// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_X64_LITHIUM_X64_H_ #define V8_X64_LITHIUM_X64_H_ #include "hydrogen.h" #include "lithium-allocator.h" #include "lithium.h" #include "safepoint-table.h" #include "utils.h" namespace v8 { namespace internal { // Forward declarations. class LCodeGen; #define LITHIUM_ALL_INSTRUCTION_LIST(V) \ V(ControlInstruction) \ V(Call) \ LITHIUM_CONCRETE_INSTRUCTION_LIST(V) #define LITHIUM_CONCRETE_INSTRUCTION_LIST(V) \ V(AccessArgumentsAt) \ V(AddI) \ V(AllocateObject) \ V(ApplyArguments) \ V(ArgumentsElements) \ V(ArgumentsLength) \ V(ArithmeticD) \ V(ArithmeticT) \ V(ArrayLiteral) \ V(BitI) \ V(BitNotI) \ V(BoundsCheck) \ V(Branch) \ V(CallConstantFunction) \ V(CallFunction) \ V(CallGlobal) \ V(CallKeyed) \ V(CallKnownGlobal) \ V(CallNamed) \ V(CallNew) \ V(CallRuntime) \ V(CallStub) \ V(CheckFunction) \ V(CheckInstanceType) \ V(CheckMap) \ V(CheckNonSmi) \ V(CheckPrototypeMaps) \ V(CheckSmi) \ V(ClampDToUint8) \ V(ClampIToUint8) \ V(ClampTToUint8) \ V(ClassOfTestAndBranch) \ V(CmpConstantEqAndBranch) \ V(CmpIDAndBranch) \ V(CmpObjectEqAndBranch) \ V(CmpMapAndBranch) \ V(CmpT) \ V(ConstantD) \ V(ConstantI) \ V(ConstantT) \ V(Context) \ V(DeclareGlobals) \ V(DeleteProperty) \ V(Deoptimize) \ V(DivI) \ V(DoubleToI) \ V(ElementsKind) \ V(FastLiteral) \ V(FixedArrayBaseLength) \ V(FunctionLiteral) \ V(GetCachedArrayIndex) \ V(GlobalObject) \ V(GlobalReceiver) \ V(Goto) \ V(HasCachedArrayIndexAndBranch) \ V(HasInstanceTypeAndBranch) \ V(In) \ V(InstanceOf) \ V(InstanceOfKnownGlobal) \ V(InstructionGap) \ V(Integer32ToDouble) \ V(InvokeFunction) \ V(IsConstructCallAndBranch) \ V(IsNilAndBranch) \ V(IsObjectAndBranch) \ V(IsStringAndBranch) \ V(IsSmiAndBranch) \ V(IsUndetectableAndBranch) \ V(StringCompareAndBranch) \ V(JSArrayLength) \ V(Label) \ V(LazyBailout) \ V(LoadContextSlot) \ V(LoadElements) \ V(LoadExternalArrayPointer) \ V(LoadFunctionPrototype) \ V(LoadGlobalCell) \ V(LoadGlobalGeneric) \ V(LoadKeyedFastDoubleElement) \ V(LoadKeyedFastElement) \ V(LoadKeyedGeneric) \ V(LoadKeyedSpecializedArrayElement) \ V(LoadNamedField) \ V(LoadNamedFieldPolymorphic) \ V(LoadNamedGeneric) \ V(ModI) \ V(MulI) \ V(NumberTagD) \ V(NumberTagI) \ V(NumberUntagD) \ V(ObjectLiteral) \ V(OsrEntry) \ V(OuterContext) \ V(Parameter) \ V(Power) \ V(PushArgument) \ V(Random) \ V(RegExpLiteral) \ V(Return) \ V(ShiftI) \ V(SmiTag) \ V(SmiUntag) \ V(StackCheck) \ V(StoreContextSlot) \ V(StoreGlobalCell) \ V(StoreGlobalGeneric) \ V(StoreKeyedFastDoubleElement) \ V(StoreKeyedFastElement) \ V(StoreKeyedGeneric) \ V(StoreKeyedSpecializedArrayElement) \ V(StoreNamedField) \ V(StoreNamedGeneric) \ V(StringAdd) \ V(StringCharCodeAt) \ V(StringCharFromCode) \ V(StringLength) \ V(SubI) \ V(TaggedToI) \ V(ThisFunction) \ V(Throw) \ V(ToFastProperties) \ V(TransitionElementsKind) \ V(Typeof) \ V(TypeofIsAndBranch) \ V(UnaryMathOperation) \ V(UnknownOSRValue) \ V(ValueOf) \ V(ForInPrepareMap) \ V(ForInCacheArray) \ V(CheckMapValue) \ V(LoadFieldByIndex) \ V(DateField) \ V(WrapReceiver) #define DECLARE_CONCRETE_INSTRUCTION(type, mnemonic) \ virtual Opcode opcode() const { return LInstruction::k##type; } \ virtual void CompileToNative(LCodeGen* generator); \ virtual const char* Mnemonic() const { return mnemonic; } \ static L##type* cast(LInstruction* instr) { \ ASSERT(instr->Is##type()); \ return reinterpret_cast<L##type*>(instr); \ } #define DECLARE_HYDROGEN_ACCESSOR(type) \ H##type* hydrogen() const { \ return H##type::cast(hydrogen_value()); \ } class LInstruction: public ZoneObject { public: LInstruction() : environment_(NULL), hydrogen_value_(NULL), is_call_(false), is_save_doubles_(false) { } virtual ~LInstruction() { } virtual void CompileToNative(LCodeGen* generator) = 0; virtual const char* Mnemonic() const = 0; virtual void PrintTo(StringStream* stream); virtual void PrintDataTo(StringStream* stream) = 0; virtual void PrintOutputOperandTo(StringStream* stream) = 0; enum Opcode { // Declare a unique enum value for each instruction. #define DECLARE_OPCODE(type) k##type, LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_OPCODE) kNumberOfInstructions #undef DECLARE_OPCODE }; virtual Opcode opcode() const = 0; // Declare non-virtual type testers for all leaf IR classes. #define DECLARE_PREDICATE(type) \ bool Is##type() const { return opcode() == k##type; } LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_PREDICATE) #undef DECLARE_PREDICATE // Declare virtual predicates for instructions that don't have // an opcode. virtual bool IsGap() const { return false; } virtual bool IsControl() const { return false; } void set_environment(LEnvironment* env) { environment_ = env; } LEnvironment* environment() const { return environment_; } bool HasEnvironment() const { return environment_ != NULL; } void set_pointer_map(LPointerMap* p) { pointer_map_.set(p); } LPointerMap* pointer_map() const { return pointer_map_.get(); } bool HasPointerMap() const { return pointer_map_.is_set(); } void set_hydrogen_value(HValue* value) { hydrogen_value_ = value; } HValue* hydrogen_value() const { return hydrogen_value_; } void set_deoptimization_environment(LEnvironment* env) { deoptimization_environment_.set(env); } LEnvironment* deoptimization_environment() const { return deoptimization_environment_.get(); } bool HasDeoptimizationEnvironment() const { return deoptimization_environment_.is_set(); } void MarkAsCall() { is_call_ = true; } void MarkAsSaveDoubles() { is_save_doubles_ = true; } // Interface to the register allocator and iterators. bool IsMarkedAsCall() const { return is_call_; } bool IsMarkedAsSaveDoubles() const { return is_save_doubles_; } virtual bool HasResult() const = 0; virtual LOperand* result() = 0; virtual int InputCount() = 0; virtual LOperand* InputAt(int i) = 0; virtual int TempCount() = 0; virtual LOperand* TempAt(int i) = 0; LOperand* FirstInput() { return InputAt(0); } LOperand* Output() { return HasResult() ? result() : NULL; } #ifdef DEBUG void VerifyCall(); #endif private: LEnvironment* environment_; SetOncePointer<LPointerMap> pointer_map_; HValue* hydrogen_value_; SetOncePointer<LEnvironment> deoptimization_environment_; bool is_call_; bool is_save_doubles_; }; // R = number of result operands (0 or 1). // I = number of input operands. // T = number of temporary operands. template<int R, int I, int T> class LTemplateInstruction: public LInstruction { public: // Allow 0 or 1 output operands. STATIC_ASSERT(R == 0 || R == 1); virtual bool HasResult() const { return R != 0; } void set_result(LOperand* operand) { results_[0] = operand; } LOperand* result() { return results_[0]; } int InputCount() { return I; } LOperand* InputAt(int i) { return inputs_[i]; } int TempCount() { return T; } LOperand* TempAt(int i) { return temps_[i]; } virtual void PrintDataTo(StringStream* stream); virtual void PrintOutputOperandTo(StringStream* stream); protected: EmbeddedContainer<LOperand*, R> results_; EmbeddedContainer<LOperand*, I> inputs_; EmbeddedContainer<LOperand*, T> temps_; }; class LGap: public LTemplateInstruction<0, 0, 0> { public: explicit LGap(HBasicBlock* block) : block_(block) { parallel_moves_[BEFORE] = NULL; parallel_moves_[START] = NULL; parallel_moves_[END] = NULL; parallel_moves_[AFTER] = NULL; } // Can't use the DECLARE-macro here because of sub-classes. virtual bool IsGap() const { return true; } virtual void PrintDataTo(StringStream* stream); static LGap* cast(LInstruction* instr) { ASSERT(instr->IsGap()); return reinterpret_cast<LGap*>(instr); } bool IsRedundant() const; HBasicBlock* block() const { return block_; } enum InnerPosition { BEFORE, START, END, AFTER, FIRST_INNER_POSITION = BEFORE, LAST_INNER_POSITION = AFTER }; LParallelMove* GetOrCreateParallelMove(InnerPosition pos) { if (parallel_moves_[pos] == NULL) parallel_moves_[pos] = new LParallelMove; return parallel_moves_[pos]; } LParallelMove* GetParallelMove(InnerPosition pos) { return parallel_moves_[pos]; } private: LParallelMove* parallel_moves_[LAST_INNER_POSITION + 1]; HBasicBlock* block_; }; class LInstructionGap: public LGap { public: explicit LInstructionGap(HBasicBlock* block) : LGap(block) { } DECLARE_CONCRETE_INSTRUCTION(InstructionGap, "gap") }; class LGoto: public LTemplateInstruction<0, 0, 0> { public: explicit LGoto(int block_id) : block_id_(block_id) { } DECLARE_CONCRETE_INSTRUCTION(Goto, "goto") virtual void PrintDataTo(StringStream* stream); virtual bool IsControl() const { return true; } int block_id() const { return block_id_; } private: int block_id_; }; class LLazyBailout: public LTemplateInstruction<0, 0, 0> { public: LLazyBailout() : gap_instructions_size_(0) { } DECLARE_CONCRETE_INSTRUCTION(LazyBailout, "lazy-bailout") void set_gap_instructions_size(int gap_instructions_size) { gap_instructions_size_ = gap_instructions_size; } int gap_instructions_size() { return gap_instructions_size_; } private: int gap_instructions_size_; }; class LDeoptimize: public LTemplateInstruction<0, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(Deoptimize, "deoptimize") }; class LLabel: public LGap { public: explicit LLabel(HBasicBlock* block) : LGap(block), replacement_(NULL) { } DECLARE_CONCRETE_INSTRUCTION(Label, "label") virtual void PrintDataTo(StringStream* stream); int block_id() const { return block()->block_id(); } bool is_loop_header() const { return block()->IsLoopHeader(); } Label* label() { return &label_; } LLabel* replacement() const { return replacement_; } void set_replacement(LLabel* label) { replacement_ = label; } bool HasReplacement() const { return replacement_ != NULL; } private: Label label_; LLabel* replacement_; }; class LParameter: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(Parameter, "parameter") }; class LCallStub: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(CallStub, "call-stub") DECLARE_HYDROGEN_ACCESSOR(CallStub) TranscendentalCache::Type transcendental_type() { return hydrogen()->transcendental_type(); } }; class LUnknownOSRValue: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(UnknownOSRValue, "unknown-osr-value") }; template<int I, int T> class LControlInstruction: public LTemplateInstruction<0, I, T> { public: virtual bool IsControl() const { return true; } int SuccessorCount() { return hydrogen()->SuccessorCount(); } HBasicBlock* SuccessorAt(int i) { return hydrogen()->SuccessorAt(i); } int true_block_id() { return hydrogen()->SuccessorAt(0)->block_id(); } int false_block_id() { return hydrogen()->SuccessorAt(1)->block_id(); } private: HControlInstruction* hydrogen() { return HControlInstruction::cast(this->hydrogen_value()); } }; class LWrapReceiver: public LTemplateInstruction<1, 2, 0> { public: LWrapReceiver(LOperand* receiver, LOperand* function) { inputs_[0] = receiver; inputs_[1] = function; } DECLARE_CONCRETE_INSTRUCTION(WrapReceiver, "wrap-receiver") LOperand* receiver() { return inputs_[0]; } LOperand* function() { return inputs_[1]; } }; class LApplyArguments: public LTemplateInstruction<1, 4, 0> { public: LApplyArguments(LOperand* function, LOperand* receiver, LOperand* length, LOperand* elements) { inputs_[0] = function; inputs_[1] = receiver; inputs_[2] = length; inputs_[3] = elements; } DECLARE_CONCRETE_INSTRUCTION(ApplyArguments, "apply-arguments") LOperand* function() { return inputs_[0]; } LOperand* receiver() { return inputs_[1]; } LOperand* length() { return inputs_[2]; } LOperand* elements() { return inputs_[3]; } }; class LAccessArgumentsAt: public LTemplateInstruction<1, 3, 0> { public: LAccessArgumentsAt(LOperand* arguments, LOperand* length, LOperand* index) { inputs_[0] = arguments; inputs_[1] = length; inputs_[2] = index; } DECLARE_CONCRETE_INSTRUCTION(AccessArgumentsAt, "access-arguments-at") LOperand* arguments() { return inputs_[0]; } LOperand* length() { return inputs_[1]; } LOperand* index() { return inputs_[2]; } virtual void PrintDataTo(StringStream* stream); }; class LArgumentsLength: public LTemplateInstruction<1, 1, 0> { public: explicit LArgumentsLength(LOperand* elements) { inputs_[0] = elements; } DECLARE_CONCRETE_INSTRUCTION(ArgumentsLength, "arguments-length") }; class LArgumentsElements: public LTemplateInstruction<1, 0, 0> { public: LArgumentsElements() { } DECLARE_CONCRETE_INSTRUCTION(ArgumentsElements, "arguments-elements") }; class LModI: public LTemplateInstruction<1, 2, 1> { public: LModI(LOperand* left, LOperand* right, LOperand* temp) { inputs_[0] = left; inputs_[1] = right; temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(ModI, "mod-i") DECLARE_HYDROGEN_ACCESSOR(Mod) }; class LDivI: public LTemplateInstruction<1, 2, 1> { public: LDivI(LOperand* left, LOperand* right, LOperand* temp) { inputs_[0] = left; inputs_[1] = right; temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(DivI, "div-i") DECLARE_HYDROGEN_ACCESSOR(Div) }; class LMulI: public LTemplateInstruction<1, 2, 0> { public: LMulI(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } DECLARE_CONCRETE_INSTRUCTION(MulI, "mul-i") DECLARE_HYDROGEN_ACCESSOR(Mul) }; class LCmpIDAndBranch: public LControlInstruction<2, 0> { public: LCmpIDAndBranch(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } DECLARE_CONCRETE_INSTRUCTION(CmpIDAndBranch, "cmp-id-and-branch") DECLARE_HYDROGEN_ACCESSOR(CompareIDAndBranch) Token::Value op() const { return hydrogen()->token(); } bool is_double() const { return hydrogen()->GetInputRepresentation().IsDouble(); } virtual void PrintDataTo(StringStream* stream); }; class LUnaryMathOperation: public LTemplateInstruction<1, 1, 0> { public: explicit LUnaryMathOperation(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(UnaryMathOperation, "unary-math-operation") DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation) virtual void PrintDataTo(StringStream* stream); BuiltinFunctionId op() const { return hydrogen()->op(); } }; class LCmpObjectEqAndBranch: public LControlInstruction<2, 0> { public: LCmpObjectEqAndBranch(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } DECLARE_CONCRETE_INSTRUCTION(CmpObjectEqAndBranch, "cmp-object-eq-and-branch") }; class LCmpConstantEqAndBranch: public LControlInstruction<1, 0> { public: explicit LCmpConstantEqAndBranch(LOperand* left) { inputs_[0] = left; } DECLARE_CONCRETE_INSTRUCTION(CmpConstantEqAndBranch, "cmp-constant-eq-and-branch") DECLARE_HYDROGEN_ACCESSOR(CompareConstantEqAndBranch) }; class LIsNilAndBranch: public LControlInstruction<1, 1> { public: LIsNilAndBranch(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(IsNilAndBranch, "is-nil-and-branch") DECLARE_HYDROGEN_ACCESSOR(IsNilAndBranch) EqualityKind kind() const { return hydrogen()->kind(); } NilValue nil() const { return hydrogen()->nil(); } virtual void PrintDataTo(StringStream* stream); }; class LIsObjectAndBranch: public LControlInstruction<1, 0> { public: explicit LIsObjectAndBranch(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(IsObjectAndBranch, "is-object-and-branch") DECLARE_HYDROGEN_ACCESSOR(IsObjectAndBranch) virtual void PrintDataTo(StringStream* stream); }; class LIsStringAndBranch: public LControlInstruction<1, 1> { public: explicit LIsStringAndBranch(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(IsStringAndBranch, "is-string-and-branch") DECLARE_HYDROGEN_ACCESSOR(IsStringAndBranch) virtual void PrintDataTo(StringStream* stream); }; class LIsSmiAndBranch: public LControlInstruction<1, 0> { public: explicit LIsSmiAndBranch(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(IsSmiAndBranch, "is-smi-and-branch") DECLARE_HYDROGEN_ACCESSOR(IsSmiAndBranch) virtual void PrintDataTo(StringStream* stream); }; class LIsUndetectableAndBranch: public LControlInstruction<1, 1> { public: explicit LIsUndetectableAndBranch(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(IsUndetectableAndBranch, "is-undetectable-and-branch") DECLARE_HYDROGEN_ACCESSOR(IsUndetectableAndBranch) virtual void PrintDataTo(StringStream* stream); }; class LStringCompareAndBranch: public LControlInstruction<2, 0> { public: explicit LStringCompareAndBranch(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } DECLARE_CONCRETE_INSTRUCTION(StringCompareAndBranch, "string-compare-and-branch") DECLARE_HYDROGEN_ACCESSOR(StringCompareAndBranch) virtual void PrintDataTo(StringStream* stream); Token::Value op() const { return hydrogen()->token(); } }; class LHasInstanceTypeAndBranch: public LControlInstruction<1, 0> { public: explicit LHasInstanceTypeAndBranch(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(HasInstanceTypeAndBranch, "has-instance-type-and-branch") DECLARE_HYDROGEN_ACCESSOR(HasInstanceTypeAndBranch) virtual void PrintDataTo(StringStream* stream); }; class LGetCachedArrayIndex: public LTemplateInstruction<1, 1, 0> { public: explicit LGetCachedArrayIndex(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(GetCachedArrayIndex, "get-cached-array-index") DECLARE_HYDROGEN_ACCESSOR(GetCachedArrayIndex) }; class LHasCachedArrayIndexAndBranch: public LControlInstruction<1, 0> { public: explicit LHasCachedArrayIndexAndBranch(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(HasCachedArrayIndexAndBranch, "has-cached-array-index-and-branch") DECLARE_HYDROGEN_ACCESSOR(HasCachedArrayIndexAndBranch) virtual void PrintDataTo(StringStream* stream); }; class LClassOfTestAndBranch: public LControlInstruction<1, 2> { public: LClassOfTestAndBranch(LOperand* value, LOperand* temp, LOperand* temp2) { inputs_[0] = value; temps_[0] = temp; temps_[1] = temp2; } DECLARE_CONCRETE_INSTRUCTION(ClassOfTestAndBranch, "class-of-test-and-branch") DECLARE_HYDROGEN_ACCESSOR(ClassOfTestAndBranch) virtual void PrintDataTo(StringStream* stream); }; class LCmpT: public LTemplateInstruction<1, 2, 0> { public: LCmpT(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } DECLARE_CONCRETE_INSTRUCTION(CmpT, "cmp-t") DECLARE_HYDROGEN_ACCESSOR(CompareGeneric) Token::Value op() const { return hydrogen()->token(); } }; class LIn: public LTemplateInstruction<1, 2, 0> { public: LIn(LOperand* key, LOperand* object) { inputs_[0] = key; inputs_[1] = object; } LOperand* key() { return inputs_[0]; } LOperand* object() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(In, "in") }; class LInstanceOf: public LTemplateInstruction<1, 2, 0> { public: LInstanceOf(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } DECLARE_CONCRETE_INSTRUCTION(InstanceOf, "instance-of") }; class LInstanceOfKnownGlobal: public LTemplateInstruction<1, 1, 1> { public: LInstanceOfKnownGlobal(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(InstanceOfKnownGlobal, "instance-of-known-global") DECLARE_HYDROGEN_ACCESSOR(InstanceOfKnownGlobal) Handle<JSFunction> function() const { return hydrogen()->function(); } }; class LBoundsCheck: public LTemplateInstruction<0, 2, 0> { public: LBoundsCheck(LOperand* index, LOperand* length) { inputs_[0] = index; inputs_[1] = length; } LOperand* index() { return inputs_[0]; } LOperand* length() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(BoundsCheck, "bounds-check") }; class LBitI: public LTemplateInstruction<1, 2, 0> { public: LBitI(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } Token::Value op() const { return hydrogen()->op(); } DECLARE_CONCRETE_INSTRUCTION(BitI, "bit-i") DECLARE_HYDROGEN_ACCESSOR(Bitwise) }; class LShiftI: public LTemplateInstruction<1, 2, 0> { public: LShiftI(Token::Value op, LOperand* left, LOperand* right, bool can_deopt) : op_(op), can_deopt_(can_deopt) { inputs_[0] = left; inputs_[1] = right; } Token::Value op() const { return op_; } bool can_deopt() const { return can_deopt_; } DECLARE_CONCRETE_INSTRUCTION(ShiftI, "shift-i") private: Token::Value op_; bool can_deopt_; }; class LSubI: public LTemplateInstruction<1, 2, 0> { public: LSubI(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } DECLARE_CONCRETE_INSTRUCTION(SubI, "sub-i") DECLARE_HYDROGEN_ACCESSOR(Sub) }; class LConstantI: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(ConstantI, "constant-i") DECLARE_HYDROGEN_ACCESSOR(Constant) int32_t value() const { return hydrogen()->Integer32Value(); } }; class LConstantD: public LTemplateInstruction<1, 0, 1> { public: explicit LConstantD(LOperand* temp) { temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(ConstantD, "constant-d") DECLARE_HYDROGEN_ACCESSOR(Constant) double value() const { return hydrogen()->DoubleValue(); } }; class LConstantT: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(ConstantT, "constant-t") DECLARE_HYDROGEN_ACCESSOR(Constant) Handle<Object> value() const { return hydrogen()->handle(); } }; class LBranch: public LControlInstruction<1, 0> { public: explicit LBranch(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(Branch, "branch") DECLARE_HYDROGEN_ACCESSOR(Branch) virtual void PrintDataTo(StringStream* stream); }; class LCmpMapAndBranch: public LTemplateInstruction<0, 1, 0> { public: explicit LCmpMapAndBranch(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(CmpMapAndBranch, "cmp-map-and-branch") DECLARE_HYDROGEN_ACCESSOR(CompareMap) virtual bool IsControl() const { return true; } Handle<Map> map() const { return hydrogen()->map(); } int true_block_id() const { return hydrogen()->FirstSuccessor()->block_id(); } int false_block_id() const { return hydrogen()->SecondSuccessor()->block_id(); } }; class LJSArrayLength: public LTemplateInstruction<1, 1, 0> { public: explicit LJSArrayLength(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(JSArrayLength, "js-array-length") DECLARE_HYDROGEN_ACCESSOR(JSArrayLength) }; class LFixedArrayBaseLength: public LTemplateInstruction<1, 1, 0> { public: explicit LFixedArrayBaseLength(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(FixedArrayBaseLength, "fixed-array-base-length") DECLARE_HYDROGEN_ACCESSOR(FixedArrayBaseLength) }; class LElementsKind: public LTemplateInstruction<1, 1, 0> { public: explicit LElementsKind(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(ElementsKind, "elements-kind") DECLARE_HYDROGEN_ACCESSOR(ElementsKind) }; class LValueOf: public LTemplateInstruction<1, 1, 0> { public: explicit LValueOf(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(ValueOf, "value-of") DECLARE_HYDROGEN_ACCESSOR(ValueOf) }; class LDateField: public LTemplateInstruction<1, 1, 0> { public: LDateField(LOperand* date, Smi* index) : index_(index) { inputs_[0] = date; } DECLARE_CONCRETE_INSTRUCTION(ValueOf, "date-field") DECLARE_HYDROGEN_ACCESSOR(ValueOf) Smi* index() const { return index_; } private: Smi* index_; }; class LThrow: public LTemplateInstruction<0, 1, 0> { public: explicit LThrow(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(Throw, "throw") }; class LBitNotI: public LTemplateInstruction<1, 1, 0> { public: explicit LBitNotI(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(BitNotI, "bit-not-i") }; class LAddI: public LTemplateInstruction<1, 2, 0> { public: LAddI(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } DECLARE_CONCRETE_INSTRUCTION(AddI, "add-i") DECLARE_HYDROGEN_ACCESSOR(Add) }; class LPower: public LTemplateInstruction<1, 2, 0> { public: LPower(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } DECLARE_CONCRETE_INSTRUCTION(Power, "power") DECLARE_HYDROGEN_ACCESSOR(Power) }; class LRandom: public LTemplateInstruction<1, 1, 0> { public: explicit LRandom(LOperand* global_object) { inputs_[0] = global_object; } DECLARE_CONCRETE_INSTRUCTION(Random, "random") DECLARE_HYDROGEN_ACCESSOR(Random) }; class LArithmeticD: public LTemplateInstruction<1, 2, 0> { public: LArithmeticD(Token::Value op, LOperand* left, LOperand* right) : op_(op) { inputs_[0] = left; inputs_[1] = right; } Token::Value op() const { return op_; } virtual Opcode opcode() const { return LInstruction::kArithmeticD; } virtual void CompileToNative(LCodeGen* generator); virtual const char* Mnemonic() const; private: Token::Value op_; }; class LArithmeticT: public LTemplateInstruction<1, 2, 0> { public: LArithmeticT(Token::Value op, LOperand* left, LOperand* right) : op_(op) { inputs_[0] = left; inputs_[1] = right; } virtual Opcode opcode() const { return LInstruction::kArithmeticT; } virtual void CompileToNative(LCodeGen* generator); virtual const char* Mnemonic() const; Token::Value op() const { return op_; } private: Token::Value op_; }; class LReturn: public LTemplateInstruction<0, 1, 0> { public: explicit LReturn(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(Return, "return") }; class LLoadNamedField: public LTemplateInstruction<1, 1, 0> { public: explicit LLoadNamedField(LOperand* object) { inputs_[0] = object; } DECLARE_CONCRETE_INSTRUCTION(LoadNamedField, "load-named-field") DECLARE_HYDROGEN_ACCESSOR(LoadNamedField) }; class LLoadNamedFieldPolymorphic: public LTemplateInstruction<1, 1, 0> { public: explicit LLoadNamedFieldPolymorphic(LOperand* object) { inputs_[0] = object; } DECLARE_CONCRETE_INSTRUCTION(LoadNamedField, "load-named-field-polymorphic") DECLARE_HYDROGEN_ACCESSOR(LoadNamedFieldPolymorphic) LOperand* object() { return inputs_[0]; } }; class LLoadNamedGeneric: public LTemplateInstruction<1, 1, 0> { public: explicit LLoadNamedGeneric(LOperand* object) { inputs_[0] = object; } DECLARE_CONCRETE_INSTRUCTION(LoadNamedGeneric, "load-named-generic") DECLARE_HYDROGEN_ACCESSOR(LoadNamedGeneric) LOperand* object() { return inputs_[0]; } Handle<Object> name() const { return hydrogen()->name(); } }; class LLoadFunctionPrototype: public LTemplateInstruction<1, 1, 0> { public: explicit LLoadFunctionPrototype(LOperand* function) { inputs_[0] = function; } DECLARE_CONCRETE_INSTRUCTION(LoadFunctionPrototype, "load-function-prototype") DECLARE_HYDROGEN_ACCESSOR(LoadFunctionPrototype) LOperand* function() { return inputs_[0]; } }; class LLoadElements: public LTemplateInstruction<1, 1, 0> { public: explicit LLoadElements(LOperand* object) { inputs_[0] = object; } DECLARE_CONCRETE_INSTRUCTION(LoadElements, "load-elements") }; class LLoadExternalArrayPointer: public LTemplateInstruction<1, 1, 0> { public: explicit LLoadExternalArrayPointer(LOperand* object) { inputs_[0] = object; } DECLARE_CONCRETE_INSTRUCTION(LoadExternalArrayPointer, "load-external-array-pointer") }; class LLoadKeyedFastElement: public LTemplateInstruction<1, 2, 0> { public: LLoadKeyedFastElement(LOperand* elements, LOperand* key) { inputs_[0] = elements; inputs_[1] = key; } DECLARE_CONCRETE_INSTRUCTION(LoadKeyedFastElement, "load-keyed-fast-element") DECLARE_HYDROGEN_ACCESSOR(LoadKeyedFastElement) LOperand* elements() { return inputs_[0]; } LOperand* key() { return inputs_[1]; } }; class LLoadKeyedFastDoubleElement: public LTemplateInstruction<1, 2, 0> { public: LLoadKeyedFastDoubleElement(LOperand* elements, LOperand* key) { inputs_[0] = elements; inputs_[1] = key; } DECLARE_CONCRETE_INSTRUCTION(LoadKeyedFastDoubleElement, "load-keyed-fast-double-element") DECLARE_HYDROGEN_ACCESSOR(LoadKeyedFastDoubleElement) LOperand* elements() { return inputs_[0]; } LOperand* key() { return inputs_[1]; } }; class LLoadKeyedSpecializedArrayElement: public LTemplateInstruction<1, 2, 0> { public: LLoadKeyedSpecializedArrayElement(LOperand* external_pointer, LOperand* key) { inputs_[0] = external_pointer; inputs_[1] = key; } DECLARE_CONCRETE_INSTRUCTION(LoadKeyedSpecializedArrayElement, "load-keyed-specialized-array-element") DECLARE_HYDROGEN_ACCESSOR(LoadKeyedSpecializedArrayElement) LOperand* external_pointer() { return inputs_[0]; } LOperand* key() { return inputs_[1]; } ElementsKind elements_kind() const { return hydrogen()->elements_kind(); } }; class LLoadKeyedGeneric: public LTemplateInstruction<1, 2, 0> { public: LLoadKeyedGeneric(LOperand* obj, LOperand* key) { inputs_[0] = obj; inputs_[1] = key; } DECLARE_CONCRETE_INSTRUCTION(LoadKeyedGeneric, "load-keyed-generic") LOperand* object() { return inputs_[0]; } LOperand* key() { return inputs_[1]; } }; class LLoadGlobalCell: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(LoadGlobalCell, "load-global-cell") DECLARE_HYDROGEN_ACCESSOR(LoadGlobalCell) }; class LLoadGlobalGeneric: public LTemplateInstruction<1, 1, 0> { public: explicit LLoadGlobalGeneric(LOperand* global_object) { inputs_[0] = global_object; } DECLARE_CONCRETE_INSTRUCTION(LoadGlobalGeneric, "load-global-generic") DECLARE_HYDROGEN_ACCESSOR(LoadGlobalGeneric) LOperand* global_object() { return inputs_[0]; } Handle<Object> name() const { return hydrogen()->name(); } bool for_typeof() const { return hydrogen()->for_typeof(); } }; class LStoreGlobalCell: public LTemplateInstruction<0, 1, 1> { public: explicit LStoreGlobalCell(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(StoreGlobalCell, "store-global-cell") DECLARE_HYDROGEN_ACCESSOR(StoreGlobalCell) LOperand* value() { return inputs_[0]; } }; class LStoreGlobalGeneric: public LTemplateInstruction<0, 2, 0> { public: explicit LStoreGlobalGeneric(LOperand* global_object, LOperand* value) { inputs_[0] = global_object; inputs_[1] = value; } DECLARE_CONCRETE_INSTRUCTION(StoreGlobalGeneric, "store-global-generic") DECLARE_HYDROGEN_ACCESSOR(StoreGlobalGeneric) LOperand* global_object() { return InputAt(0); } Handle<Object> name() const { return hydrogen()->name(); } LOperand* value() { return InputAt(1); } StrictModeFlag strict_mode_flag() { return hydrogen()->strict_mode_flag(); } }; class LLoadContextSlot: public LTemplateInstruction<1, 1, 0> { public: explicit LLoadContextSlot(LOperand* context) { inputs_[0] = context; } DECLARE_CONCRETE_INSTRUCTION(LoadContextSlot, "load-context-slot") DECLARE_HYDROGEN_ACCESSOR(LoadContextSlot) LOperand* context() { return InputAt(0); } int slot_index() { return hydrogen()->slot_index(); } virtual void PrintDataTo(StringStream* stream); }; class LStoreContextSlot: public LTemplateInstruction<0, 2, 1> { public: LStoreContextSlot(LOperand* context, LOperand* value, LOperand* temp) { inputs_[0] = context; inputs_[1] = value; temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(StoreContextSlot, "store-context-slot") DECLARE_HYDROGEN_ACCESSOR(StoreContextSlot) LOperand* context() { return InputAt(0); } LOperand* value() { return InputAt(1); } int slot_index() { return hydrogen()->slot_index(); } virtual void PrintDataTo(StringStream* stream); }; class LPushArgument: public LTemplateInstruction<0, 1, 0> { public: explicit LPushArgument(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(PushArgument, "push-argument") }; class LThisFunction: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(ThisFunction, "this-function") DECLARE_HYDROGEN_ACCESSOR(ThisFunction) }; class LContext: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(Context, "context") }; class LOuterContext: public LTemplateInstruction<1, 1, 0> { public: explicit LOuterContext(LOperand* context) { inputs_[0] = context; } DECLARE_CONCRETE_INSTRUCTION(OuterContext, "outer-context") LOperand* context() { return InputAt(0); } }; class LDeclareGlobals: public LTemplateInstruction<0, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(DeclareGlobals, "declare-globals") DECLARE_HYDROGEN_ACCESSOR(DeclareGlobals) }; class LGlobalObject: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(GlobalObject, "global-object") }; class LGlobalReceiver: public LTemplateInstruction<1, 1, 0> { public: explicit LGlobalReceiver(LOperand* global_object) { inputs_[0] = global_object; } DECLARE_CONCRETE_INSTRUCTION(GlobalReceiver, "global-receiver") LOperand* global() { return InputAt(0); } }; class LCallConstantFunction: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(CallConstantFunction, "call-constant-function") DECLARE_HYDROGEN_ACCESSOR(CallConstantFunction) virtual void PrintDataTo(StringStream* stream); Handle<JSFunction> function() { return hydrogen()->function(); } int arity() const { return hydrogen()->argument_count() - 1; } }; class LInvokeFunction: public LTemplateInstruction<1, 1, 0> { public: explicit LInvokeFunction(LOperand* function) { inputs_[0] = function; } DECLARE_CONCRETE_INSTRUCTION(InvokeFunction, "invoke-function") DECLARE_HYDROGEN_ACCESSOR(InvokeFunction) LOperand* function() { return inputs_[0]; } virtual void PrintDataTo(StringStream* stream); int arity() const { return hydrogen()->argument_count() - 1; } }; class LCallKeyed: public LTemplateInstruction<1, 1, 0> { public: explicit LCallKeyed(LOperand* key) { inputs_[0] = key; } DECLARE_CONCRETE_INSTRUCTION(CallKeyed, "call-keyed") DECLARE_HYDROGEN_ACCESSOR(CallKeyed) LOperand* key() { return inputs_[0]; } virtual void PrintDataTo(StringStream* stream); int arity() const { return hydrogen()->argument_count() - 1; } }; class LCallNamed: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(CallNamed, "call-named") DECLARE_HYDROGEN_ACCESSOR(CallNamed) virtual void PrintDataTo(StringStream* stream); Handle<String> name() const { return hydrogen()->name(); } int arity() const { return hydrogen()->argument_count() - 1; } }; class LCallFunction: public LTemplateInstruction<1, 1, 0> { public: explicit LCallFunction(LOperand* function) { inputs_[0] = function; } DECLARE_CONCRETE_INSTRUCTION(CallFunction, "call-function") DECLARE_HYDROGEN_ACCESSOR(CallFunction) LOperand* function() { return inputs_[0]; } int arity() const { return hydrogen()->argument_count() - 1; } }; class LCallGlobal: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(CallGlobal, "call-global") DECLARE_HYDROGEN_ACCESSOR(CallGlobal) virtual void PrintDataTo(StringStream* stream); Handle<String> name() const {return hydrogen()->name(); } int arity() const { return hydrogen()->argument_count() - 1; } }; class LCallKnownGlobal: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(CallKnownGlobal, "call-known-global") DECLARE_HYDROGEN_ACCESSOR(CallKnownGlobal) virtual void PrintDataTo(StringStream* stream); Handle<JSFunction> target() const { return hydrogen()->target(); } int arity() const { return hydrogen()->argument_count() - 1; } }; class LCallNew: public LTemplateInstruction<1, 1, 0> { public: explicit LCallNew(LOperand* constructor) { inputs_[0] = constructor; } DECLARE_CONCRETE_INSTRUCTION(CallNew, "call-new") DECLARE_HYDROGEN_ACCESSOR(CallNew) virtual void PrintDataTo(StringStream* stream); int arity() const { return hydrogen()->argument_count() - 1; } }; class LCallRuntime: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(CallRuntime, "call-runtime") DECLARE_HYDROGEN_ACCESSOR(CallRuntime) const Runtime::Function* function() const { return hydrogen()->function(); } int arity() const { return hydrogen()->argument_count(); } }; class LInteger32ToDouble: public LTemplateInstruction<1, 1, 0> { public: explicit LInteger32ToDouble(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(Integer32ToDouble, "int32-to-double") }; class LNumberTagI: public LTemplateInstruction<1, 1, 0> { public: explicit LNumberTagI(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(NumberTagI, "number-tag-i") }; class LNumberTagD: public LTemplateInstruction<1, 1, 1> { public: explicit LNumberTagD(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(NumberTagD, "number-tag-d") }; // Sometimes truncating conversion from a tagged value to an int32. class LDoubleToI: public LTemplateInstruction<1, 1, 0> { public: explicit LDoubleToI(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(DoubleToI, "double-to-i") DECLARE_HYDROGEN_ACCESSOR(UnaryOperation) bool truncating() { return hydrogen()->CanTruncateToInt32(); } }; // Truncating conversion from a tagged value to an int32. class LTaggedToI: public LTemplateInstruction<1, 1, 1> { public: LTaggedToI(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(TaggedToI, "tagged-to-i") DECLARE_HYDROGEN_ACCESSOR(UnaryOperation) bool truncating() { return hydrogen()->CanTruncateToInt32(); } }; class LSmiTag: public LTemplateInstruction<1, 1, 0> { public: explicit LSmiTag(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(SmiTag, "smi-tag") }; class LNumberUntagD: public LTemplateInstruction<1, 1, 0> { public: explicit LNumberUntagD(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(NumberUntagD, "double-untag") DECLARE_HYDROGEN_ACCESSOR(Change); }; class LSmiUntag: public LTemplateInstruction<1, 1, 0> { public: LSmiUntag(LOperand* value, bool needs_check) : needs_check_(needs_check) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(SmiUntag, "smi-untag") bool needs_check() const { return needs_check_; } private: bool needs_check_; }; class LStoreNamedField: public LTemplateInstruction<0, 2, 1> { public: LStoreNamedField(LOperand* object, LOperand* value, LOperand* temp) { inputs_[0] = object; inputs_[1] = value; temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(StoreNamedField, "store-named-field") DECLARE_HYDROGEN_ACCESSOR(StoreNamedField) virtual void PrintDataTo(StringStream* stream); LOperand* object() { return inputs_[0]; } LOperand* value() { return inputs_[1]; } Handle<Object> name() const { return hydrogen()->name(); } bool is_in_object() { return hydrogen()->is_in_object(); } int offset() { return hydrogen()->offset(); } Handle<Map> transition() const { return hydrogen()->transition(); } }; class LStoreNamedGeneric: public LTemplateInstruction<0, 2, 0> { public: LStoreNamedGeneric(LOperand* object, LOperand* value) { inputs_[0] = object; inputs_[1] = value; } DECLARE_CONCRETE_INSTRUCTION(StoreNamedGeneric, "store-named-generic") DECLARE_HYDROGEN_ACCESSOR(StoreNamedGeneric) virtual void PrintDataTo(StringStream* stream); LOperand* object() { return inputs_[0]; } LOperand* value() { return inputs_[1]; } Handle<Object> name() const { return hydrogen()->name(); } StrictModeFlag strict_mode_flag() { return hydrogen()->strict_mode_flag(); } }; class LStoreKeyedFastElement: public LTemplateInstruction<0, 3, 0> { public: LStoreKeyedFastElement(LOperand* obj, LOperand* key, LOperand* val) { inputs_[0] = obj; inputs_[1] = key; inputs_[2] = val; } DECLARE_CONCRETE_INSTRUCTION(StoreKeyedFastElement, "store-keyed-fast-element") DECLARE_HYDROGEN_ACCESSOR(StoreKeyedFastElement) virtual void PrintDataTo(StringStream* stream); LOperand* object() { return inputs_[0]; } LOperand* key() { return inputs_[1]; } LOperand* value() { return inputs_[2]; } }; class LStoreKeyedFastDoubleElement: public LTemplateInstruction<0, 3, 0> { public: LStoreKeyedFastDoubleElement(LOperand* elements, LOperand* key, LOperand* val) { inputs_[0] = elements; inputs_[1] = key; inputs_[2] = val; } DECLARE_CONCRETE_INSTRUCTION(StoreKeyedFastDoubleElement, "store-keyed-fast-double-element") DECLARE_HYDROGEN_ACCESSOR(StoreKeyedFastDoubleElement) virtual void PrintDataTo(StringStream* stream); LOperand* elements() { return inputs_[0]; } LOperand* key() { return inputs_[1]; } LOperand* value() { return inputs_[2]; } }; class LStoreKeyedSpecializedArrayElement: public LTemplateInstruction<0, 3, 0> { public: LStoreKeyedSpecializedArrayElement(LOperand* external_pointer, LOperand* key, LOperand* val) { inputs_[0] = external_pointer; inputs_[1] = key; inputs_[2] = val; } DECLARE_CONCRETE_INSTRUCTION(StoreKeyedSpecializedArrayElement, "store-keyed-specialized-array-element") DECLARE_HYDROGEN_ACCESSOR(StoreKeyedSpecializedArrayElement) LOperand* external_pointer() { return inputs_[0]; } LOperand* key() { return inputs_[1]; } LOperand* value() { return inputs_[2]; } ElementsKind elements_kind() const { return hydrogen()->elements_kind(); } }; class LStoreKeyedGeneric: public LTemplateInstruction<0, 3, 0> { public: LStoreKeyedGeneric(LOperand* object, LOperand* key, LOperand* value) { inputs_[0] = object; inputs_[1] = key; inputs_[2] = value; } DECLARE_CONCRETE_INSTRUCTION(StoreKeyedGeneric, "store-keyed-generic") DECLARE_HYDROGEN_ACCESSOR(StoreKeyedGeneric) virtual void PrintDataTo(StringStream* stream); LOperand* object() { return inputs_[0]; } LOperand* key() { return inputs_[1]; } LOperand* value() { return inputs_[2]; } StrictModeFlag strict_mode_flag() { return hydrogen()->strict_mode_flag(); } }; class LTransitionElementsKind: public LTemplateInstruction<1, 1, 2> { public: LTransitionElementsKind(LOperand* object, LOperand* new_map_temp, LOperand* temp_reg) { inputs_[0] = object; temps_[0] = new_map_temp; temps_[1] = temp_reg; } DECLARE_CONCRETE_INSTRUCTION(TransitionElementsKind, "transition-elements-kind") DECLARE_HYDROGEN_ACCESSOR(TransitionElementsKind) virtual void PrintDataTo(StringStream* stream); LOperand* object() { return inputs_[0]; } LOperand* new_map_reg() { return temps_[0]; } LOperand* temp_reg() { return temps_[1]; } Handle<Map> original_map() { return hydrogen()->original_map(); } Handle<Map> transitioned_map() { return hydrogen()->transitioned_map(); } }; class LStringAdd: public LTemplateInstruction<1, 2, 0> { public: LStringAdd(LOperand* left, LOperand* right) { inputs_[0] = left; inputs_[1] = right; } DECLARE_CONCRETE_INSTRUCTION(StringAdd, "string-add") DECLARE_HYDROGEN_ACCESSOR(StringAdd) LOperand* left() { return inputs_[0]; } LOperand* right() { return inputs_[1]; } }; class LStringCharCodeAt: public LTemplateInstruction<1, 2, 0> { public: LStringCharCodeAt(LOperand* string, LOperand* index) { inputs_[0] = string; inputs_[1] = index; } DECLARE_CONCRETE_INSTRUCTION(StringCharCodeAt, "string-char-code-at") DECLARE_HYDROGEN_ACCESSOR(StringCharCodeAt) LOperand* string() { return inputs_[0]; } LOperand* index() { return inputs_[1]; } }; class LStringCharFromCode: public LTemplateInstruction<1, 1, 0> { public: explicit LStringCharFromCode(LOperand* char_code) { inputs_[0] = char_code; } DECLARE_CONCRETE_INSTRUCTION(StringCharFromCode, "string-char-from-code") DECLARE_HYDROGEN_ACCESSOR(StringCharFromCode) LOperand* char_code() { return inputs_[0]; } }; class LStringLength: public LTemplateInstruction<1, 1, 0> { public: explicit LStringLength(LOperand* string) { inputs_[0] = string; } DECLARE_CONCRETE_INSTRUCTION(StringLength, "string-length") DECLARE_HYDROGEN_ACCESSOR(StringLength) LOperand* string() { return inputs_[0]; } }; class LCheckFunction: public LTemplateInstruction<0, 1, 0> { public: explicit LCheckFunction(LOperand* value) { inputs_[0] = value; } LOperand* value() { return InputAt(0); } DECLARE_CONCRETE_INSTRUCTION(CheckFunction, "check-function") DECLARE_HYDROGEN_ACCESSOR(CheckFunction) }; class LCheckInstanceType: public LTemplateInstruction<0, 1, 0> { public: explicit LCheckInstanceType(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(CheckInstanceType, "check-instance-type") DECLARE_HYDROGEN_ACCESSOR(CheckInstanceType) }; class LCheckMap: public LTemplateInstruction<0, 1, 0> { public: explicit LCheckMap(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(CheckMap, "check-map") DECLARE_HYDROGEN_ACCESSOR(CheckMap) }; class LCheckPrototypeMaps: public LTemplateInstruction<0, 0, 1> { public: explicit LCheckPrototypeMaps(LOperand* temp) { temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(CheckPrototypeMaps, "check-prototype-maps") DECLARE_HYDROGEN_ACCESSOR(CheckPrototypeMaps) Handle<JSObject> prototype() const { return hydrogen()->prototype(); } Handle<JSObject> holder() const { return hydrogen()->holder(); } }; class LCheckSmi: public LTemplateInstruction<0, 1, 0> { public: explicit LCheckSmi(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(CheckSmi, "check-smi") }; class LClampDToUint8: public LTemplateInstruction<1, 1, 1> { public: LClampDToUint8(LOperand* value, LOperand* temp) { inputs_[0] = value; temps_[0] = temp; } LOperand* unclamped() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(ClampDToUint8, "clamp-d-to-uint8") }; class LClampIToUint8: public LTemplateInstruction<1, 1, 0> { public: explicit LClampIToUint8(LOperand* value) { inputs_[0] = value; } LOperand* unclamped() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(ClampIToUint8, "clamp-i-to-uint8") }; class LClampTToUint8: public LTemplateInstruction<1, 1, 2> { public: LClampTToUint8(LOperand* value, LOperand* temp, LOperand* temp2) { inputs_[0] = value; temps_[0] = temp; temps_[1] = temp2; } LOperand* unclamped() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(ClampTToUint8, "clamp-t-to-uint8") }; class LCheckNonSmi: public LTemplateInstruction<0, 1, 0> { public: explicit LCheckNonSmi(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(CheckNonSmi, "check-non-smi") }; class LAllocateObject: public LTemplateInstruction<1, 0, 1> { public: explicit LAllocateObject(LOperand* temp) { temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(AllocateObject, "allocate-object") DECLARE_HYDROGEN_ACCESSOR(AllocateObject) }; class LFastLiteral: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(FastLiteral, "fast-literal") DECLARE_HYDROGEN_ACCESSOR(FastLiteral) }; class LArrayLiteral: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(ArrayLiteral, "array-literal") DECLARE_HYDROGEN_ACCESSOR(ArrayLiteral) }; class LObjectLiteral: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(ObjectLiteral, "object-literal") DECLARE_HYDROGEN_ACCESSOR(ObjectLiteral) }; class LRegExpLiteral: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(RegExpLiteral, "regexp-literal") DECLARE_HYDROGEN_ACCESSOR(RegExpLiteral) }; class LFunctionLiteral: public LTemplateInstruction<1, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(FunctionLiteral, "function-literal") DECLARE_HYDROGEN_ACCESSOR(FunctionLiteral) Handle<SharedFunctionInfo> shared_info() { return hydrogen()->shared_info(); } }; class LToFastProperties: public LTemplateInstruction<1, 1, 0> { public: explicit LToFastProperties(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(ToFastProperties, "to-fast-properties") DECLARE_HYDROGEN_ACCESSOR(ToFastProperties) }; class LTypeof: public LTemplateInstruction<1, 1, 0> { public: explicit LTypeof(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(Typeof, "typeof") }; class LTypeofIsAndBranch: public LControlInstruction<1, 0> { public: explicit LTypeofIsAndBranch(LOperand* value) { inputs_[0] = value; } DECLARE_CONCRETE_INSTRUCTION(TypeofIsAndBranch, "typeof-is-and-branch") DECLARE_HYDROGEN_ACCESSOR(TypeofIsAndBranch) Handle<String> type_literal() { return hydrogen()->type_literal(); } virtual void PrintDataTo(StringStream* stream); }; class LIsConstructCallAndBranch: public LControlInstruction<0, 1> { public: explicit LIsConstructCallAndBranch(LOperand* temp) { temps_[0] = temp; } DECLARE_CONCRETE_INSTRUCTION(IsConstructCallAndBranch, "is-construct-call-and-branch") DECLARE_HYDROGEN_ACCESSOR(IsConstructCallAndBranch) }; class LDeleteProperty: public LTemplateInstruction<1, 2, 0> { public: LDeleteProperty(LOperand* obj, LOperand* key) { inputs_[0] = obj; inputs_[1] = key; } DECLARE_CONCRETE_INSTRUCTION(DeleteProperty, "delete-property") LOperand* object() { return inputs_[0]; } LOperand* key() { return inputs_[1]; } }; class LOsrEntry: public LTemplateInstruction<0, 0, 0> { public: LOsrEntry(); DECLARE_CONCRETE_INSTRUCTION(OsrEntry, "osr-entry") LOperand** SpilledRegisterArray() { return register_spills_; } LOperand** SpilledDoubleRegisterArray() { return double_register_spills_; } void MarkSpilledRegister(int allocation_index, LOperand* spill_operand); void MarkSpilledDoubleRegister(int allocation_index, LOperand* spill_operand); private: // Arrays of spill slot operands for registers with an assigned spill // slot, i.e., that must also be restored to the spill slot on OSR entry. // NULL if the register has no assigned spill slot. Indexed by allocation // index. LOperand* register_spills_[Register::kNumAllocatableRegisters]; LOperand* double_register_spills_[DoubleRegister::kNumAllocatableRegisters]; }; class LStackCheck: public LTemplateInstruction<0, 0, 0> { public: DECLARE_CONCRETE_INSTRUCTION(StackCheck, "stack-check") DECLARE_HYDROGEN_ACCESSOR(StackCheck) Label* done_label() { return &done_label_; } private: Label done_label_; }; class LForInPrepareMap: public LTemplateInstruction<1, 1, 0> { public: explicit LForInPrepareMap(LOperand* object) { inputs_[0] = object; } LOperand* object() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(ForInPrepareMap, "for-in-prepare-map") }; class LForInCacheArray: public LTemplateInstruction<1, 1, 0> { public: explicit LForInCacheArray(LOperand* map) { inputs_[0] = map; } LOperand* map() { return inputs_[0]; } DECLARE_CONCRETE_INSTRUCTION(ForInCacheArray, "for-in-cache-array") int idx() { return HForInCacheArray::cast(this->hydrogen_value())->idx(); } }; class LCheckMapValue: public LTemplateInstruction<0, 2, 0> { public: LCheckMapValue(LOperand* value, LOperand* map) { inputs_[0] = value; inputs_[1] = map; } LOperand* value() { return inputs_[0]; } LOperand* map() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(CheckMapValue, "check-map-value") }; class LLoadFieldByIndex: public LTemplateInstruction<1, 2, 0> { public: LLoadFieldByIndex(LOperand* object, LOperand* index) { inputs_[0] = object; inputs_[1] = index; } LOperand* object() { return inputs_[0]; } LOperand* index() { return inputs_[1]; } DECLARE_CONCRETE_INSTRUCTION(LoadFieldByIndex, "load-field-by-index") }; class LChunkBuilder; class LChunk: public ZoneObject { public: explicit LChunk(CompilationInfo* info, HGraph* graph) : spill_slot_count_(0), info_(info), graph_(graph), instructions_(32), pointer_maps_(8), inlined_closures_(1) { } void AddInstruction(LInstruction* instruction, HBasicBlock* block); LConstantOperand* DefineConstantOperand(HConstant* constant); Handle<Object> LookupLiteral(LConstantOperand* operand) const; Representation LookupLiteralRepresentation(LConstantOperand* operand) const; int GetNextSpillIndex(bool is_double); LOperand* GetNextSpillSlot(bool is_double); int ParameterAt(int index); int GetParameterStackSlot(int index) const; int spill_slot_count() const { return spill_slot_count_; } CompilationInfo* info() const { return info_; } HGraph* graph() const { return graph_; } const ZoneList<LInstruction*>* instructions() const { return &instructions_; } void AddGapMove(int index, LOperand* from, LOperand* to); LGap* GetGapAt(int index) const; bool IsGapAt(int index) const; int NearestGapPos(int index) const; void MarkEmptyBlocks(); const ZoneList<LPointerMap*>* pointer_maps() const { return &pointer_maps_; } LLabel* GetLabel(int block_id) const { HBasicBlock* block = graph_->blocks()->at(block_id); int first_instruction = block->first_instruction_index(); return LLabel::cast(instructions_[first_instruction]); } int LookupDestination(int block_id) const { LLabel* cur = GetLabel(block_id); while (cur->replacement() != NULL) { cur = cur->replacement(); } return cur->block_id(); } Label* GetAssemblyLabel(int block_id) const { LLabel* label = GetLabel(block_id); ASSERT(!label->HasReplacement()); return label->label(); } const ZoneList<Handle<JSFunction> >* inlined_closures() const { return &inlined_closures_; } void AddInlinedClosure(Handle<JSFunction> closure) { inlined_closures_.Add(closure); } private: int spill_slot_count_; CompilationInfo* info_; HGraph* const graph_; ZoneList<LInstruction*> instructions_; ZoneList<LPointerMap*> pointer_maps_; ZoneList<Handle<JSFunction> > inlined_closures_; }; class LChunkBuilder BASE_EMBEDDED { public: LChunkBuilder(CompilationInfo* info, HGraph* graph, LAllocator* allocator) : chunk_(NULL), info_(info), graph_(graph), zone_(graph->isolate()->zone()), status_(UNUSED), current_instruction_(NULL), current_block_(NULL), next_block_(NULL), argument_count_(0), allocator_(allocator), position_(RelocInfo::kNoPosition), instruction_pending_deoptimization_environment_(NULL), pending_deoptimization_ast_id_(AstNode::kNoNumber) { } // Build the sequence for the graph. LChunk* Build(); // Declare methods that deal with the individual node types. #define DECLARE_DO(type) LInstruction* Do##type(H##type* node); HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_DO) #undef DECLARE_DO private: enum Status { UNUSED, BUILDING, DONE, ABORTED }; LChunk* chunk() const { return chunk_; } CompilationInfo* info() const { return info_; } HGraph* graph() const { return graph_; } Zone* zone() const { return zone_; } bool is_unused() const { return status_ == UNUSED; } bool is_building() const { return status_ == BUILDING; } bool is_done() const { return status_ == DONE; } bool is_aborted() const { return status_ == ABORTED; } void Abort(const char* format, ...); // Methods for getting operands for Use / Define / Temp. LUnallocated* ToUnallocated(Register reg); LUnallocated* ToUnallocated(XMMRegister reg); // Methods for setting up define-use relationships. MUST_USE_RESULT LOperand* Use(HValue* value, LUnallocated* operand); MUST_USE_RESULT LOperand* UseFixed(HValue* value, Register fixed_register); MUST_USE_RESULT LOperand* UseFixedDouble(HValue* value, XMMRegister fixed_register); // A value that is guaranteed to be allocated to a register. // Operand created by UseRegister is guaranteed to be live until the end of // instruction. This means that register allocator will not reuse it's // register for any other operand inside instruction. // Operand created by UseRegisterAtStart is guaranteed to be live only at // instruction start. Register allocator is free to assign the same register // to some other operand used inside instruction (i.e. temporary or // output). MUST_USE_RESULT LOperand* UseRegister(HValue* value); MUST_USE_RESULT LOperand* UseRegisterAtStart(HValue* value); // An input operand in a register that may be trashed. MUST_USE_RESULT LOperand* UseTempRegister(HValue* value); // An input operand in a register or stack slot. MUST_USE_RESULT LOperand* Use(HValue* value); MUST_USE_RESULT LOperand* UseAtStart(HValue* value); // An input operand in a register, stack slot or a constant operand. MUST_USE_RESULT LOperand* UseOrConstant(HValue* value); MUST_USE_RESULT LOperand* UseOrConstantAtStart(HValue* value); // An input operand in a register or a constant operand. MUST_USE_RESULT LOperand* UseRegisterOrConstant(HValue* value); MUST_USE_RESULT LOperand* UseRegisterOrConstantAtStart(HValue* value); // An input operand in register, stack slot or a constant operand. // Will not be moved to a register even if one is freely available. MUST_USE_RESULT LOperand* UseAny(HValue* value); // Temporary operand that must be in a register. MUST_USE_RESULT LUnallocated* TempRegister(); MUST_USE_RESULT LOperand* FixedTemp(Register reg); MUST_USE_RESULT LOperand* FixedTemp(XMMRegister reg); // Methods for setting up define-use relationships. // Return the same instruction that they are passed. template<int I, int T> LInstruction* Define(LTemplateInstruction<1, I, T>* instr, LUnallocated* result); template<int I, int T> LInstruction* DefineAsRegister(LTemplateInstruction<1, I, T>* instr); template<int I, int T> LInstruction* DefineAsSpilled(LTemplateInstruction<1, I, T>* instr, int index); template<int I, int T> LInstruction* DefineSameAsFirst(LTemplateInstruction<1, I, T>* instr); template<int I, int T> LInstruction* DefineFixed(LTemplateInstruction<1, I, T>* instr, Register reg); template<int I, int T> LInstruction* DefineFixedDouble(LTemplateInstruction<1, I, T>* instr, XMMRegister reg); // Assigns an environment to an instruction. An instruction which can // deoptimize must have an environment. LInstruction* AssignEnvironment(LInstruction* instr); // Assigns a pointer map to an instruction. An instruction which can // trigger a GC or a lazy deoptimization must have a pointer map. LInstruction* AssignPointerMap(LInstruction* instr); enum CanDeoptimize { CAN_DEOPTIMIZE_EAGERLY, CANNOT_DEOPTIMIZE_EAGERLY }; // Marks a call for the register allocator. Assigns a pointer map to // support GC and lazy deoptimization. Assigns an environment to support // eager deoptimization if CAN_DEOPTIMIZE_EAGERLY. LInstruction* MarkAsCall( LInstruction* instr, HInstruction* hinstr, CanDeoptimize can_deoptimize = CANNOT_DEOPTIMIZE_EAGERLY); LInstruction* MarkAsSaveDoubles(LInstruction* instr); LInstruction* SetInstructionPendingDeoptimizationEnvironment( LInstruction* instr, int ast_id); void ClearInstructionPendingDeoptimizationEnvironment(); LEnvironment* CreateEnvironment(HEnvironment* hydrogen_env, int* argument_index_accumulator); void VisitInstruction(HInstruction* current); void DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block); LInstruction* DoShift(Token::Value op, HBitwiseBinaryOperation* instr); LInstruction* DoArithmeticD(Token::Value op, HArithmeticBinaryOperation* instr); LInstruction* DoArithmeticT(Token::Value op, HArithmeticBinaryOperation* instr); LChunk* chunk_; CompilationInfo* info_; HGraph* const graph_; Zone* zone_; Status status_; HInstruction* current_instruction_; HBasicBlock* current_block_; HBasicBlock* next_block_; int argument_count_; LAllocator* allocator_; int position_; LInstruction* instruction_pending_deoptimization_environment_; int pending_deoptimization_ast_id_; DISALLOW_COPY_AND_ASSIGN(LChunkBuilder); }; #undef DECLARE_HYDROGEN_ACCESSOR #undef DECLARE_CONCRETE_INSTRUCTION } } // namespace v8::int #endif // V8_X64_LITHIUM_X64_H_