// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #include "v8.h" #include "macro-assembler.h" #include "factory.h" #include "platform.h" #include "serialize.h" #include "cctest.h" using v8::internal::Assembler; using v8::internal::Code; using v8::internal::CodeDesc; using v8::internal::FUNCTION_CAST; using v8::internal::Immediate; using v8::internal::Isolate; using v8::internal::Label; using v8::internal::OS; using v8::internal::Operand; using v8::internal::byte; using v8::internal::greater; using v8::internal::less_equal; using v8::internal::equal; using v8::internal::not_equal; using v8::internal::r13; using v8::internal::r15; using v8::internal::r8; using v8::internal::r9; using v8::internal::rax; using v8::internal::rbx; using v8::internal::rbp; using v8::internal::rcx; using v8::internal::rdi; using v8::internal::rdx; using v8::internal::rsi; using v8::internal::rsp; using v8::internal::times_1; // Test the x64 assembler by compiling some simple functions into // a buffer and executing them. These tests do not initialize the // V8 library, create a context, or use any V8 objects. // The AMD64 calling convention is used, with the first six arguments // in RDI, RSI, RDX, RCX, R8, and R9, and floating point arguments in // the XMM registers. The return value is in RAX. // This calling convention is used on Linux, with GCC, and on Mac OS, // with GCC. A different convention is used on 64-bit windows, // where the first four integer arguments are passed in RCX, RDX, R8 and R9. typedef int (*F0)(); typedef int (*F1)(int64_t x); typedef int (*F2)(int64_t x, int64_t y); #ifdef _WIN64 static const v8::internal::Register arg1 = rcx; static const v8::internal::Register arg2 = rdx; #else static const v8::internal::Register arg1 = rdi; static const v8::internal::Register arg2 = rsi; #endif #define __ assm. static v8::Persistent<v8::Context> env; static void InitializeVM() { if (env.IsEmpty()) { env = v8::Context::New(); } } TEST(AssemblerX64ReturnOperation) { OS::SetUp(); // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); // Assemble a simple function that copies argument 2 and returns it. __ movq(rax, arg2); __ nop(); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST<F2>(buffer)(3, 2); CHECK_EQ(2, result); } TEST(AssemblerX64StackOperations) { OS::SetUp(); // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); // Assemble a simple function that copies argument 2 and returns it. // We compile without stack frame pointers, so the gdb debugger shows // incorrect stack frames when debugging this function (which has them). __ push(rbp); __ movq(rbp, rsp); __ push(arg2); // Value at (rbp - 8) __ push(arg2); // Value at (rbp - 16) __ push(arg1); // Value at (rbp - 24) __ pop(rax); __ pop(rax); __ pop(rax); __ pop(rbp); __ nop(); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST<F2>(buffer)(3, 2); CHECK_EQ(2, result); } TEST(AssemblerX64ArithmeticOperations) { OS::SetUp(); // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); // Assemble a simple function that adds arguments returning the sum. __ movq(rax, arg2); __ addq(rax, arg1); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST<F2>(buffer)(3, 2); CHECK_EQ(5, result); } TEST(AssemblerX64ImulOperation) { OS::SetUp(); // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); // Assemble a simple function that multiplies arguments returning the high // word. __ movq(rax, arg2); __ imul(arg1); __ movq(rax, rdx); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST<F2>(buffer)(3, 2); CHECK_EQ(0, result); result = FUNCTION_CAST<F2>(buffer)(0x100000000l, 0x100000000l); CHECK_EQ(1, result); result = FUNCTION_CAST<F2>(buffer)(-0x100000000l, 0x100000000l); CHECK_EQ(-1, result); } TEST(AssemblerX64MemoryOperands) { OS::SetUp(); // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); // Assemble a simple function that copies argument 2 and returns it. __ push(rbp); __ movq(rbp, rsp); __ push(arg2); // Value at (rbp - 8) __ push(arg2); // Value at (rbp - 16) __ push(arg1); // Value at (rbp - 24) const int kStackElementSize = 8; __ movq(rax, Operand(rbp, -3 * kStackElementSize)); __ pop(arg2); __ pop(arg2); __ pop(arg2); __ pop(rbp); __ nop(); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST<F2>(buffer)(3, 2); CHECK_EQ(3, result); } TEST(AssemblerX64ControlFlow) { OS::SetUp(); // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); // Assemble a simple function that copies argument 1 and returns it. __ push(rbp); __ movq(rbp, rsp); __ movq(rax, arg1); Label target; __ jmp(&target); __ movq(rax, arg2); __ bind(&target); __ pop(rbp); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST<F2>(buffer)(3, 2); CHECK_EQ(3, result); } TEST(AssemblerX64LoopImmediates) { OS::SetUp(); // Allocate an executable page of memory. size_t actual_size; byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); // Assemble two loops using rax as counter, and verify the ending counts. Label Fail; __ movq(rax, Immediate(-3)); Label Loop1_test; Label Loop1_body; __ jmp(&Loop1_test); __ bind(&Loop1_body); __ addq(rax, Immediate(7)); __ bind(&Loop1_test); __ cmpq(rax, Immediate(20)); __ j(less_equal, &Loop1_body); // Did the loop terminate with the expected value? __ cmpq(rax, Immediate(25)); __ j(not_equal, &Fail); Label Loop2_test; Label Loop2_body; __ movq(rax, Immediate(0x11FEED00)); __ jmp(&Loop2_test); __ bind(&Loop2_body); __ addq(rax, Immediate(-0x1100)); __ bind(&Loop2_test); __ cmpq(rax, Immediate(0x11FE8000)); __ j(greater, &Loop2_body); // Did the loop terminate with the expected value? __ cmpq(rax, Immediate(0x11FE7600)); __ j(not_equal, &Fail); __ movq(rax, Immediate(1)); __ ret(0); __ bind(&Fail); __ movq(rax, Immediate(0)); __ ret(0); CodeDesc desc; assm.GetCode(&desc); // Call the function from C++. int result = FUNCTION_CAST<F0>(buffer)(); CHECK_EQ(1, result); } TEST(OperandRegisterDependency) { int offsets[4] = {0, 1, 0xfed, 0xbeefcad}; for (int i = 0; i < 4; i++) { int offset = offsets[i]; CHECK(Operand(rax, offset).AddressUsesRegister(rax)); CHECK(!Operand(rax, offset).AddressUsesRegister(r8)); CHECK(!Operand(rax, offset).AddressUsesRegister(rcx)); CHECK(Operand(rax, rax, times_1, offset).AddressUsesRegister(rax)); CHECK(!Operand(rax, rax, times_1, offset).AddressUsesRegister(r8)); CHECK(!Operand(rax, rax, times_1, offset).AddressUsesRegister(rcx)); CHECK(Operand(rax, rcx, times_1, offset).AddressUsesRegister(rax)); CHECK(Operand(rax, rcx, times_1, offset).AddressUsesRegister(rcx)); CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(r8)); CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(r9)); CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(rdx)); CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(rsp)); CHECK(Operand(rsp, offset).AddressUsesRegister(rsp)); CHECK(!Operand(rsp, offset).AddressUsesRegister(rax)); CHECK(!Operand(rsp, offset).AddressUsesRegister(r15)); CHECK(Operand(rbp, offset).AddressUsesRegister(rbp)); CHECK(!Operand(rbp, offset).AddressUsesRegister(rax)); CHECK(!Operand(rbp, offset).AddressUsesRegister(r13)); CHECK(Operand(rbp, rax, times_1, offset).AddressUsesRegister(rbp)); CHECK(Operand(rbp, rax, times_1, offset).AddressUsesRegister(rax)); CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(rcx)); CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(r13)); CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(r8)); CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(rsp)); CHECK(Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rsp)); CHECK(Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rbp)); CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rax)); CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(r15)); CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(r13)); } } TEST(AssemblerX64LabelChaining) { // Test chaining of label usages within instructions (issue 1644). v8::HandleScope scope; Assembler assm(Isolate::Current(), NULL, 0); Label target; __ j(equal, &target); __ j(not_equal, &target); __ bind(&target); __ nop(); } TEST(AssemblerMultiByteNop) { InitializeVM(); v8::HandleScope scope; v8::internal::byte buffer[1024]; Assembler assm(Isolate::Current(), buffer, sizeof(buffer)); __ push(rbx); __ push(rcx); __ push(rdx); __ push(rdi); __ push(rsi); __ movq(rax, Immediate(1)); __ movq(rbx, Immediate(2)); __ movq(rcx, Immediate(3)); __ movq(rdx, Immediate(4)); __ movq(rdi, Immediate(5)); __ movq(rsi, Immediate(6)); for (int i = 0; i < 16; i++) { int before = assm.pc_offset(); __ Nop(i); CHECK_EQ(assm.pc_offset() - before, i); } Label fail; __ cmpq(rax, Immediate(1)); __ j(not_equal, &fail); __ cmpq(rbx, Immediate(2)); __ j(not_equal, &fail); __ cmpq(rcx, Immediate(3)); __ j(not_equal, &fail); __ cmpq(rdx, Immediate(4)); __ j(not_equal, &fail); __ cmpq(rdi, Immediate(5)); __ j(not_equal, &fail); __ cmpq(rsi, Immediate(6)); __ j(not_equal, &fail); __ movq(rax, Immediate(42)); __ pop(rsi); __ pop(rdi); __ pop(rdx); __ pop(rcx); __ pop(rbx); __ ret(0); __ bind(&fail); __ movq(rax, Immediate(13)); __ pop(rsi); __ pop(rdi); __ pop(rdx); __ pop(rcx); __ pop(rbx); __ ret(0); CodeDesc desc; assm.GetCode(&desc); Code* code = Code::cast(HEAP->CreateCode( desc, Code::ComputeFlags(Code::STUB), v8::internal::Handle<v8::internal::Object>( HEAP->undefined_value()))->ToObjectChecked()); CHECK(code->IsCode()); F0 f = FUNCTION_CAST<F0>(code->entry()); int res = f(); CHECK_EQ(42, res); } #undef __