * mPointerXZoomScale; float dy1 = delta1.dy * mPointerYZoomScale; float dx2 = delta2.dx * mPointerXZoomScale; float dy2 = delta2.dy * mPointerYZoomScale; float dot = dx1 * dx2 + dy1 * dy2; float cosine = dot / (dist1 * dist2); // denominator always > 0 if (cosine >= mConfig.pointerGestureSwipeTransitionAngleCosine) { // Pointers are moving in the same direction. Switch to SWIPE. #if DEBUG_GESTURES ALOGD("Gestures: PRESS transitioned to SWIPE, " "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " "cosine %0.3f >= %0.3f", dist1, mConfig.pointerGestureMultitouchMinDistance, dist2, mConfig.pointerGestureMultitouchMinDistance, cosine, mConfig.pointerGestureSwipeTransitionAngleCosine); #endif mPointerGesture.currentGestureMode = PointerGesture::SWIPE; } else { // Pointers are moving in different directions. Switch to FREEFORM. #if DEBUG_GESTURES ALOGD("Gestures: PRESS transitioned to FREEFORM, " "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " "cosine %0.3f < %0.3f", dist1, mConfig.pointerGestureMultitouchMinDistance, dist2, mConfig.pointerGestureMultitouchMinDistance, cosine, mConfig.pointerGestureSwipeTransitionAngleCosine); #endif *outCancelPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; } } } } } } else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) { // Switch from SWIPE to FREEFORM if additional pointers go down. // Cancel previous gesture. if (currentFingerCount > 2) { #if DEBUG_GESTURES ALOGD("Gestures: SWIPE transitioned to FREEFORM, number of pointers %d > 2", currentFingerCount); #endif *outCancelPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; } } // Move the reference points based on the overall group motion of the fingers // except in PRESS mode while waiting for a transition to occur. if (mPointerGesture.currentGestureMode != PointerGesture::PRESS && (commonDeltaX || commonDeltaY)) { for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) { uint32_t id = idBits.clearFirstMarkedBit(); PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; delta.dx = 0; delta.dy = 0; } mPointerGesture.referenceTouchX += commonDeltaX; mPointerGesture.referenceTouchY += commonDeltaY; commonDeltaX *= mPointerXMovementScale; commonDeltaY *= mPointerYMovementScale; rotateDelta(mSurfaceOrientation, &commonDeltaX, &commonDeltaY); mPointerVelocityControl.move(when, &commonDeltaX, &commonDeltaY); mPointerGesture.referenceGestureX += commonDeltaX; mPointerGesture.referenceGestureY += commonDeltaY; } // Report gestures. if (mPointerGesture.currentGestureMode == PointerGesture::PRESS || mPointerGesture.currentGestureMode == PointerGesture::SWIPE) { // PRESS or SWIPE mode. #if DEBUG_GESTURES ALOGD("Gestures: PRESS or SWIPE activeTouchId=%d," "activeGestureId=%d, currentTouchPointerCount=%d", activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); #endif ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); mPointerGesture.currentGestureIdBits.clear(); mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; mPointerGesture.currentGestureProperties[0].clear(); mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; mPointerGesture.currentGestureCoords[0].clear(); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, mPointerGesture.referenceGestureX); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, mPointerGesture.referenceGestureY); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); } else if (mPointerGesture.currentGestureMode == PointerGesture::FREEFORM) { // FREEFORM mode. #if DEBUG_GESTURES ALOGD("Gestures: FREEFORM activeTouchId=%d," "activeGestureId=%d, currentTouchPointerCount=%d", activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); #endif ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); mPointerGesture.currentGestureIdBits.clear(); BitSet32 mappedTouchIdBits; BitSet32 usedGestureIdBits; if (mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) { // Initially, assign the active gesture id to the active touch point // if there is one. No other touch id bits are mapped yet. if (!*outCancelPreviousGesture) { mappedTouchIdBits.markBit(activeTouchId); usedGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] = mPointerGesture.activeGestureId; } else { mPointerGesture.activeGestureId = -1; } } else { // Otherwise, assume we mapped all touches from the previous frame. // Reuse all mappings that are still applicable. mappedTouchIdBits.value = mLastFingerIdBits.value & mCurrentFingerIdBits.value; usedGestureIdBits = mPointerGesture.lastGestureIdBits; // Check whether we need to choose a new active gesture id because the // current went went up. for (BitSet32 upTouchIdBits(mLastFingerIdBits.value & ~mCurrentFingerIdBits.value); !upTouchIdBits.isEmpty(); ) { uint32_t upTouchId = upTouchIdBits.clearFirstMarkedBit(); uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId]; if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) { mPointerGesture.activeGestureId = -1; break; } } } #if DEBUG_GESTURES ALOGD("Gestures: FREEFORM follow up " "mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, " "activeGestureId=%d", mappedTouchIdBits.value, usedGestureIdBits.value, mPointerGesture.activeGestureId); #endif BitSet32 idBits(mCurrentFingerIdBits); for (uint32_t i = 0; i < currentFingerCount; i++) { uint32_t touchId = idBits.clearFirstMarkedBit(); uint32_t gestureId; if (!mappedTouchIdBits.hasBit(touchId)) { gestureId = usedGestureIdBits.markFirstUnmarkedBit(); mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId; #if DEBUG_GESTURES ALOGD("Gestures: FREEFORM " "new mapping for touch id %d -> gesture id %d", touchId, gestureId); #endif } else { gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId]; #if DEBUG_GESTURES ALOGD("Gestures: FREEFORM " "existing mapping for touch id %d -> gesture id %d", touchId, gestureId); #endif } mPointerGesture.currentGestureIdBits.markBit(gestureId); mPointerGesture.currentGestureIdToIndex[gestureId] = i; const RawPointerData::Pointer& pointer = mCurrentRawPointerData.pointerForId(touchId); float deltaX = (pointer.x - mPointerGesture.referenceTouchX) * mPointerXZoomScale; float deltaY = (pointer.y - mPointerGesture.referenceTouchY) * mPointerYZoomScale; rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); mPointerGesture.currentGestureProperties[i].clear(); mPointerGesture.currentGestureProperties[i].id = gestureId; mPointerGesture.currentGestureProperties[i].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; mPointerGesture.currentGestureCoords[i].clear(); mPointerGesture.currentGestureCoords[i].setAxisValue( AMOTION_EVENT_AXIS_X, mPointerGesture.referenceGestureX + deltaX); mPointerGesture.currentGestureCoords[i].setAxisValue( AMOTION_EVENT_AXIS_Y, mPointerGesture.referenceGestureY + deltaY); mPointerGesture.currentGestureCoords[i].setAxisValue( AMOTION_EVENT_AXIS_PRESSURE, 1.0f); } if (mPointerGesture.activeGestureId < 0) { mPointerGesture.activeGestureId = mPointerGesture.currentGestureIdBits.firstMarkedBit(); #if DEBUG_GESTURES ALOGD("Gestures: FREEFORM new " "activeGestureId=%d", mPointerGesture.activeGestureId); #endif } } } mPointerController->setButtonState(mCurrentButtonState); #if DEBUG_GESTURES ALOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, " "currentGestureMode=%d, currentGestureIdBits=0x%08x, " "lastGestureMode=%d, lastGestureIdBits=0x%08x", toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture), mPointerGesture.currentGestureMode, mPointerGesture.currentGestureIdBits.value, mPointerGesture.lastGestureMode, mPointerGesture.lastGestureIdBits.value); for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty(); ) { uint32_t id = idBits.clearFirstMarkedBit(); uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; const PointerProperties& properties = mPointerGesture.currentGestureProperties[index]; const PointerCoords& coords = mPointerGesture.currentGestureCoords[index]; ALOGD(" currentGesture[%d]: index=%d, toolType=%d, " "x=%0.3f, y=%0.3f, pressure=%0.3f", id, index, properties.toolType, coords.getAxisValue(AMOTION_EVENT_AXIS_X), coords.getAxisValue(AMOTION_EVENT_AXIS_Y), coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); } for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty(); ) { uint32_t id = idBits.clearFirstMarkedBit(); uint32_t index = mPointerGesture.lastGestureIdToIndex[id]; const PointerProperties& properties = mPointerGesture.lastGestureProperties[index]; const PointerCoords& coords = mPointerGesture.lastGestureCoords[index]; ALOGD(" lastGesture[%d]: index=%d, toolType=%d, " "x=%0.3f, y=%0.3f, pressure=%0.3f", id, index, properties.toolType, coords.getAxisValue(AMOTION_EVENT_AXIS_X), coords.getAxisValue(AMOTION_EVENT_AXIS_Y), coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); } #endif return true; } void TouchInputMapper::dispatchPointerStylus(nsecs_t when, uint32_t policyFlags) { mPointerSimple.currentCoords.clear(); mPointerSimple.currentProperties.clear(); bool down, hovering; if (!mCurrentStylusIdBits.isEmpty()) { uint32_t id = mCurrentStylusIdBits.firstMarkedBit(); uint32_t index = mCurrentCookedPointerData.idToIndex[id]; float x = mCurrentCookedPointerData.pointerCoords[index].getX(); float y = mCurrentCookedPointerData.pointerCoords[index].getY(); mPointerController->setPosition(x, y); hovering = mCurrentCookedPointerData.hoveringIdBits.hasBit(id); down = !hovering; mPointerController->getPosition(&x, &y); mPointerSimple.currentCoords.copyFrom(mCurrentCookedPointerData.pointerCoords[index]); mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); mPointerSimple.currentProperties.id = 0; mPointerSimple.currentProperties.toolType = mCurrentCookedPointerData.pointerProperties[index].toolType; } else { down = false; hovering = false; } dispatchPointerSimple(when, policyFlags, down, hovering); } void TouchInputMapper::abortPointerStylus(nsecs_t when, uint32_t policyFlags) { abortPointerSimple(when, policyFlags); } void TouchInputMapper::dispatchPointerMouse(nsecs_t when, uint32_t policyFlags) { mPointerSimple.currentCoords.clear(); mPointerSimple.currentProperties.clear(); bool down, hovering; if (!mCurrentMouseIdBits.isEmpty()) { uint32_t id = mCurrentMouseIdBits.firstMarkedBit(); uint32_t currentIndex = mCurrentRawPointerData.idToIndex[id]; if (mLastMouseIdBits.hasBit(id)) { uint32_t lastIndex = mCurrentRawPointerData.idToIndex[id]; float deltaX = (mCurrentRawPointerData.pointers[currentIndex].x - mLastRawPointerData.pointers[lastIndex].x) * mPointerXMovementScale; float deltaY = (mCurrentRawPointerData.pointers[currentIndex].y - mLastRawPointerData.pointers[lastIndex].y) * mPointerYMovementScale; rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); mPointerVelocityControl.move(when, &deltaX, &deltaY); mPointerController->move(deltaX, deltaY); } else { mPointerVelocityControl.reset(); } down = isPointerDown(mCurrentButtonState); hovering = !down; float x, y; mPointerController->getPosition(&x, &y); mPointerSimple.currentCoords.copyFrom( mCurrentCookedPointerData.pointerCoords[currentIndex]); mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, hovering ? 0.0f : 1.0f); mPointerSimple.currentProperties.id = 0; mPointerSimple.currentProperties.toolType = mCurrentCookedPointerData.pointerProperties[currentIndex].toolType; } else { mPointerVelocityControl.reset(); down = false; hovering = false; } dispatchPointerSimple(when, policyFlags, down, hovering); } void TouchInputMapper::abortPointerMouse(nsecs_t when, uint32_t policyFlags) { abortPointerSimple(when, policyFlags); mPointerVelocityControl.reset(); } void TouchInputMapper::dispatchPointerSimple(nsecs_t when, uint32_t policyFlags, bool down, bool hovering) { int32_t metaState = getContext()->getGlobalMetaState(); if (mPointerController != NULL) { if (down || hovering) { mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER); mPointerController->clearSpots(); mPointerController->setButtonState(mCurrentButtonState); mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); } else if (!down && !hovering && (mPointerSimple.down || mPointerSimple.hovering)) { mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); } } if (mPointerSimple.down && !down) { mPointerSimple.down = false; // Send up. NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, AMOTION_EVENT_ACTION_UP, 0, metaState, mLastButtonState, 0, mViewport.displayId, 1, &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, mOrientedXPrecision, mOrientedYPrecision, mPointerSimple.downTime); getListener()->notifyMotion(&args); } if (mPointerSimple.hovering && !hovering) { mPointerSimple.hovering = false; // Send hover exit. NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, AMOTION_EVENT_ACTION_HOVER_EXIT, 0, metaState, mLastButtonState, 0, mViewport.displayId, 1, &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, mOrientedXPrecision, mOrientedYPrecision, mPointerSimple.downTime); getListener()->notifyMotion(&args); } if (down) { if (!mPointerSimple.down) { mPointerSimple.down = true; mPointerSimple.downTime = when; // Send down. NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, AMOTION_EVENT_ACTION_DOWN, 0, metaState, mCurrentButtonState, 0, mViewport.displayId, 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, mOrientedXPrecision, mOrientedYPrecision, mPointerSimple.downTime); getListener()->notifyMotion(&args); } // Send move. NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, AMOTION_EVENT_ACTION_MOVE, 0, metaState, mCurrentButtonState, 0, mViewport.displayId, 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, mOrientedXPrecision, mOrientedYPrecision, mPointerSimple.downTime); getListener()->notifyMotion(&args); } if (hovering) { if (!mPointerSimple.hovering) { mPointerSimple.hovering = true; // Send hover enter. NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, AMOTION_EVENT_ACTION_HOVER_ENTER, 0, metaState, mCurrentButtonState, 0, mViewport.displayId, 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, mOrientedXPrecision, mOrientedYPrecision, mPointerSimple.downTime); getListener()->notifyMotion(&args); } // Send hover move. NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, AMOTION_EVENT_ACTION_HOVER_MOVE, 0, metaState, mCurrentButtonState, 0, mViewport.displayId, 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, mOrientedXPrecision, mOrientedYPrecision, mPointerSimple.downTime); getListener()->notifyMotion(&args); } if (mCurrentRawVScroll || mCurrentRawHScroll) { float vscroll = mCurrentRawVScroll; float hscroll = mCurrentRawHScroll; mWheelYVelocityControl.move(when, NULL, &vscroll); mWheelXVelocityControl.move(when, &hscroll, NULL); // Send scroll. PointerCoords pointerCoords; pointerCoords.copyFrom(mPointerSimple.currentCoords); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll); NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, AMOTION_EVENT_ACTION_SCROLL, 0, metaState, mCurrentButtonState, 0, mViewport.displayId, 1, &mPointerSimple.currentProperties, &pointerCoords, mOrientedXPrecision, mOrientedYPrecision, mPointerSimple.downTime); getListener()->notifyMotion(&args); } // Save state. if (down || hovering) { mPointerSimple.lastCoords.copyFrom(mPointerSimple.currentCoords); mPointerSimple.lastProperties.copyFrom(mPointerSimple.currentProperties); } else { mPointerSimple.reset(); } } void TouchInputMapper::abortPointerSimple(nsecs_t when, uint32_t policyFlags) { mPointerSimple.currentCoords.clear(); mPointerSimple.currentProperties.clear(); dispatchPointerSimple(when, policyFlags, false, false); } void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source, int32_t action, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags, const PointerProperties* properties, const PointerCoords* coords, const uint32_t* idToIndex, BitSet32 idBits, int32_t changedId, float xPrecision, float yPrecision, nsecs_t downTime) { PointerCoords pointerCoords[MAX_POINTERS]; PointerProperties pointerProperties[MAX_POINTERS]; uint32_t pointerCount = 0; while (!idBits.isEmpty()) { uint32_t id = idBits.clearFirstMarkedBit(); uint32_t index = idToIndex[id]; pointerProperties[pointerCount].copyFrom(properties[index]); pointerCoords[pointerCount].copyFrom(coords[index]); if (changedId >= 0 && id == uint32_t(changedId)) { action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; } pointerCount += 1; } ALOG_ASSERT(pointerCount != 0); if (changedId >= 0 && pointerCount == 1) { // Replace initial down and final up action. // We can compare the action without masking off the changed pointer index // because we know the index is 0. if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) { action = AMOTION_EVENT_ACTION_DOWN; } else if (action == AMOTION_EVENT_ACTION_POINTER_UP) { action = AMOTION_EVENT_ACTION_UP; } else { // Can't happen. ALOG_ASSERT(false); } } NotifyMotionArgs args(when, getDeviceId(), source, policyFlags, action, flags, metaState, buttonState, edgeFlags, mViewport.displayId, pointerCount, pointerProperties, pointerCoords, xPrecision, yPrecision, downTime); getListener()->notifyMotion(&args); } bool TouchInputMapper::updateMovedPointers(const PointerProperties* inProperties, const PointerCoords* inCoords, const uint32_t* inIdToIndex, PointerProperties* outProperties, PointerCoords* outCoords, const uint32_t* outIdToIndex, BitSet32 idBits) const { bool changed = false; while (!idBits.isEmpty()) { uint32_t id = idBits.clearFirstMarkedBit(); uint32_t inIndex = inIdToIndex[id]; uint32_t outIndex = outIdToIndex[id]; const PointerProperties& curInProperties = inProperties[inIndex]; const PointerCoords& curInCoords = inCoords[inIndex]; PointerProperties& curOutProperties = outProperties[outIndex]; PointerCoords& curOutCoords = outCoords[outIndex]; if (curInProperties != curOutProperties) { curOutProperties.copyFrom(curInProperties); changed = true; } if (curInCoords != curOutCoords) { curOutCoords.copyFrom(curInCoords); changed = true; } } return changed; } void TouchInputMapper::fadePointer() { if (mPointerController != NULL) { mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); } } bool TouchInputMapper::isPointInsideSurface(int32_t x, int32_t y) { return x >= mRawPointerAxes.x.minValue && x <= mRawPointerAxes.x.maxValue && y >= mRawPointerAxes.y.minValue && y <= mRawPointerAxes.y.maxValue; } const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHit( int32_t x, int32_t y) { size_t numVirtualKeys = mVirtualKeys.size(); for (size_t i = 0; i < numVirtualKeys; i++) { const VirtualKey& virtualKey = mVirtualKeys[i]; #if DEBUG_VIRTUAL_KEYS ALOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, " "left=%d, top=%d, right=%d, bottom=%d", x, y, virtualKey.keyCode, virtualKey.scanCode, virtualKey.hitLeft, virtualKey.hitTop, virtualKey.hitRight, virtualKey.hitBottom); #endif if (virtualKey.isHit(x, y)) { return & virtualKey; } } return NULL; } void TouchInputMapper::assignPointerIds() { uint32_t currentPointerCount = mCurrentRawPointerData.pointerCount; uint32_t lastPointerCount = mLastRawPointerData.pointerCount; mCurrentRawPointerData.clearIdBits(); if (currentPointerCount == 0) { // No pointers to assign. return; } if (lastPointerCount == 0) { // All pointers are new. for (uint32_t i = 0; i < currentPointerCount; i++) { uint32_t id = i; mCurrentRawPointerData.pointers[i].id = id; mCurrentRawPointerData.idToIndex[id] = i; mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(i)); } return; } if (currentPointerCount == 1 && lastPointerCount == 1 && mCurrentRawPointerData.pointers[0].toolType == mLastRawPointerData.pointers[0].toolType) { // Only one pointer and no change in count so it must have the same id as before. uint32_t id = mLastRawPointerData.pointers[0].id; mCurrentRawPointerData.pointers[0].id = id; mCurrentRawPointerData.idToIndex[id] = 0; mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(0)); return; } // General case. // We build a heap of squared euclidean distances between current and last pointers // associated with the current and last pointer indices. Then, we find the best // match (by distance) for each current pointer. // The pointers must have the same tool type but it is possible for them to // transition from hovering to touching or vice-versa while retaining the same id. PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS]; uint32_t heapSize = 0; for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount; currentPointerIndex++) { for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount; lastPointerIndex++) { const RawPointerData::Pointer& currentPointer = mCurrentRawPointerData.pointers[currentPointerIndex]; const RawPointerData::Pointer& lastPointer = mLastRawPointerData.pointers[lastPointerIndex]; if (currentPointer.toolType == lastPointer.toolType) { int64_t deltaX = currentPointer.x - lastPointer.x; int64_t deltaY = currentPointer.y - lastPointer.y; uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); // Insert new element into the heap (sift up). heap[heapSize].currentPointerIndex = currentPointerIndex; heap[heapSize].lastPointerIndex = lastPointerIndex; heap[heapSize].distance = distance; heapSize += 1; } } } // Heapify for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) { startIndex -= 1; for (uint32_t parentIndex = startIndex; ;) { uint32_t childIndex = parentIndex * 2 + 1; if (childIndex >= heapSize) { break; } if (childIndex + 1 < heapSize && heap[childIndex + 1].distance < heap[childIndex].distance) { childIndex += 1; } if (heap[parentIndex].distance <= heap[childIndex].distance) { break; } swap(heap[parentIndex], heap[childIndex]); parentIndex = childIndex; } } #if DEBUG_POINTER_ASSIGNMENT ALOGD("assignPointerIds - initial distance min-heap: size=%d", heapSize); for (size_t i = 0; i < heapSize; i++) { ALOGD(" heap[%d]: cur=%d, last=%d, distance=%lld", i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, heap[i].distance); } #endif // Pull matches out by increasing order of distance. // To avoid reassigning pointers that have already been matched, the loop keeps track // of which last and current pointers have been matched using the matchedXXXBits variables. // It also tracks the used pointer id bits. BitSet32 matchedLastBits(0); BitSet32 matchedCurrentBits(0); BitSet32 usedIdBits(0); bool first = true; for (uint32_t i = min(currentPointerCount, lastPointerCount); heapSize > 0 && i > 0; i--) { while (heapSize > 0) { if (first) { // The first time through the loop, we just consume the root element of // the heap (the one with smallest distance). first = false; } else { // Previous iterations consumed the root element of the heap. // Pop root element off of the heap (sift down). heap[0] = heap[heapSize]; for (uint32_t parentIndex = 0; ;) { uint32_t childIndex = parentIndex * 2 + 1; if (childIndex >= heapSize) { break; } if (childIndex + 1 < heapSize && heap[childIndex + 1].distance < heap[childIndex].distance) { childIndex += 1; } if (heap[parentIndex].distance <= heap[childIndex].distance) { break; } swap(heap[parentIndex], heap[childIndex]); parentIndex = childIndex; } #if DEBUG_POINTER_ASSIGNMENT ALOGD("assignPointerIds - reduced distance min-heap: size=%d", heapSize); for (size_t i = 0; i < heapSize; i++) { ALOGD(" heap[%d]: cur=%d, last=%d, distance=%lld", i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, heap[i].distance); } #endif } heapSize -= 1; uint32_t currentPointerIndex = heap[0].currentPointerIndex; if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched uint32_t lastPointerIndex = heap[0].lastPointerIndex; if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched matchedCurrentBits.markBit(currentPointerIndex); matchedLastBits.markBit(lastPointerIndex); uint32_t id = mLastRawPointerData.pointers[lastPointerIndex].id; mCurrentRawPointerData.pointers[currentPointerIndex].id = id; mCurrentRawPointerData.idToIndex[id] = currentPointerIndex; mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(currentPointerIndex)); usedIdBits.markBit(id); #if DEBUG_POINTER_ASSIGNMENT ALOGD("assignPointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld", lastPointerIndex, currentPointerIndex, id, heap[0].distance); #endif break; } } // Assign fresh ids to pointers that were not matched in the process. for (uint32_t i = currentPointerCount - matchedCurrentBits.count(); i != 0; i--) { uint32_t currentPointerIndex = matchedCurrentBits.markFirstUnmarkedBit(); uint32_t id = usedIdBits.markFirstUnmarkedBit(); mCurrentRawPointerData.pointers[currentPointerIndex].id = id; mCurrentRawPointerData.idToIndex[id] = currentPointerIndex; mCurrentRawPointerData.markIdBit(id, mCurrentRawPointerData.isHovering(currentPointerIndex)); #if DEBUG_POINTER_ASSIGNMENT ALOGD("assignPointerIds - assigned: cur=%d, id=%d", currentPointerIndex, id); #endif } } int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { if (mCurrentVirtualKey.down && mCurrentVirtualKey.keyCode == keyCode) { return AKEY_STATE_VIRTUAL; } size_t numVirtualKeys = mVirtualKeys.size(); for (size_t i = 0; i < numVirtualKeys; i++) { const VirtualKey& virtualKey = mVirtualKeys[i]; if (virtualKey.keyCode == keyCode) { return AKEY_STATE_UP; } } return AKEY_STATE_UNKNOWN; } int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { if (mCurrentVirtualKey.down && mCurrentVirtualKey.scanCode == scanCode) { return AKEY_STATE_VIRTUAL; } size_t numVirtualKeys = mVirtualKeys.size(); for (size_t i = 0; i < numVirtualKeys; i++) { const VirtualKey& virtualKey = mVirtualKeys[i]; if (virtualKey.scanCode == scanCode) { return AKEY_STATE_UP; } } return AKEY_STATE_UNKNOWN; } bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { size_t numVirtualKeys = mVirtualKeys.size(); for (size_t i = 0; i < numVirtualKeys; i++) { const VirtualKey& virtualKey = mVirtualKeys[i]; for (size_t i = 0; i < numCodes; i++) { if (virtualKey.keyCode == keyCodes[i]) { outFlags[i] = 1; } } } return true; } // --- SingleTouchInputMapper --- SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device) : TouchInputMapper(device) { } SingleTouchInputMapper::~SingleTouchInputMapper() { } void SingleTouchInputMapper::reset(nsecs_t when) { mSingleTouchMotionAccumulator.reset(getDevice()); TouchInputMapper::reset(when); } void SingleTouchInputMapper::process(const RawEvent* rawEvent) { TouchInputMapper::process(rawEvent); mSingleTouchMotionAccumulator.process(rawEvent); } void SingleTouchInputMapper::syncTouch(nsecs_t when, bool* outHavePointerIds) { if (mTouchButtonAccumulator.isToolActive()) { mCurrentRawPointerData.pointerCount = 1; mCurrentRawPointerData.idToIndex[0] = 0; bool isHovering = mTouchButtonAccumulator.getToolType() != AMOTION_EVENT_TOOL_TYPE_MOUSE && (mTouchButtonAccumulator.isHovering() || (mRawPointerAxes.pressure.valid && mSingleTouchMotionAccumulator.getAbsolutePressure() <= 0)); mCurrentRawPointerData.markIdBit(0, isHovering); RawPointerData::Pointer& outPointer = mCurrentRawPointerData.pointers[0]; outPointer.id = 0; outPointer.x = mSingleTouchMotionAccumulator.getAbsoluteX(); outPointer.y = mSingleTouchMotionAccumulator.getAbsoluteY(); outPointer.pressure = mSingleTouchMotionAccumulator.getAbsolutePressure(); outPointer.touchMajor = 0; outPointer.touchMinor = 0; outPointer.toolMajor = mSingleTouchMotionAccumulator.getAbsoluteToolWidth(); outPointer.toolMinor = mSingleTouchMotionAccumulator.getAbsoluteToolWidth(); outPointer.orientation = 0; outPointer.distance = mSingleTouchMotionAccumulator.getAbsoluteDistance(); outPointer.tiltX = mSingleTouchMotionAccumulator.getAbsoluteTiltX(); outPointer.tiltY = mSingleTouchMotionAccumulator.getAbsoluteTiltY(); outPointer.toolType = mTouchButtonAccumulator.getToolType(); if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; } outPointer.isHovering = isHovering; } } void SingleTouchInputMapper::configureRawPointerAxes() { TouchInputMapper::configureRawPointerAxes(); getAbsoluteAxisInfo(ABS_X, &mRawPointerAxes.x); getAbsoluteAxisInfo(ABS_Y, &mRawPointerAxes.y); getAbsoluteAxisInfo(ABS_PRESSURE, &mRawPointerAxes.pressure); getAbsoluteAxisInfo(ABS_TOOL_WIDTH, &mRawPointerAxes.toolMajor); getAbsoluteAxisInfo(ABS_DISTANCE, &mRawPointerAxes.distance); getAbsoluteAxisInfo(ABS_TILT_X, &mRawPointerAxes.tiltX); getAbsoluteAxisInfo(ABS_TILT_Y, &mRawPointerAxes.tiltY); } bool SingleTouchInputMapper::hasStylus() const { return mTouchButtonAccumulator.hasStylus(); } // --- MultiTouchInputMapper --- MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device) : TouchInputMapper(device) { } MultiTouchInputMapper::~MultiTouchInputMapper() { } void MultiTouchInputMapper::reset(nsecs_t when) { mMultiTouchMotionAccumulator.reset(getDevice()); mPointerIdBits.clear(); TouchInputMapper::reset(when); } void MultiTouchInputMapper::process(const RawEvent* rawEvent) { TouchInputMapper::process(rawEvent); mMultiTouchMotionAccumulator.process(rawEvent); } void MultiTouchInputMapper::syncTouch(nsecs_t when, bool* outHavePointerIds) { size_t inCount = mMultiTouchMotionAccumulator.getSlotCount(); size_t outCount = 0; BitSet32 newPointerIdBits; for (size_t inIndex = 0; inIndex < inCount; inIndex++) { const MultiTouchMotionAccumulator::Slot* inSlot = mMultiTouchMotionAccumulator.getSlot(inIndex); if (!inSlot->isInUse()) { continue; } if (outCount >= MAX_POINTERS) { #if DEBUG_POINTERS ALOGD("MultiTouch device %s emitted more than maximum of %d pointers; " "ignoring the rest.", getDeviceName().string(), MAX_POINTERS); #endif break; // too many fingers! } RawPointerData::Pointer& outPointer = mCurrentRawPointerData.pointers[outCount]; outPointer.x = inSlot->getX(); outPointer.y = inSlot->getY(); outPointer.pressure = inSlot->getPressure(); outPointer.touchMajor = inSlot->getTouchMajor(); outPointer.touchMinor = inSlot->getTouchMinor(); outPointer.toolMajor = inSlot->getToolMajor(); outPointer.toolMinor = inSlot->getToolMinor(); outPointer.orientation = inSlot->getOrientation(); outPointer.distance = inSlot->getDistance(); outPointer.tiltX = 0; outPointer.tiltY = 0; outPointer.toolType = inSlot->getToolType(); if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { outPointer.toolType = mTouchButtonAccumulator.getToolType(); if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; } } bool isHovering = mTouchButtonAccumulator.getToolType() != AMOTION_EVENT_TOOL_TYPE_MOUSE && (mTouchButtonAccumulator.isHovering() || (mRawPointerAxes.pressure.valid && inSlot->getPressure() <= 0)); outPointer.isHovering = isHovering; // Assign pointer id using tracking id if available. if (*outHavePointerIds) { int32_t trackingId = inSlot->getTrackingId(); int32_t id = -1; if (trackingId >= 0) { for (BitSet32 idBits(mPointerIdBits); !idBits.isEmpty(); ) { uint32_t n = idBits.clearFirstMarkedBit(); if (mPointerTrackingIdMap[n] == trackingId) { id = n; } } if (id < 0 && !mPointerIdBits.isFull()) { id = mPointerIdBits.markFirstUnmarkedBit(); mPointerTrackingIdMap[id] = trackingId; } } if (id < 0) { *outHavePointerIds = false; mCurrentRawPointerData.clearIdBits(); newPointerIdBits.clear(); } else { outPointer.id = id; mCurrentRawPointerData.idToIndex[id] = outCount; mCurrentRawPointerData.markIdBit(id, isHovering); newPointerIdBits.markBit(id); } } outCount += 1; } mCurrentRawPointerData.pointerCount = outCount; mPointerIdBits = newPointerIdBits; mMultiTouchMotionAccumulator.finishSync(); } void MultiTouchInputMapper::configureRawPointerAxes() { TouchInputMapper::configureRawPointerAxes(); getAbsoluteAxisInfo(ABS_MT_POSITION_X, &mRawPointerAxes.x); getAbsoluteAxisInfo(ABS_MT_POSITION_Y, &mRawPointerAxes.y); getAbsoluteAxisInfo(ABS_MT_TOUCH_MAJOR, &mRawPointerAxes.touchMajor); getAbsoluteAxisInfo(ABS_MT_TOUCH_MINOR, &mRawPointerAxes.touchMinor); getAbsoluteAxisInfo(ABS_MT_WIDTH_MAJOR, &mRawPointerAxes.toolMajor); getAbsoluteAxisInfo(ABS_MT_WIDTH_MINOR, &mRawPointerAxes.toolMinor); getAbsoluteAxisInfo(ABS_MT_ORIENTATION, &mRawPointerAxes.orientation); getAbsoluteAxisInfo(ABS_MT_PRESSURE, &mRawPointerAxes.pressure); getAbsoluteAxisInfo(ABS_MT_DISTANCE, &mRawPointerAxes.distance); getAbsoluteAxisInfo(ABS_MT_TRACKING_ID, &mRawPointerAxes.trackingId); getAbsoluteAxisInfo(ABS_MT_SLOT, &mRawPointerAxes.slot); if (mRawPointerAxes.trackingId.valid && mRawPointerAxes.slot.valid && mRawPointerAxes.slot.minValue == 0 && mRawPointerAxes.slot.maxValue > 0) { size_t slotCount = mRawPointerAxes.slot.maxValue + 1; if (slotCount > MAX_SLOTS) { ALOGW("MultiTouch Device %s reported %d slots but the framework " "only supports a maximum of %d slots at this time.", getDeviceName().string(), slotCount, MAX_SLOTS); slotCount = MAX_SLOTS; } mMultiTouchMotionAccumulator.configure(getDevice(), slotCount, true /*usingSlotsProtocol*/); } else { mMultiTouchMotionAccumulator.configure(getDevice(), MAX_POINTERS, false /*usingSlotsProtocol*/); } } bool MultiTouchInputMapper::hasStylus() const { return mMultiTouchMotionAccumulator.hasStylus() || mTouchButtonAccumulator.hasStylus(); } // --- JoystickInputMapper --- JoystickInputMapper::JoystickInputMapper(InputDevice* device) : InputMapper(device) { } JoystickInputMapper::~JoystickInputMapper() { } uint32_t JoystickInputMapper::getSources() { return AINPUT_SOURCE_JOYSTICK; } void JoystickInputMapper::populateDeviceInfo(InputDeviceInfo* info) { InputMapper::populateDeviceInfo(info); for (size_t i = 0; i < mAxes.size(); i++) { const Axis& axis = mAxes.valueAt(i); addMotionRange(axis.axisInfo.axis, axis, info); if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { addMotionRange(axis.axisInfo.highAxis, axis, info); } } } void JoystickInputMapper::addMotionRange(int32_t axisId, const Axis& axis, InputDeviceInfo* info) { info->addMotionRange(axisId, AINPUT_SOURCE_JOYSTICK, axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution); /* In order to ease the transition for developers from using the old axes * to the newer, more semantically correct axes, we'll continue to register * the old axes as duplicates of their corresponding new ones. */ int32_t compatAxis = getCompatAxis(axisId); if (compatAxis >= 0) { info->addMotionRange(compatAxis, AINPUT_SOURCE_JOYSTICK, axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution); } } /* A mapping from axes the joystick actually has to the axes that should be * artificially created for compatibility purposes. * Returns -1 if no compatibility axis is needed. */ int32_t JoystickInputMapper::getCompatAxis(int32_t axis) { switch(axis) { case AMOTION_EVENT_AXIS_LTRIGGER: return AMOTION_EVENT_AXIS_BRAKE; case AMOTION_EVENT_AXIS_RTRIGGER: return AMOTION_EVENT_AXIS_GAS; } return -1; } void JoystickInputMapper::dump(String8& dump) { dump.append(INDENT2 "Joystick Input Mapper:\n"); dump.append(INDENT3 "Axes:\n"); size_t numAxes = mAxes.size(); for (size_t i = 0; i < numAxes; i++) { const Axis& axis = mAxes.valueAt(i); const char* label = getAxisLabel(axis.axisInfo.axis); if (label) { dump.appendFormat(INDENT4 "%s", label); } else { dump.appendFormat(INDENT4 "%d", axis.axisInfo.axis); } if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { label = getAxisLabel(axis.axisInfo.highAxis); if (label) { dump.appendFormat(" / %s (split at %d)", label, axis.axisInfo.splitValue); } else { dump.appendFormat(" / %d (split at %d)", axis.axisInfo.highAxis, axis.axisInfo.splitValue); } } else if (axis.axisInfo.mode == AxisInfo::MODE_INVERT) { dump.append(" (invert)"); } dump.appendFormat(": min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f, resolution=%0.5f\n", axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution); dump.appendFormat(INDENT4 " scale=%0.5f, offset=%0.5f, " "highScale=%0.5f, highOffset=%0.5f\n", axis.scale, axis.offset, axis.highScale, axis.highOffset); dump.appendFormat(INDENT4 " rawAxis=%d, rawMin=%d, rawMax=%d, " "rawFlat=%d, rawFuzz=%d, rawResolution=%d\n", mAxes.keyAt(i), axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue, axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz, axis.rawAxisInfo.resolution); } } void JoystickInputMapper::configure(nsecs_t when, const InputReaderConfiguration* config, uint32_t changes) { InputMapper::configure(when, config, changes); if (!changes) { // first time only // Collect all axes. for (int32_t abs = 0; abs <= ABS_MAX; abs++) { if (!(getAbsAxisUsage(abs, getDevice()->getClasses()) & INPUT_DEVICE_CLASS_JOYSTICK)) { continue; // axis must be claimed by a different device } RawAbsoluteAxisInfo rawAxisInfo; getAbsoluteAxisInfo(abs, &rawAxisInfo); if (rawAxisInfo.valid) { // Map axis. AxisInfo axisInfo; bool explicitlyMapped = !getEventHub()->mapAxis(getDeviceId(), abs, &axisInfo); if (!explicitlyMapped) { // Axis is not explicitly mapped, will choose a generic axis later. axisInfo.mode = AxisInfo::MODE_NORMAL; axisInfo.axis = -1; } // Apply flat override. int32_t rawFlat = axisInfo.flatOverride < 0 ? rawAxisInfo.flat : axisInfo.flatOverride; // Calculate scaling factors and limits. Axis axis; if (axisInfo.mode == AxisInfo::MODE_SPLIT) { float scale = 1.0f / (axisInfo.splitValue - rawAxisInfo.minValue); float highScale = 1.0f / (rawAxisInfo.maxValue - axisInfo.splitValue); axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, scale, 0.0f, highScale, 0.0f, 0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale, rawAxisInfo.resolution * scale); } else if (isCenteredAxis(axisInfo.axis)) { float scale = 2.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue); float offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale; axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, scale, offset, scale, offset, -1.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale, rawAxisInfo.resolution * scale); } else { float scale = 1.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue); axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, scale, 0.0f, scale, 0.0f, 0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale, rawAxisInfo.resolution * scale); } // To eliminate noise while the joystick is at rest, filter out small variations // in axis values up front. axis.filter = axis.flat * 0.25f; mAxes.add(abs, axis); } } // If there are too many axes, start dropping them. // Prefer to keep explicitly mapped axes. if (mAxes.size() > PointerCoords::MAX_AXES) { ALOGI("Joystick '%s' has %d axes but the framework only supports a maximum of %d.", getDeviceName().string(), mAxes.size(), PointerCoords::MAX_AXES); pruneAxes(true); pruneAxes(false); } // Assign generic axis ids to remaining axes. int32_t nextGenericAxisId = AMOTION_EVENT_AXIS_GENERIC_1; size_t numAxes = mAxes.size(); for (size_t i = 0; i < numAxes; i++) { Axis& axis = mAxes.editValueAt(i); if (axis.axisInfo.axis < 0) { while (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16 && haveAxis(nextGenericAxisId)) { nextGenericAxisId += 1; } if (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16) { axis.axisInfo.axis = nextGenericAxisId; nextGenericAxisId += 1; } else { ALOGI("Ignoring joystick '%s' axis %d because all of the generic axis ids " "have already been assigned to other axes.", getDeviceName().string(), mAxes.keyAt(i)); mAxes.removeItemsAt(i--); numAxes -= 1; } } } } } bool JoystickInputMapper::haveAxis(int32_t axisId) { size_t numAxes = mAxes.size(); for (size_t i = 0; i < numAxes; i++) { const Axis& axis = mAxes.valueAt(i); if (axis.axisInfo.axis == axisId || (axis.axisInfo.mode == AxisInfo::MODE_SPLIT && axis.axisInfo.highAxis == axisId)) { return true; } } return false; } void JoystickInputMapper::pruneAxes(bool ignoreExplicitlyMappedAxes) { size_t i = mAxes.size(); while (mAxes.size() > PointerCoords::MAX_AXES && i-- > 0) { if (ignoreExplicitlyMappedAxes && mAxes.valueAt(i).explicitlyMapped) { continue; } ALOGI("Discarding joystick '%s' axis %d because there are too many axes.", getDeviceName().string(), mAxes.keyAt(i)); mAxes.removeItemsAt(i); } } bool JoystickInputMapper::isCenteredAxis(int32_t axis) { switch (axis) { case AMOTION_EVENT_AXIS_X: case AMOTION_EVENT_AXIS_Y: case AMOTION_EVENT_AXIS_Z: case AMOTION_EVENT_AXIS_RX: case AMOTION_EVENT_AXIS_RY: case AMOTION_EVENT_AXIS_RZ: case AMOTION_EVENT_AXIS_HAT_X: case AMOTION_EVENT_AXIS_HAT_Y: case AMOTION_EVENT_AXIS_ORIENTATION: case AMOTION_EVENT_AXIS_RUDDER: case AMOTION_EVENT_AXIS_WHEEL: return true; default: return false; } } void JoystickInputMapper::reset(nsecs_t when) { // Recenter all axes. size_t numAxes = mAxes.size(); for (size_t i = 0; i < numAxes; i++) { Axis& axis = mAxes.editValueAt(i); axis.resetValue(); } InputMapper::reset(when); } void JoystickInputMapper::process(const RawEvent* rawEvent) { switch (rawEvent->type) { case EV_ABS: { ssize_t index = mAxes.indexOfKey(rawEvent->code); if (index >= 0) { Axis& axis = mAxes.editValueAt(index); float newValue, highNewValue; switch (axis.axisInfo.mode) { case AxisInfo::MODE_INVERT: newValue = (axis.rawAxisInfo.maxValue - rawEvent->value) * axis.scale + axis.offset; highNewValue = 0.0f; break; case AxisInfo::MODE_SPLIT: if (rawEvent->value < axis.axisInfo.splitValue) { newValue = (axis.axisInfo.splitValue - rawEvent->value) * axis.scale + axis.offset; highNewValue = 0.0f; } else if (rawEvent->value > axis.axisInfo.splitValue) { newValue = 0.0f; highNewValue = (rawEvent->value - axis.axisInfo.splitValue) * axis.highScale + axis.highOffset; } else { newValue = 0.0f; highNewValue = 0.0f; } break; default: newValue = rawEvent->value * axis.scale + axis.offset; highNewValue = 0.0f; break; } axis.newValue = newValue; axis.highNewValue = highNewValue; } break; } case EV_SYN: switch (rawEvent->code) { case SYN_REPORT: sync(rawEvent->when, false /*force*/); break; } break; } } void JoystickInputMapper::sync(nsecs_t when, bool force) { if (!filterAxes(force)) { return; } int32_t metaState = mContext->getGlobalMetaState(); int32_t buttonState = 0; PointerProperties pointerProperties; pointerProperties.clear(); pointerProperties.id = 0; pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_UNKNOWN; PointerCoords pointerCoords; pointerCoords.clear(); size_t numAxes = mAxes.size(); for (size_t i = 0; i < numAxes; i++) { const Axis& axis = mAxes.valueAt(i); setPointerCoordsAxisValue(&pointerCoords, axis.axisInfo.axis, axis.currentValue); if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { setPointerCoordsAxisValue(&pointerCoords, axis.axisInfo.highAxis, axis.highCurrentValue); } } // Moving a joystick axis should not wake the device because joysticks can // be fairly noisy even when not in use. On the other hand, pushing a gamepad // button will likely wake the device. // TODO: Use the input device configuration to control this behavior more finely. uint32_t policyFlags = 0; NotifyMotionArgs args(when, getDeviceId(), AINPUT_SOURCE_JOYSTICK, policyFlags, AMOTION_EVENT_ACTION_MOVE, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, ADISPLAY_ID_NONE, 1, &pointerProperties, &pointerCoords, 0, 0, 0); getListener()->notifyMotion(&args); } void JoystickInputMapper::setPointerCoordsAxisValue(PointerCoords* pointerCoords, int32_t axis, float value) { pointerCoords->setAxisValue(axis, value); /* In order to ease the transition for developers from using the old axes * to the newer, more semantically correct axes, we'll continue to produce * values for the old axes as mirrors of the value of their corresponding * new axes. */ int32_t compatAxis = getCompatAxis(axis); if (compatAxis >= 0) { pointerCoords->setAxisValue(compatAxis, value); } } bool JoystickInputMapper::filterAxes(bool force) { bool atLeastOneSignificantChange = force; size_t numAxes = mAxes.size(); for (size_t i = 0; i < numAxes; i++) { Axis& axis = mAxes.editValueAt(i); if (force || hasValueChangedSignificantly(axis.filter, axis.newValue, axis.currentValue, axis.min, axis.max)) { axis.currentValue = axis.newValue; atLeastOneSignificantChange = true; } if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { if (force || hasValueChangedSignificantly(axis.filter, axis.highNewValue, axis.highCurrentValue, axis.min, axis.max)) { axis.highCurrentValue = axis.highNewValue; atLeastOneSignificantChange = true; } } } return atLeastOneSignificantChange; } bool JoystickInputMapper::hasValueChangedSignificantly( float filter, float newValue, float currentValue, float min, float max) { if (newValue != currentValue) { // Filter out small changes in value unless the value is converging on the axis // bounds or center point. This is intended to reduce the amount of information // sent to applications by particularly noisy joysticks (such as PS3). if (fabs(newValue - currentValue) > filter || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, min) || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, max) || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, 0)) { return true; } } return false; } bool JoystickInputMapper::hasMovedNearerToValueWithinFilteredRange( float filter, float newValue, float currentValue, float thresholdValue) { float newDistance = fabs(newValue - thresholdValue); if (newDistance < filter) { float oldDistance = fabs(currentValue - thresholdValue); if (newDistance < oldDistance) { return true; } } return false; } } // namespace android