// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "api.h" #include "arguments.h" #include "bootstrapper.h" #include "codegen.h" #include "debug.h" #include "deoptimizer.h" #include "date.h" #include "elements.h" #include "execution.h" #include "full-codegen.h" #include "hydrogen.h" #include "objects-inl.h" #include "objects-visiting.h" #include "objects-visiting-inl.h" #include "macro-assembler.h" #include "mark-compact.h" #include "safepoint-table.h" #include "string-stream.h" #include "utils.h" #include "vm-state-inl.h" #ifdef ENABLE_DISASSEMBLER #include "disasm.h" #include "disassembler.h" #endif namespace v8 { namespace internal { void PrintElementsKind(FILE* out, ElementsKind kind) { ElementsAccessor* accessor = ElementsAccessor::ForKind(kind); PrintF(out, "%s", accessor->name()); } MUST_USE_RESULT static MaybeObject* CreateJSValue(JSFunction* constructor, Object* value) { Object* result; { MaybeObject* maybe_result = constructor->GetHeap()->AllocateJSObject(constructor); if (!maybe_result->ToObject(&result)) return maybe_result; } JSValue::cast(result)->set_value(value); return result; } MaybeObject* Object::ToObject(Context* global_context) { if (IsNumber()) { return CreateJSValue(global_context->number_function(), this); } else if (IsBoolean()) { return CreateJSValue(global_context->boolean_function(), this); } else if (IsString()) { return CreateJSValue(global_context->string_function(), this); } ASSERT(IsJSObject()); return this; } MaybeObject* Object::ToObject() { if (IsJSReceiver()) { return this; } else if (IsNumber()) { Isolate* isolate = Isolate::Current(); Context* global_context = isolate->context()->global_context(); return CreateJSValue(global_context->number_function(), this); } else if (IsBoolean()) { Isolate* isolate = HeapObject::cast(this)->GetIsolate(); Context* global_context = isolate->context()->global_context(); return CreateJSValue(global_context->boolean_function(), this); } else if (IsString()) { Isolate* isolate = HeapObject::cast(this)->GetIsolate(); Context* global_context = isolate->context()->global_context(); return CreateJSValue(global_context->string_function(), this); } // Throw a type error. return Failure::InternalError(); } Object* Object::ToBoolean() { if (IsTrue()) return this; if (IsFalse()) return this; if (IsSmi()) { return Isolate::Current()->heap()->ToBoolean(Smi::cast(this)->value() != 0); } HeapObject* heap_object = HeapObject::cast(this); if (heap_object->IsUndefined() || heap_object->IsNull()) { return heap_object->GetHeap()->false_value(); } // Undetectable object is false if (heap_object->IsUndetectableObject()) { return heap_object->GetHeap()->false_value(); } if (heap_object->IsString()) { return heap_object->GetHeap()->ToBoolean( String::cast(this)->length() != 0); } if (heap_object->IsHeapNumber()) { return HeapNumber::cast(this)->HeapNumberToBoolean(); } return heap_object->GetHeap()->true_value(); } void Object::Lookup(String* name, LookupResult* result) { Object* holder = NULL; if (IsJSReceiver()) { holder = this; } else { Context* global_context = Isolate::Current()->context()->global_context(); if (IsNumber()) { holder = global_context->number_function()->instance_prototype(); } else if (IsString()) { holder = global_context->string_function()->instance_prototype(); } else if (IsBoolean()) { holder = global_context->boolean_function()->instance_prototype(); } } ASSERT(holder != NULL); // Cannot handle null or undefined. JSReceiver::cast(holder)->Lookup(name, result); } MaybeObject* Object::GetPropertyWithReceiver(Object* receiver, String* name, PropertyAttributes* attributes) { LookupResult result(name->GetIsolate()); Lookup(name, &result); MaybeObject* value = GetProperty(receiver, &result, name, attributes); ASSERT(*attributes <= ABSENT); return value; } MaybeObject* JSObject::GetPropertyWithCallback(Object* receiver, Object* structure, String* name) { Isolate* isolate = name->GetIsolate(); // To accommodate both the old and the new api we switch on the // data structure used to store the callbacks. Eventually foreign // callbacks should be phased out. if (structure->IsForeign()) { AccessorDescriptor* callback = reinterpret_cast<AccessorDescriptor*>( Foreign::cast(structure)->foreign_address()); MaybeObject* value = (callback->getter)(receiver, callback->data); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return value; } // api style callbacks. if (structure->IsAccessorInfo()) { AccessorInfo* data = AccessorInfo::cast(structure); Object* fun_obj = data->getter(); v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj); HandleScope scope(isolate); JSObject* self = JSObject::cast(receiver); Handle<String> key(name); LOG(isolate, ApiNamedPropertyAccess("load", self, name)); CustomArguments args(isolate, data->data(), self, this); v8::AccessorInfo info(args.end()); v8::Handle<v8::Value> result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = call_fun(v8::Utils::ToLocal(key), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (result.IsEmpty()) { return isolate->heap()->undefined_value(); } return *v8::Utils::OpenHandle(*result); } // __defineGetter__ callback if (structure->IsAccessorPair()) { Object* getter = AccessorPair::cast(structure)->getter(); if (getter->IsSpecFunction()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return GetPropertyWithDefinedGetter(receiver, JSReceiver::cast(getter)); } // Getter is not a function. return isolate->heap()->undefined_value(); } UNREACHABLE(); return NULL; } MaybeObject* JSProxy::GetPropertyWithHandler(Object* receiver_raw, String* name_raw) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle<Object> receiver(receiver_raw); Handle<Object> name(name_raw); Handle<Object> args[] = { receiver, name }; Handle<Object> result = CallTrap( "get", isolate->derived_get_trap(), ARRAY_SIZE(args), args); if (isolate->has_pending_exception()) return Failure::Exception(); return *result; } Handle<Object> Object::GetElement(Handle<Object> object, uint32_t index) { Isolate* isolate = object->IsHeapObject() ? Handle<HeapObject>::cast(object)->GetIsolate() : Isolate::Current(); CALL_HEAP_FUNCTION(isolate, object->GetElement(index), Object); } MaybeObject* JSProxy::GetElementWithHandler(Object* receiver, uint32_t index) { String* name; MaybeObject* maybe = GetHeap()->Uint32ToString(index); if (!maybe->To<String>(&name)) return maybe; return GetPropertyWithHandler(receiver, name); } MaybeObject* JSProxy::SetElementWithHandler(uint32_t index, Object* value, StrictModeFlag strict_mode) { String* name; MaybeObject* maybe = GetHeap()->Uint32ToString(index); if (!maybe->To<String>(&name)) return maybe; return SetPropertyWithHandler(name, value, NONE, strict_mode); } bool JSProxy::HasElementWithHandler(uint32_t index) { String* name; MaybeObject* maybe = GetHeap()->Uint32ToString(index); if (!maybe->To<String>(&name)) return maybe; return HasPropertyWithHandler(name); } MaybeObject* Object::GetPropertyWithDefinedGetter(Object* receiver, JSReceiver* getter) { HandleScope scope; Handle<JSReceiver> fun(getter); Handle<Object> self(receiver); #ifdef ENABLE_DEBUGGER_SUPPORT Debug* debug = fun->GetHeap()->isolate()->debug(); // Handle stepping into a getter if step into is active. // TODO(rossberg): should this apply to getters that are function proxies? if (debug->StepInActive() && fun->IsJSFunction()) { debug->HandleStepIn( Handle<JSFunction>::cast(fun), Handle<Object>::null(), 0, false); } #endif bool has_pending_exception; Handle<Object> result = Execution::Call(fun, self, 0, NULL, &has_pending_exception, true); // Check for pending exception and return the result. if (has_pending_exception) return Failure::Exception(); return *result; } // Only deal with CALLBACKS and INTERCEPTOR MaybeObject* JSObject::GetPropertyWithFailedAccessCheck( Object* receiver, LookupResult* result, String* name, PropertyAttributes* attributes) { if (result->IsProperty()) { switch (result->type()) { case CALLBACKS: { // Only allow API accessors. Object* obj = result->GetCallbackObject(); if (obj->IsAccessorInfo()) { AccessorInfo* info = AccessorInfo::cast(obj); if (info->all_can_read()) { *attributes = result->GetAttributes(); return result->holder()->GetPropertyWithCallback( receiver, result->GetCallbackObject(), name); } } break; } case NORMAL: case FIELD: case CONSTANT_FUNCTION: { // Search ALL_CAN_READ accessors in prototype chain. LookupResult r(GetIsolate()); result->holder()->LookupRealNamedPropertyInPrototypes(name, &r); if (r.IsProperty()) { return GetPropertyWithFailedAccessCheck(receiver, &r, name, attributes); } break; } case INTERCEPTOR: { // If the object has an interceptor, try real named properties. // No access check in GetPropertyAttributeWithInterceptor. LookupResult r(GetIsolate()); result->holder()->LookupRealNamedProperty(name, &r); if (r.IsProperty()) { return GetPropertyWithFailedAccessCheck(receiver, &r, name, attributes); } break; } default: UNREACHABLE(); } } // No accessible property found. *attributes = ABSENT; Heap* heap = name->GetHeap(); heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_GET); return heap->undefined_value(); } PropertyAttributes JSObject::GetPropertyAttributeWithFailedAccessCheck( Object* receiver, LookupResult* result, String* name, bool continue_search) { if (result->IsProperty()) { switch (result->type()) { case CALLBACKS: { // Only allow API accessors. Object* obj = result->GetCallbackObject(); if (obj->IsAccessorInfo()) { AccessorInfo* info = AccessorInfo::cast(obj); if (info->all_can_read()) { return result->GetAttributes(); } } break; } case NORMAL: case FIELD: case CONSTANT_FUNCTION: { if (!continue_search) break; // Search ALL_CAN_READ accessors in prototype chain. LookupResult r(GetIsolate()); result->holder()->LookupRealNamedPropertyInPrototypes(name, &r); if (r.IsProperty()) { return GetPropertyAttributeWithFailedAccessCheck(receiver, &r, name, continue_search); } break; } case INTERCEPTOR: { // If the object has an interceptor, try real named properties. // No access check in GetPropertyAttributeWithInterceptor. LookupResult r(GetIsolate()); if (continue_search) { result->holder()->LookupRealNamedProperty(name, &r); } else { result->holder()->LocalLookupRealNamedProperty(name, &r); } if (r.IsProperty()) { return GetPropertyAttributeWithFailedAccessCheck(receiver, &r, name, continue_search); } break; } default: UNREACHABLE(); } } GetIsolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); return ABSENT; } Object* JSObject::GetNormalizedProperty(LookupResult* result) { ASSERT(!HasFastProperties()); Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry()); if (IsGlobalObject()) { value = JSGlobalPropertyCell::cast(value)->value(); } ASSERT(!value->IsJSGlobalPropertyCell()); return value; } Object* JSObject::SetNormalizedProperty(LookupResult* result, Object* value) { ASSERT(!HasFastProperties()); if (IsGlobalObject()) { JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast( property_dictionary()->ValueAt(result->GetDictionaryEntry())); cell->set_value(value); } else { property_dictionary()->ValueAtPut(result->GetDictionaryEntry(), value); } return value; } Handle<Object> JSObject::SetNormalizedProperty(Handle<JSObject> object, Handle<String> key, Handle<Object> value, PropertyDetails details) { CALL_HEAP_FUNCTION(object->GetIsolate(), object->SetNormalizedProperty(*key, *value, details), Object); } MaybeObject* JSObject::SetNormalizedProperty(String* name, Object* value, PropertyDetails details) { ASSERT(!HasFastProperties()); int entry = property_dictionary()->FindEntry(name); if (entry == StringDictionary::kNotFound) { Object* store_value = value; if (IsGlobalObject()) { Heap* heap = name->GetHeap(); MaybeObject* maybe_store_value = heap->AllocateJSGlobalPropertyCell(value); if (!maybe_store_value->ToObject(&store_value)) return maybe_store_value; } Object* dict; { MaybeObject* maybe_dict = property_dictionary()->Add(name, store_value, details); if (!maybe_dict->ToObject(&dict)) return maybe_dict; } set_properties(StringDictionary::cast(dict)); return value; } // Preserve enumeration index. details = PropertyDetails(details.attributes(), details.type(), property_dictionary()->DetailsAt(entry).index()); if (IsGlobalObject()) { JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(property_dictionary()->ValueAt(entry)); cell->set_value(value); // Please note we have to update the property details. property_dictionary()->DetailsAtPut(entry, details); } else { property_dictionary()->SetEntry(entry, name, value, details); } return value; } MaybeObject* JSObject::DeleteNormalizedProperty(String* name, DeleteMode mode) { ASSERT(!HasFastProperties()); StringDictionary* dictionary = property_dictionary(); int entry = dictionary->FindEntry(name); if (entry != StringDictionary::kNotFound) { // If we have a global object set the cell to the hole. if (IsGlobalObject()) { PropertyDetails details = dictionary->DetailsAt(entry); if (details.IsDontDelete()) { if (mode != FORCE_DELETION) return GetHeap()->false_value(); // When forced to delete global properties, we have to make a // map change to invalidate any ICs that think they can load // from the DontDelete cell without checking if it contains // the hole value. Object* new_map; { MaybeObject* maybe_new_map = map()->CopyDropDescriptors(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } set_map(Map::cast(new_map)); } JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(dictionary->ValueAt(entry)); cell->set_value(cell->GetHeap()->the_hole_value()); dictionary->DetailsAtPut(entry, details.AsDeleted()); } else { Object* deleted = dictionary->DeleteProperty(entry, mode); if (deleted == GetHeap()->true_value()) { FixedArray* new_properties = NULL; MaybeObject* maybe_properties = dictionary->Shrink(name); if (!maybe_properties->To(&new_properties)) { return maybe_properties; } set_properties(new_properties); } return deleted; } } return GetHeap()->true_value(); } bool JSObject::IsDirty() { Object* cons_obj = map()->constructor(); if (!cons_obj->IsJSFunction()) return true; JSFunction* fun = JSFunction::cast(cons_obj); if (!fun->shared()->IsApiFunction()) return true; // If the object is fully fast case and has the same map it was // created with then no changes can have been made to it. return map() != fun->initial_map() || !HasFastElements() || !HasFastProperties(); } Handle<Object> Object::GetProperty(Handle<Object> object, Handle<Object> receiver, LookupResult* result, Handle<String> key, PropertyAttributes* attributes) { Isolate* isolate = object->IsHeapObject() ? Handle<HeapObject>::cast(object)->GetIsolate() : Isolate::Current(); CALL_HEAP_FUNCTION( isolate, object->GetProperty(*receiver, result, *key, attributes), Object); } MaybeObject* Object::GetProperty(Object* receiver, LookupResult* result, String* name, PropertyAttributes* attributes) { // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc; Heap* heap = name->GetHeap(); // Traverse the prototype chain from the current object (this) to // the holder and check for access rights. This avoids traversing the // objects more than once in case of interceptors, because the // holder will always be the interceptor holder and the search may // only continue with a current object just after the interceptor // holder in the prototype chain. // Proxy handlers do not use the proxy's prototype, so we can skip this. if (!result->IsHandler()) { Object* last = result->IsProperty() ? result->holder() : Object::cast(heap->null_value()); ASSERT(this != this->GetPrototype()); for (Object* current = this; true; current = current->GetPrototype()) { if (current->IsAccessCheckNeeded()) { // Check if we're allowed to read from the current object. Note // that even though we may not actually end up loading the named // property from the current object, we still check that we have // access to it. JSObject* checked = JSObject::cast(current); if (!heap->isolate()->MayNamedAccess(checked, name, v8::ACCESS_GET)) { return checked->GetPropertyWithFailedAccessCheck(receiver, result, name, attributes); } } // Stop traversing the chain once we reach the last object in the // chain; either the holder of the result or null in case of an // absent property. if (current == last) break; } } if (!result->IsProperty()) { *attributes = ABSENT; return heap->undefined_value(); } *attributes = result->GetAttributes(); Object* value; switch (result->type()) { case NORMAL: value = result->holder()->GetNormalizedProperty(result); ASSERT(!value->IsTheHole() || result->IsReadOnly()); return value->IsTheHole() ? heap->undefined_value() : value; case FIELD: value = result->holder()->FastPropertyAt(result->GetFieldIndex()); ASSERT(!value->IsTheHole() || result->IsReadOnly()); return value->IsTheHole() ? heap->undefined_value() : value; case CONSTANT_FUNCTION: return result->GetConstantFunction(); case CALLBACKS: return result->holder()->GetPropertyWithCallback( receiver, result->GetCallbackObject(), name); case HANDLER: return result->proxy()->GetPropertyWithHandler(receiver, name); case INTERCEPTOR: { JSObject* recvr = JSObject::cast(receiver); return result->holder()->GetPropertyWithInterceptor( recvr, name, attributes); } case MAP_TRANSITION: case ELEMENTS_TRANSITION: case CONSTANT_TRANSITION: case NULL_DESCRIPTOR: break; } UNREACHABLE(); return NULL; } MaybeObject* Object::GetElementWithReceiver(Object* receiver, uint32_t index) { Heap* heap = IsSmi() ? Isolate::Current()->heap() : HeapObject::cast(this)->GetHeap(); Object* holder = this; // Iterate up the prototype chain until an element is found or the null // prototype is encountered. for (holder = this; holder != heap->null_value(); holder = holder->GetPrototype()) { if (!holder->IsJSObject()) { Isolate* isolate = heap->isolate(); Context* global_context = isolate->context()->global_context(); if (holder->IsNumber()) { holder = global_context->number_function()->instance_prototype(); } else if (holder->IsString()) { holder = global_context->string_function()->instance_prototype(); } else if (holder->IsBoolean()) { holder = global_context->boolean_function()->instance_prototype(); } else if (holder->IsJSProxy()) { return JSProxy::cast(holder)->GetElementWithHandler(receiver, index); } else { // Undefined and null have no indexed properties. ASSERT(holder->IsUndefined() || holder->IsNull()); return heap->undefined_value(); } } // Inline the case for JSObjects. Doing so significantly improves the // performance of fetching elements where checking the prototype chain is // necessary. JSObject* js_object = JSObject::cast(holder); // Check access rights if needed. if (js_object->IsAccessCheckNeeded()) { Isolate* isolate = heap->isolate(); if (!isolate->MayIndexedAccess(js_object, index, v8::ACCESS_GET)) { isolate->ReportFailedAccessCheck(js_object, v8::ACCESS_GET); return heap->undefined_value(); } } if (js_object->HasIndexedInterceptor()) { return js_object->GetElementWithInterceptor(receiver, index); } if (js_object->elements() != heap->empty_fixed_array()) { MaybeObject* result = js_object->GetElementsAccessor()->Get( receiver, js_object, index); if (result != heap->the_hole_value()) return result; } } return heap->undefined_value(); } Object* Object::GetPrototype() { if (IsSmi()) { Heap* heap = Isolate::Current()->heap(); Context* context = heap->isolate()->context()->global_context(); return context->number_function()->instance_prototype(); } HeapObject* heap_object = HeapObject::cast(this); // The object is either a number, a string, a boolean, // a real JS object, or a Harmony proxy. if (heap_object->IsJSReceiver()) { return heap_object->map()->prototype(); } Heap* heap = heap_object->GetHeap(); Context* context = heap->isolate()->context()->global_context(); if (heap_object->IsHeapNumber()) { return context->number_function()->instance_prototype(); } if (heap_object->IsString()) { return context->string_function()->instance_prototype(); } if (heap_object->IsBoolean()) { return context->boolean_function()->instance_prototype(); } else { return heap->null_value(); } } MaybeObject* Object::GetHash(CreationFlag flag) { // The object is either a number, a string, an odd-ball, // a real JS object, or a Harmony proxy. if (IsNumber()) { uint32_t hash = ComputeLongHash(double_to_uint64(Number())); return Smi::FromInt(hash & Smi::kMaxValue); } if (IsString()) { uint32_t hash = String::cast(this)->Hash(); return Smi::FromInt(hash); } if (IsOddball()) { uint32_t hash = Oddball::cast(this)->to_string()->Hash(); return Smi::FromInt(hash); } if (IsJSReceiver()) { return JSReceiver::cast(this)->GetIdentityHash(flag); } UNREACHABLE(); return Smi::FromInt(0); } bool Object::SameValue(Object* other) { if (other == this) return true; if (!IsHeapObject() || !other->IsHeapObject()) return false; // The object is either a number, a string, an odd-ball, // a real JS object, or a Harmony proxy. if (IsNumber() && other->IsNumber()) { double this_value = Number(); double other_value = other->Number(); return (this_value == other_value) || (isnan(this_value) && isnan(other_value)); } if (IsString() && other->IsString()) { return String::cast(this)->Equals(String::cast(other)); } return false; } void Object::ShortPrint(FILE* out) { HeapStringAllocator allocator; StringStream accumulator(&allocator); ShortPrint(&accumulator); accumulator.OutputToFile(out); } void Object::ShortPrint(StringStream* accumulator) { if (IsSmi()) { Smi::cast(this)->SmiPrint(accumulator); } else if (IsFailure()) { Failure::cast(this)->FailurePrint(accumulator); } else { HeapObject::cast(this)->HeapObjectShortPrint(accumulator); } } void Smi::SmiPrint(FILE* out) { PrintF(out, "%d", value()); } void Smi::SmiPrint(StringStream* accumulator) { accumulator->Add("%d", value()); } void Failure::FailurePrint(StringStream* accumulator) { accumulator->Add("Failure(%p)", reinterpret_cast<void*>(value())); } void Failure::FailurePrint(FILE* out) { PrintF(out, "Failure(%p)", reinterpret_cast<void*>(value())); } // Should a word be prefixed by 'a' or 'an' in order to read naturally in // English? Returns false for non-ASCII or words that don't start with // a capital letter. The a/an rule follows pronunciation in English. // We don't use the BBC's overcorrect "an historic occasion" though if // you speak a dialect you may well say "an 'istoric occasion". static bool AnWord(String* str) { if (str->length() == 0) return false; // A nothing. int c0 = str->Get(0); int c1 = str->length() > 1 ? str->Get(1) : 0; if (c0 == 'U') { if (c1 > 'Z') { return true; // An Umpire, but a UTF8String, a U. } } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') { return true; // An Ape, an ABCBook. } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) && (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' || c0 == 'S' || c0 == 'X')) { return true; // An MP3File, an M. } return false; } MaybeObject* String::SlowTryFlatten(PretenureFlag pretenure) { #ifdef DEBUG // Do not attempt to flatten in debug mode when allocation is not // allowed. This is to avoid an assertion failure when allocating. // Flattening strings is the only case where we always allow // allocation because no GC is performed if the allocation fails. if (!HEAP->IsAllocationAllowed()) return this; #endif Heap* heap = GetHeap(); switch (StringShape(this).representation_tag()) { case kConsStringTag: { ConsString* cs = ConsString::cast(this); if (cs->second()->length() == 0) { return cs->first(); } // There's little point in putting the flat string in new space if the // cons string is in old space. It can never get GCed until there is // an old space GC. PretenureFlag tenure = heap->InNewSpace(this) ? pretenure : TENURED; int len = length(); Object* object; String* result; if (IsAsciiRepresentation()) { { MaybeObject* maybe_object = heap->AllocateRawAsciiString(len, tenure); if (!maybe_object->ToObject(&object)) return maybe_object; } result = String::cast(object); String* first = cs->first(); int first_length = first->length(); char* dest = SeqAsciiString::cast(result)->GetChars(); WriteToFlat(first, dest, 0, first_length); String* second = cs->second(); WriteToFlat(second, dest + first_length, 0, len - first_length); } else { { MaybeObject* maybe_object = heap->AllocateRawTwoByteString(len, tenure); if (!maybe_object->ToObject(&object)) return maybe_object; } result = String::cast(object); uc16* dest = SeqTwoByteString::cast(result)->GetChars(); String* first = cs->first(); int first_length = first->length(); WriteToFlat(first, dest, 0, first_length); String* second = cs->second(); WriteToFlat(second, dest + first_length, 0, len - first_length); } cs->set_first(result); cs->set_second(heap->empty_string(), SKIP_WRITE_BARRIER); return result; } default: return this; } } bool String::MakeExternal(v8::String::ExternalStringResource* resource) { // Externalizing twice leaks the external resource, so it's // prohibited by the API. ASSERT(!this->IsExternalString()); #ifdef DEBUG if (FLAG_enable_slow_asserts) { // Assert that the resource and the string are equivalent. ASSERT(static_cast<size_t>(this->length()) == resource->length()); ScopedVector<uc16> smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); ASSERT(memcmp(smart_chars.start(), resource->data(), resource->length() * sizeof(smart_chars[0])) == 0); } #endif // DEBUG Heap* heap = GetHeap(); int size = this->Size(); // Byte size of the original string. if (size < ExternalString::kShortSize) { return false; } bool is_ascii = this->IsAsciiRepresentation(); bool is_symbol = this->IsSymbol(); // Morph the object to an external string by adjusting the map and // reinitializing the fields. if (size >= ExternalString::kSize) { this->set_map_no_write_barrier( is_symbol ? (is_ascii ? heap->external_symbol_with_ascii_data_map() : heap->external_symbol_map()) : (is_ascii ? heap->external_string_with_ascii_data_map() : heap->external_string_map())); } else { this->set_map_no_write_barrier( is_symbol ? (is_ascii ? heap->short_external_symbol_with_ascii_data_map() : heap->short_external_symbol_map()) : (is_ascii ? heap->short_external_string_with_ascii_data_map() : heap->short_external_string_map())); } ExternalTwoByteString* self = ExternalTwoByteString::cast(this); self->set_resource(resource); if (is_symbol) self->Hash(); // Force regeneration of the hash value. // Fill the remainder of the string with dead wood. int new_size = this->Size(); // Byte size of the external String object. heap->CreateFillerObjectAt(this->address() + new_size, size - new_size); if (Marking::IsBlack(Marking::MarkBitFrom(this))) { MemoryChunk::IncrementLiveBytesFromMutator(this->address(), new_size - size); } return true; } bool String::MakeExternal(v8::String::ExternalAsciiStringResource* resource) { #ifdef DEBUG if (FLAG_enable_slow_asserts) { // Assert that the resource and the string are equivalent. ASSERT(static_cast<size_t>(this->length()) == resource->length()); ScopedVector<char> smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); ASSERT(memcmp(smart_chars.start(), resource->data(), resource->length() * sizeof(smart_chars[0])) == 0); } #endif // DEBUG Heap* heap = GetHeap(); int size = this->Size(); // Byte size of the original string. if (size < ExternalString::kShortSize) { return false; } bool is_symbol = this->IsSymbol(); // Morph the object to an external string by adjusting the map and // reinitializing the fields. Use short version if space is limited. if (size >= ExternalString::kSize) { this->set_map_no_write_barrier( is_symbol ? heap->external_ascii_symbol_map() : heap->external_ascii_string_map()); } else { this->set_map_no_write_barrier( is_symbol ? heap->short_external_ascii_symbol_map() : heap->short_external_ascii_string_map()); } ExternalAsciiString* self = ExternalAsciiString::cast(this); self->set_resource(resource); if (is_symbol) self->Hash(); // Force regeneration of the hash value. // Fill the remainder of the string with dead wood. int new_size = this->Size(); // Byte size of the external String object. heap->CreateFillerObjectAt(this->address() + new_size, size - new_size); if (Marking::IsBlack(Marking::MarkBitFrom(this))) { MemoryChunk::IncrementLiveBytesFromMutator(this->address(), new_size - size); } return true; } void String::StringShortPrint(StringStream* accumulator) { int len = length(); if (len > kMaxShortPrintLength) { accumulator->Add("<Very long string[%u]>", len); return; } if (!LooksValid()) { accumulator->Add("<Invalid String>"); return; } StringInputBuffer buf(this); bool truncated = false; if (len > kMaxShortPrintLength) { len = kMaxShortPrintLength; truncated = true; } bool ascii = true; for (int i = 0; i < len; i++) { int c = buf.GetNext(); if (c < 32 || c >= 127) { ascii = false; } } buf.Reset(this); if (ascii) { accumulator->Add("<String[%u]: ", length()); for (int i = 0; i < len; i++) { accumulator->Put(buf.GetNext()); } accumulator->Put('>'); } else { // Backslash indicates that the string contains control // characters and that backslashes are therefore escaped. accumulator->Add("<String[%u]\\: ", length()); for (int i = 0; i < len; i++) { int c = buf.GetNext(); if (c == '\n') { accumulator->Add("\\n"); } else if (c == '\r') { accumulator->Add("\\r"); } else if (c == '\\') { accumulator->Add("\\\\"); } else if (c < 32 || c > 126) { accumulator->Add("\\x%02x", c); } else { accumulator->Put(c); } } if (truncated) { accumulator->Put('.'); accumulator->Put('.'); accumulator->Put('.'); } accumulator->Put('>'); } return; } void JSObject::JSObjectShortPrint(StringStream* accumulator) { switch (map()->instance_type()) { case JS_ARRAY_TYPE: { double length = JSArray::cast(this)->length()->Number(); accumulator->Add("<JS Array[%u]>", static_cast<uint32_t>(length)); break; } case JS_WEAK_MAP_TYPE: { accumulator->Add("<JS WeakMap>"); break; } case JS_REGEXP_TYPE: { accumulator->Add("<JS RegExp>"); break; } case JS_FUNCTION_TYPE: { Object* fun_name = JSFunction::cast(this)->shared()->name(); bool printed = false; if (fun_name->IsString()) { String* str = String::cast(fun_name); if (str->length() > 0) { accumulator->Add("<JS Function "); accumulator->Put(str); accumulator->Put('>'); printed = true; } } if (!printed) { accumulator->Add("<JS Function>"); } break; } // All other JSObjects are rather similar to each other (JSObject, // JSGlobalProxy, JSGlobalObject, JSUndetectableObject, JSValue). default: { Map* map_of_this = map(); Heap* heap = GetHeap(); Object* constructor = map_of_this->constructor(); bool printed = false; if (constructor->IsHeapObject() && !heap->Contains(HeapObject::cast(constructor))) { accumulator->Add("!!!INVALID CONSTRUCTOR!!!"); } else { bool global_object = IsJSGlobalProxy(); if (constructor->IsJSFunction()) { if (!heap->Contains(JSFunction::cast(constructor)->shared())) { accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!"); } else { Object* constructor_name = JSFunction::cast(constructor)->shared()->name(); if (constructor_name->IsString()) { String* str = String::cast(constructor_name); if (str->length() > 0) { bool vowel = AnWord(str); accumulator->Add("<%sa%s ", global_object ? "Global Object: " : "", vowel ? "n" : ""); accumulator->Put(str); printed = true; } } } } if (!printed) { accumulator->Add("<JS %sObject", global_object ? "Global " : ""); } } if (IsJSValue()) { accumulator->Add(" value = "); JSValue::cast(this)->value()->ShortPrint(accumulator); } accumulator->Put('>'); break; } } } void JSObject::PrintElementsTransition( FILE* file, ElementsKind from_kind, FixedArrayBase* from_elements, ElementsKind to_kind, FixedArrayBase* to_elements) { if (from_kind != to_kind) { PrintF(file, "elements transition ["); PrintElementsKind(file, from_kind); PrintF(file, " -> "); PrintElementsKind(file, to_kind); PrintF(file, "] in "); JavaScriptFrame::PrintTop(file, false, true); PrintF(file, " for "); ShortPrint(file); PrintF(file, " from "); from_elements->ShortPrint(file); PrintF(file, " to "); to_elements->ShortPrint(file); PrintF(file, "\n"); } } void HeapObject::HeapObjectShortPrint(StringStream* accumulator) { Heap* heap = GetHeap(); if (!heap->Contains(this)) { accumulator->Add("!!!INVALID POINTER!!!"); return; } if (!heap->Contains(map())) { accumulator->Add("!!!INVALID MAP!!!"); return; } accumulator->Add("%p ", this); if (IsString()) { String::cast(this)->StringShortPrint(accumulator); return; } if (IsJSObject()) { JSObject::cast(this)->JSObjectShortPrint(accumulator); return; } switch (map()->instance_type()) { case MAP_TYPE: accumulator->Add("<Map(elements=%u)>", Map::cast(this)->elements_kind()); break; case FIXED_ARRAY_TYPE: accumulator->Add("<FixedArray[%u]>", FixedArray::cast(this)->length()); break; case FIXED_DOUBLE_ARRAY_TYPE: accumulator->Add("<FixedDoubleArray[%u]>", FixedDoubleArray::cast(this)->length()); break; case BYTE_ARRAY_TYPE: accumulator->Add("<ByteArray[%u]>", ByteArray::cast(this)->length()); break; case FREE_SPACE_TYPE: accumulator->Add("<FreeSpace[%u]>", FreeSpace::cast(this)->Size()); break; case EXTERNAL_PIXEL_ARRAY_TYPE: accumulator->Add("<ExternalPixelArray[%u]>", ExternalPixelArray::cast(this)->length()); break; case EXTERNAL_BYTE_ARRAY_TYPE: accumulator->Add("<ExternalByteArray[%u]>", ExternalByteArray::cast(this)->length()); break; case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE: accumulator->Add("<ExternalUnsignedByteArray[%u]>", ExternalUnsignedByteArray::cast(this)->length()); break; case EXTERNAL_SHORT_ARRAY_TYPE: accumulator->Add("<ExternalShortArray[%u]>", ExternalShortArray::cast(this)->length()); break; case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE: accumulator->Add("<ExternalUnsignedShortArray[%u]>", ExternalUnsignedShortArray::cast(this)->length()); break; case EXTERNAL_INT_ARRAY_TYPE: accumulator->Add("<ExternalIntArray[%u]>", ExternalIntArray::cast(this)->length()); break; case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE: accumulator->Add("<ExternalUnsignedIntArray[%u]>", ExternalUnsignedIntArray::cast(this)->length()); break; case EXTERNAL_FLOAT_ARRAY_TYPE: accumulator->Add("<ExternalFloatArray[%u]>", ExternalFloatArray::cast(this)->length()); break; case EXTERNAL_DOUBLE_ARRAY_TYPE: accumulator->Add("<ExternalDoubleArray[%u]>", ExternalDoubleArray::cast(this)->length()); break; case SHARED_FUNCTION_INFO_TYPE: accumulator->Add("<SharedFunctionInfo>"); break; case JS_MESSAGE_OBJECT_TYPE: accumulator->Add("<JSMessageObject>"); break; #define MAKE_STRUCT_CASE(NAME, Name, name) \ case NAME##_TYPE: \ accumulator->Put('<'); \ accumulator->Add(#Name); \ accumulator->Put('>'); \ break; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE case CODE_TYPE: accumulator->Add("<Code>"); break; case ODDBALL_TYPE: { if (IsUndefined()) accumulator->Add("<undefined>"); else if (IsTheHole()) accumulator->Add("<the hole>"); else if (IsNull()) accumulator->Add("<null>"); else if (IsTrue()) accumulator->Add("<true>"); else if (IsFalse()) accumulator->Add("<false>"); else accumulator->Add("<Odd Oddball>"); break; } case HEAP_NUMBER_TYPE: accumulator->Add("<Number: "); HeapNumber::cast(this)->HeapNumberPrint(accumulator); accumulator->Put('>'); break; case JS_PROXY_TYPE: accumulator->Add("<JSProxy>"); break; case JS_FUNCTION_PROXY_TYPE: accumulator->Add("<JSFunctionProxy>"); break; case FOREIGN_TYPE: accumulator->Add("<Foreign>"); break; case JS_GLOBAL_PROPERTY_CELL_TYPE: accumulator->Add("Cell for "); JSGlobalPropertyCell::cast(this)->value()->ShortPrint(accumulator); break; default: accumulator->Add("<Other heap object (%d)>", map()->instance_type()); break; } } void HeapObject::Iterate(ObjectVisitor* v) { // Handle header IteratePointer(v, kMapOffset); // Handle object body Map* m = map(); IterateBody(m->instance_type(), SizeFromMap(m), v); } void HeapObject::IterateBody(InstanceType type, int object_size, ObjectVisitor* v) { // Avoiding <Type>::cast(this) because it accesses the map pointer field. // During GC, the map pointer field is encoded. if (type < FIRST_NONSTRING_TYPE) { switch (type & kStringRepresentationMask) { case kSeqStringTag: break; case kConsStringTag: ConsString::BodyDescriptor::IterateBody(this, v); break; case kSlicedStringTag: SlicedString::BodyDescriptor::IterateBody(this, v); break; case kExternalStringTag: if ((type & kStringEncodingMask) == kAsciiStringTag) { reinterpret_cast<ExternalAsciiString*>(this)-> ExternalAsciiStringIterateBody(v); } else { reinterpret_cast<ExternalTwoByteString*>(this)-> ExternalTwoByteStringIterateBody(v); } break; } return; } switch (type) { case FIXED_ARRAY_TYPE: FixedArray::BodyDescriptor::IterateBody(this, object_size, v); break; case FIXED_DOUBLE_ARRAY_TYPE: break; case JS_OBJECT_TYPE: case JS_CONTEXT_EXTENSION_OBJECT_TYPE: case JS_VALUE_TYPE: case JS_DATE_TYPE: case JS_ARRAY_TYPE: case JS_SET_TYPE: case JS_MAP_TYPE: case JS_WEAK_MAP_TYPE: case JS_REGEXP_TYPE: case JS_GLOBAL_PROXY_TYPE: case JS_GLOBAL_OBJECT_TYPE: case JS_BUILTINS_OBJECT_TYPE: case JS_MESSAGE_OBJECT_TYPE: JSObject::BodyDescriptor::IterateBody(this, object_size, v); break; case JS_FUNCTION_TYPE: reinterpret_cast<JSFunction*>(this) ->JSFunctionIterateBody(object_size, v); break; case ODDBALL_TYPE: Oddball::BodyDescriptor::IterateBody(this, v); break; case JS_PROXY_TYPE: JSProxy::BodyDescriptor::IterateBody(this, v); break; case JS_FUNCTION_PROXY_TYPE: JSFunctionProxy::BodyDescriptor::IterateBody(this, v); break; case FOREIGN_TYPE: reinterpret_cast<Foreign*>(this)->ForeignIterateBody(v); break; case MAP_TYPE: Map::BodyDescriptor::IterateBody(this, v); break; case CODE_TYPE: reinterpret_cast<Code*>(this)->CodeIterateBody(v); break; case JS_GLOBAL_PROPERTY_CELL_TYPE: JSGlobalPropertyCell::BodyDescriptor::IterateBody(this, v); break; case HEAP_NUMBER_TYPE: case FILLER_TYPE: case BYTE_ARRAY_TYPE: case FREE_SPACE_TYPE: case EXTERNAL_PIXEL_ARRAY_TYPE: case EXTERNAL_BYTE_ARRAY_TYPE: case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE: case EXTERNAL_SHORT_ARRAY_TYPE: case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE: case EXTERNAL_INT_ARRAY_TYPE: case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE: case EXTERNAL_FLOAT_ARRAY_TYPE: case EXTERNAL_DOUBLE_ARRAY_TYPE: break; case SHARED_FUNCTION_INFO_TYPE: { SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(this); shared->SharedFunctionInfoIterateBody(v); break; } #define MAKE_STRUCT_CASE(NAME, Name, name) \ case NAME##_TYPE: STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE StructBodyDescriptor::IterateBody(this, object_size, v); break; default: PrintF("Unknown type: %d\n", type); UNREACHABLE(); } } Object* HeapNumber::HeapNumberToBoolean() { // NaN, +0, and -0 should return the false object #if __BYTE_ORDER == __LITTLE_ENDIAN union IeeeDoubleLittleEndianArchType u; #elif __BYTE_ORDER == __BIG_ENDIAN union IeeeDoubleBigEndianArchType u; #endif u.d = value(); if (u.bits.exp == 2047) { // Detect NaN for IEEE double precision floating point. if ((u.bits.man_low | u.bits.man_high) != 0) return GetHeap()->false_value(); } if (u.bits.exp == 0) { // Detect +0, and -0 for IEEE double precision floating point. if ((u.bits.man_low | u.bits.man_high) == 0) return GetHeap()->false_value(); } return GetHeap()->true_value(); } void HeapNumber::HeapNumberPrint(FILE* out) { PrintF(out, "%.16g", Number()); } void HeapNumber::HeapNumberPrint(StringStream* accumulator) { // The Windows version of vsnprintf can allocate when printing a %g string // into a buffer that may not be big enough. We don't want random memory // allocation when producing post-crash stack traces, so we print into a // buffer that is plenty big enough for any floating point number, then // print that using vsnprintf (which may truncate but never allocate if // there is no more space in the buffer). EmbeddedVector<char, 100> buffer; OS::SNPrintF(buffer, "%.16g", Number()); accumulator->Add("%s", buffer.start()); } String* JSReceiver::class_name() { if (IsJSFunction() && IsJSFunctionProxy()) { return GetHeap()->function_class_symbol(); } if (map()->constructor()->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(map()->constructor()); return String::cast(constructor->shared()->instance_class_name()); } // If the constructor is not present, return "Object". return GetHeap()->Object_symbol(); } String* JSReceiver::constructor_name() { if (map()->constructor()->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(map()->constructor()); String* name = String::cast(constructor->shared()->name()); if (name->length() > 0) return name; String* inferred_name = constructor->shared()->inferred_name(); if (inferred_name->length() > 0) return inferred_name; Object* proto = GetPrototype(); if (proto->IsJSObject()) return JSObject::cast(proto)->constructor_name(); } // TODO(rossberg): what about proxies? // If the constructor is not present, return "Object". return GetHeap()->Object_symbol(); } MaybeObject* JSObject::AddFastPropertyUsingMap(Map* new_map, String* name, Object* value) { int index = new_map->PropertyIndexFor(name); if (map()->unused_property_fields() == 0) { ASSERT(map()->unused_property_fields() == 0); int new_unused = new_map->unused_property_fields(); Object* values; { MaybeObject* maybe_values = properties()->CopySize(properties()->length() + new_unused + 1); if (!maybe_values->ToObject(&values)) return maybe_values; } set_properties(FixedArray::cast(values)); } set_map(new_map); return FastPropertyAtPut(index, value); } static bool IsIdentifier(UnicodeCache* cache, unibrow::CharacterStream* buffer) { // Checks whether the buffer contains an identifier (no escape). if (!buffer->has_more()) return false; if (!cache->IsIdentifierStart(buffer->GetNext())) { return false; } while (buffer->has_more()) { if (!cache->IsIdentifierPart(buffer->GetNext())) { return false; } } return true; } MaybeObject* JSObject::AddFastProperty(String* name, Object* value, PropertyAttributes attributes) { ASSERT(!IsJSGlobalProxy()); // Normalize the object if the name is an actual string (not the // hidden symbols) and is not a real identifier. Isolate* isolate = GetHeap()->isolate(); StringInputBuffer buffer(name); if (!IsIdentifier(isolate->unicode_cache(), &buffer) && name != isolate->heap()->hidden_symbol()) { Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return AddSlowProperty(name, value, attributes); } DescriptorArray* old_descriptors = map()->instance_descriptors(); // Compute the new index for new field. int index = map()->NextFreePropertyIndex(); // Allocate new instance descriptors with (name, index) added FieldDescriptor new_field(name, index, attributes); Object* new_descriptors; { MaybeObject* maybe_new_descriptors = old_descriptors->CopyInsert(&new_field, REMOVE_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { return maybe_new_descriptors; } } // Only allow map transition if the object isn't the global object and there // is not a transition for the name, or there's a transition for the name but // it's unrelated to properties. int descriptor_index = old_descriptors->Search(name); // Element transitions are stored in the descriptor for property "", which is // not a identifier and should have forced a switch to slow properties above. ASSERT(descriptor_index == DescriptorArray::kNotFound || old_descriptors->GetType(descriptor_index) != ELEMENTS_TRANSITION); bool can_insert_transition = descriptor_index == DescriptorArray::kNotFound || old_descriptors->GetType(descriptor_index) == ELEMENTS_TRANSITION; bool allow_map_transition = can_insert_transition && (isolate->context()->global_context()->object_function()->map() != map()); ASSERT(index < map()->inobject_properties() || (index - map()->inobject_properties()) < properties()->length() || map()->unused_property_fields() == 0); // Allocate a new map for the object. Object* r; { MaybeObject* maybe_r = map()->CopyDropDescriptors(); if (!maybe_r->ToObject(&r)) return maybe_r; } Map* new_map = Map::cast(r); if (allow_map_transition) { // Allocate new instance descriptors for the old map with map transition. MapTransitionDescriptor d(name, Map::cast(new_map), attributes); Object* r; { MaybeObject* maybe_r = old_descriptors->CopyInsert(&d, KEEP_TRANSITIONS); if (!maybe_r->ToObject(&r)) return maybe_r; } old_descriptors = DescriptorArray::cast(r); } if (map()->unused_property_fields() == 0) { if (properties()->length() > MaxFastProperties()) { Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return AddSlowProperty(name, value, attributes); } // Make room for the new value Object* values; { MaybeObject* maybe_values = properties()->CopySize(properties()->length() + kFieldsAdded); if (!maybe_values->ToObject(&values)) return maybe_values; } set_properties(FixedArray::cast(values)); new_map->set_unused_property_fields(kFieldsAdded - 1); } else { new_map->set_unused_property_fields(map()->unused_property_fields() - 1); } // We have now allocated all the necessary objects. // All the changes can be applied at once, so they are atomic. map()->set_instance_descriptors(old_descriptors); new_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); set_map(new_map); return FastPropertyAtPut(index, value); } MaybeObject* JSObject::AddConstantFunctionProperty( String* name, JSFunction* function, PropertyAttributes attributes) { // Allocate new instance descriptors with (name, function) added ConstantFunctionDescriptor d(name, function, attributes); Object* new_descriptors; { MaybeObject* maybe_new_descriptors = map()->instance_descriptors()->CopyInsert(&d, REMOVE_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { return maybe_new_descriptors; } } // Allocate a new map for the object. Object* new_map; { MaybeObject* maybe_new_map = map()->CopyDropDescriptors(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } DescriptorArray* descriptors = DescriptorArray::cast(new_descriptors); Map::cast(new_map)->set_instance_descriptors(descriptors); Map* old_map = map(); set_map(Map::cast(new_map)); // If the old map is the global object map (from new Object()), // then transitions are not added to it, so we are done. Heap* heap = GetHeap(); if (old_map == heap->isolate()->context()->global_context()-> object_function()->map()) { return function; } // Do not add CONSTANT_TRANSITIONS to global objects if (IsGlobalObject()) { return function; } // Add a CONSTANT_TRANSITION descriptor to the old map, // so future assignments to this property on other objects // of the same type will create a normal field, not a constant function. // Don't do this for special properties, with non-trival attributes. if (attributes != NONE) { return function; } ConstTransitionDescriptor mark(name, Map::cast(new_map)); { MaybeObject* maybe_new_descriptors = old_map->instance_descriptors()->CopyInsert(&mark, KEEP_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { // We have accomplished the main goal, so return success. return function; } } old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); return function; } // Add property in slow mode MaybeObject* JSObject::AddSlowProperty(String* name, Object* value, PropertyAttributes attributes) { ASSERT(!HasFastProperties()); StringDictionary* dict = property_dictionary(); Object* store_value = value; if (IsGlobalObject()) { // In case name is an orphaned property reuse the cell. int entry = dict->FindEntry(name); if (entry != StringDictionary::kNotFound) { store_value = dict->ValueAt(entry); JSGlobalPropertyCell::cast(store_value)->set_value(value); // Assign an enumeration index to the property and update // SetNextEnumerationIndex. int index = dict->NextEnumerationIndex(); PropertyDetails details = PropertyDetails(attributes, NORMAL, index); dict->SetNextEnumerationIndex(index + 1); dict->SetEntry(entry, name, store_value, details); return value; } Heap* heap = GetHeap(); { MaybeObject* maybe_store_value = heap->AllocateJSGlobalPropertyCell(value); if (!maybe_store_value->ToObject(&store_value)) return maybe_store_value; } JSGlobalPropertyCell::cast(store_value)->set_value(value); } PropertyDetails details = PropertyDetails(attributes, NORMAL); Object* result; { MaybeObject* maybe_result = dict->Add(name, store_value, details); if (!maybe_result->ToObject(&result)) return maybe_result; } if (dict != result) set_properties(StringDictionary::cast(result)); return value; } MaybeObject* JSObject::AddProperty(String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { ASSERT(!IsJSGlobalProxy()); Map* map_of_this = map(); Heap* heap = GetHeap(); if (!map_of_this->is_extensible()) { if (strict_mode == kNonStrictMode) { return value; } else { Handle<Object> args[1] = {Handle<String>(name)}; return heap->isolate()->Throw( *FACTORY->NewTypeError("object_not_extensible", HandleVector(args, 1))); } } if (HasFastProperties()) { // Ensure the descriptor array does not get too big. if (map_of_this->instance_descriptors()->number_of_descriptors() < DescriptorArray::kMaxNumberOfDescriptors) { if (value->IsJSFunction()) { return AddConstantFunctionProperty(name, JSFunction::cast(value), attributes); } else { return AddFastProperty(name, value, attributes); } } else { // Normalize the object to prevent very large instance descriptors. // This eliminates unwanted N^2 allocation and lookup behavior. Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } } } return AddSlowProperty(name, value, attributes); } MaybeObject* JSObject::SetPropertyPostInterceptor( String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { // Check local property, ignore interceptor. LookupResult result(GetIsolate()); LocalLookupRealNamedProperty(name, &result); if (result.IsFound()) { // An existing property, a map transition or a null descriptor was // found. Use set property to handle all these cases. return SetProperty(&result, name, value, attributes, strict_mode); } bool found = false; MaybeObject* result_object; result_object = SetPropertyWithCallbackSetterInPrototypes(name, value, attributes, &found, strict_mode); if (found) return result_object; // Add a new real property. return AddProperty(name, value, attributes, strict_mode); } MaybeObject* JSObject::ReplaceSlowProperty(String* name, Object* value, PropertyAttributes attributes) { StringDictionary* dictionary = property_dictionary(); int old_index = dictionary->FindEntry(name); int new_enumeration_index = 0; // 0 means "Use the next available index." if (old_index != -1) { // All calls to ReplaceSlowProperty have had all transitions removed. ASSERT(!dictionary->ContainsTransition(old_index)); new_enumeration_index = dictionary->DetailsAt(old_index).index(); } PropertyDetails new_details(attributes, NORMAL, new_enumeration_index); return SetNormalizedProperty(name, value, new_details); } MaybeObject* JSObject::ConvertDescriptorToFieldAndMapTransition( String* name, Object* new_value, PropertyAttributes attributes) { Map* old_map = map(); Object* result; { MaybeObject* maybe_result = ConvertDescriptorToField(name, new_value, attributes); if (!maybe_result->ToObject(&result)) return maybe_result; } // If we get to this point we have succeeded - do not return failure // after this point. Later stuff is optional. if (!HasFastProperties()) { return result; } // Do not add transitions to the map of "new Object()". if (map() == GetIsolate()->context()->global_context()-> object_function()->map()) { return result; } MapTransitionDescriptor transition(name, map(), attributes); Object* new_descriptors; { MaybeObject* maybe_new_descriptors = old_map->instance_descriptors()-> CopyInsert(&transition, KEEP_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { return result; // Yes, return _result_. } } old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); return result; } MaybeObject* JSObject::ConvertDescriptorToField(String* name, Object* new_value, PropertyAttributes attributes) { if (map()->unused_property_fields() == 0 && properties()->length() > MaxFastProperties()) { Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return ReplaceSlowProperty(name, new_value, attributes); } int index = map()->NextFreePropertyIndex(); FieldDescriptor new_field(name, index, attributes); // Make a new DescriptorArray replacing an entry with FieldDescriptor. Object* descriptors_unchecked; { MaybeObject* maybe_descriptors_unchecked = map()->instance_descriptors()-> CopyInsert(&new_field, REMOVE_TRANSITIONS); if (!maybe_descriptors_unchecked->ToObject(&descriptors_unchecked)) { return maybe_descriptors_unchecked; } } DescriptorArray* new_descriptors = DescriptorArray::cast(descriptors_unchecked); // Make a new map for the object. Object* new_map_unchecked; { MaybeObject* maybe_new_map_unchecked = map()->CopyDropDescriptors(); if (!maybe_new_map_unchecked->ToObject(&new_map_unchecked)) { return maybe_new_map_unchecked; } } Map* new_map = Map::cast(new_map_unchecked); new_map->set_instance_descriptors(new_descriptors); // Make new properties array if necessary. FixedArray* new_properties = 0; // Will always be NULL or a valid pointer. int new_unused_property_fields = map()->unused_property_fields() - 1; if (map()->unused_property_fields() == 0) { new_unused_property_fields = kFieldsAdded - 1; Object* new_properties_object; { MaybeObject* maybe_new_properties_object = properties()->CopySize(properties()->length() + kFieldsAdded); if (!maybe_new_properties_object->ToObject(&new_properties_object)) { return maybe_new_properties_object; } } new_properties = FixedArray::cast(new_properties_object); } // Update pointers to commit changes. // Object points to the new map. new_map->set_unused_property_fields(new_unused_property_fields); set_map(new_map); if (new_properties) { set_properties(FixedArray::cast(new_properties)); } return FastPropertyAtPut(index, new_value); } MaybeObject* JSObject::SetPropertyWithInterceptor( String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle<JSObject> this_handle(this); Handle<String> name_handle(name); Handle<Object> value_handle(value, isolate); Handle<InterceptorInfo> interceptor(GetNamedInterceptor()); if (!interceptor->setter()->IsUndefined()) { LOG(isolate, ApiNamedPropertyAccess("interceptor-named-set", this, name)); CustomArguments args(isolate, interceptor->data(), this, this); v8::AccessorInfo info(args.end()); v8::NamedPropertySetter setter = v8::ToCData<v8::NamedPropertySetter>(interceptor->setter()); v8::Handle<v8::Value> result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); Handle<Object> value_unhole(value->IsTheHole() ? isolate->heap()->undefined_value() : value, isolate); result = setter(v8::Utils::ToLocal(name_handle), v8::Utils::ToLocal(value_unhole), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!result.IsEmpty()) return *value_handle; } MaybeObject* raw_result = this_handle->SetPropertyPostInterceptor(*name_handle, *value_handle, attributes, strict_mode); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return raw_result; } Handle<Object> JSReceiver::SetProperty(Handle<JSReceiver> object, Handle<String> key, Handle<Object> value, PropertyAttributes attributes, StrictModeFlag strict_mode) { CALL_HEAP_FUNCTION(object->GetIsolate(), object->SetProperty(*key, *value, attributes, strict_mode), Object); } MaybeObject* JSReceiver::SetProperty(String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { LookupResult result(GetIsolate()); LocalLookup(name, &result); return SetProperty(&result, name, value, attributes, strict_mode); } MaybeObject* JSObject::SetPropertyWithCallback(Object* structure, String* name, Object* value, JSObject* holder, StrictModeFlag strict_mode) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); // We should never get here to initialize a const with the hole // value since a const declaration would conflict with the setter. ASSERT(!value->IsTheHole()); Handle<Object> value_handle(value, isolate); // To accommodate both the old and the new api we switch on the // data structure used to store the callbacks. Eventually foreign // callbacks should be phased out. if (structure->IsForeign()) { AccessorDescriptor* callback = reinterpret_cast<AccessorDescriptor*>( Foreign::cast(structure)->foreign_address()); MaybeObject* obj = (callback->setter)(this, value, callback->data); RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (obj->IsFailure()) return obj; return *value_handle; } if (structure->IsAccessorInfo()) { // api style callbacks AccessorInfo* data = AccessorInfo::cast(structure); Object* call_obj = data->setter(); v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj); if (call_fun == NULL) return value; Handle<String> key(name); LOG(isolate, ApiNamedPropertyAccess("store", this, name)); CustomArguments args(isolate, data->data(), this, JSObject::cast(holder)); v8::AccessorInfo info(args.end()); { // Leaving JavaScript. VMState state(isolate, EXTERNAL); call_fun(v8::Utils::ToLocal(key), v8::Utils::ToLocal(value_handle), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); return *value_handle; } if (structure->IsAccessorPair()) { Object* setter = AccessorPair::cast(structure)->setter(); if (setter->IsSpecFunction()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return SetPropertyWithDefinedSetter(JSReceiver::cast(setter), value); } else { if (strict_mode == kNonStrictMode) { return value; } Handle<String> key(name); Handle<Object> holder_handle(holder, isolate); Handle<Object> args[2] = { key, holder_handle }; return isolate->Throw( *isolate->factory()->NewTypeError("no_setter_in_callback", HandleVector(args, 2))); } } UNREACHABLE(); return NULL; } MaybeObject* JSReceiver::SetPropertyWithDefinedSetter(JSReceiver* setter, Object* value) { Isolate* isolate = GetIsolate(); Handle<Object> value_handle(value, isolate); Handle<JSReceiver> fun(setter, isolate); Handle<JSReceiver> self(this, isolate); #ifdef ENABLE_DEBUGGER_SUPPORT Debug* debug = isolate->debug(); // Handle stepping into a setter if step into is active. // TODO(rossberg): should this apply to getters that are function proxies? if (debug->StepInActive() && fun->IsJSFunction()) { debug->HandleStepIn( Handle<JSFunction>::cast(fun), Handle<Object>::null(), 0, false); } #endif bool has_pending_exception; Handle<Object> argv[] = { value_handle }; Execution::Call(fun, self, ARRAY_SIZE(argv), argv, &has_pending_exception); // Check for pending exception and return the result. if (has_pending_exception) return Failure::Exception(); return *value_handle; } void JSObject::LookupCallbackSetterInPrototypes(String* name, LookupResult* result) { Heap* heap = GetHeap(); for (Object* pt = GetPrototype(); pt != heap->null_value(); pt = pt->GetPrototype()) { if (pt->IsJSProxy()) { return result->HandlerResult(JSProxy::cast(pt)); } JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result); if (result->IsProperty()) { if (result->type() == CALLBACKS && !result->IsReadOnly()) return; // Found non-callback or read-only callback, stop looking. break; } } result->NotFound(); } MaybeObject* JSObject::SetElementWithCallbackSetterInPrototypes( uint32_t index, Object* value, bool* found, StrictModeFlag strict_mode) { Heap* heap = GetHeap(); for (Object* pt = GetPrototype(); pt != heap->null_value(); pt = pt->GetPrototype()) { if (pt->IsJSProxy()) { String* name; MaybeObject* maybe = GetHeap()->Uint32ToString(index); if (!maybe->To<String>(&name)) { *found = true; // Force abort return maybe; } return JSProxy::cast(pt)->SetPropertyWithHandlerIfDefiningSetter( name, value, NONE, strict_mode, found); } if (!JSObject::cast(pt)->HasDictionaryElements()) { continue; } SeededNumberDictionary* dictionary = JSObject::cast(pt)->element_dictionary(); int entry = dictionary->FindEntry(index); if (entry != SeededNumberDictionary::kNotFound) { PropertyDetails details = dictionary->DetailsAt(entry); if (details.type() == CALLBACKS) { *found = true; return SetElementWithCallback(dictionary->ValueAt(entry), index, value, JSObject::cast(pt), strict_mode); } } } *found = false; return heap->the_hole_value(); } MaybeObject* JSObject::SetPropertyWithCallbackSetterInPrototypes( String* name, Object* value, PropertyAttributes attributes, bool* found, StrictModeFlag strict_mode) { Heap* heap = GetHeap(); // We could not find a local property so let's check whether there is an // accessor that wants to handle the property. LookupResult accessor_result(heap->isolate()); LookupCallbackSetterInPrototypes(name, &accessor_result); if (accessor_result.IsFound()) { *found = true; if (accessor_result.type() == CALLBACKS) { return SetPropertyWithCallback(accessor_result.GetCallbackObject(), name, value, accessor_result.holder(), strict_mode); } else if (accessor_result.type() == HANDLER) { // There is a proxy in the prototype chain. Invoke its // getPropertyDescriptor trap. bool found = false; // SetPropertyWithHandlerIfDefiningSetter can cause GC, // make sure to use the handlified references after calling // the function. Handle<JSObject> self(this); Handle<String> hname(name); Handle<Object> hvalue(value); MaybeObject* result = accessor_result.proxy()->SetPropertyWithHandlerIfDefiningSetter( name, value, attributes, strict_mode, &found); if (found) return result; // The proxy does not define the property as an accessor. // Consequently, it has no effect on setting the receiver. return self->AddProperty(*hname, *hvalue, attributes, strict_mode); } } *found = false; return heap->the_hole_value(); } void JSObject::LookupInDescriptor(String* name, LookupResult* result) { DescriptorArray* descriptors = map()->instance_descriptors(); int number = descriptors->SearchWithCache(name); if (number != DescriptorArray::kNotFound) { result->DescriptorResult(this, descriptors->GetDetails(number), number); } else { result->NotFound(); } } void Map::LookupInDescriptors(JSObject* holder, String* name, LookupResult* result) { DescriptorArray* descriptors = instance_descriptors(); DescriptorLookupCache* cache = GetHeap()->isolate()->descriptor_lookup_cache(); int number = cache->Lookup(descriptors, name); if (number == DescriptorLookupCache::kAbsent) { number = descriptors->Search(name); cache->Update(descriptors, name, number); } if (number != DescriptorArray::kNotFound) { result->DescriptorResult(holder, descriptors->GetDetails(number), number); } else { result->NotFound(); } } static bool ContainsMap(MapHandleList* maps, Handle<Map> map) { ASSERT(!map.is_null()); for (int i = 0; i < maps->length(); ++i) { if (!maps->at(i).is_null() && maps->at(i).is_identical_to(map)) return true; } return false; } template <class T> static Handle<T> MaybeNull(T* p) { if (p == NULL) return Handle<T>::null(); return Handle<T>(p); } Handle<Map> Map::FindTransitionedMap(MapHandleList* candidates) { ElementsKind elms_kind = elements_kind(); if (elms_kind == FAST_DOUBLE_ELEMENTS) { bool dummy = true; Handle<Map> fast_map = MaybeNull(LookupElementsTransitionMap(FAST_ELEMENTS, &dummy)); if (!fast_map.is_null() && ContainsMap(candidates, fast_map)) { return fast_map; } return Handle<Map>::null(); } if (elms_kind == FAST_SMI_ONLY_ELEMENTS) { bool dummy = true; Handle<Map> double_map = MaybeNull(LookupElementsTransitionMap(FAST_DOUBLE_ELEMENTS, &dummy)); // In the current implementation, if the DOUBLE map doesn't exist, the // FAST map can't exist either. if (double_map.is_null()) return Handle<Map>::null(); Handle<Map> fast_map = MaybeNull(double_map->LookupElementsTransitionMap(FAST_ELEMENTS, &dummy)); if (!fast_map.is_null() && ContainsMap(candidates, fast_map)) { return fast_map; } if (ContainsMap(candidates, double_map)) return double_map; } return Handle<Map>::null(); } static Map* GetElementsTransitionMapFromDescriptor(Object* descriptor_contents, ElementsKind elements_kind) { if (descriptor_contents->IsMap()) { Map* map = Map::cast(descriptor_contents); if (map->elements_kind() == elements_kind) { return map; } return NULL; } FixedArray* map_array = FixedArray::cast(descriptor_contents); for (int i = 0; i < map_array->length(); ++i) { Object* current = map_array->get(i); // Skip undefined slots, they are sentinels for reclaimed maps. if (!current->IsUndefined()) { Map* current_map = Map::cast(map_array->get(i)); if (current_map->elements_kind() == elements_kind) { return current_map; } } } return NULL; } static MaybeObject* AddElementsTransitionMapToDescriptor( Object* descriptor_contents, Map* new_map) { // Nothing was in the descriptor for an ELEMENTS_TRANSITION, // simply add the map. if (descriptor_contents == NULL) { return new_map; } // There was already a map in the descriptor, create a 2-element FixedArray // to contain the existing map plus the new one. FixedArray* new_array; Heap* heap = new_map->GetHeap(); if (descriptor_contents->IsMap()) { // Must tenure, DescriptorArray expects no new-space objects. MaybeObject* maybe_new_array = heap->AllocateFixedArray(2, TENURED); if (!maybe_new_array->To<FixedArray>(&new_array)) { return maybe_new_array; } new_array->set(0, descriptor_contents); new_array->set(1, new_map); return new_array; } // The descriptor already contained a list of maps for different ElementKinds // of ELEMENTS_TRANSITION, first check the existing array for an undefined // slot, and if that's not available, create a FixedArray to hold the existing // maps plus the new one and fill it in. FixedArray* array = FixedArray::cast(descriptor_contents); for (int i = 0; i < array->length(); ++i) { if (array->get(i)->IsUndefined()) { array->set(i, new_map); return array; } } // Must tenure, DescriptorArray expects no new-space objects. MaybeObject* maybe_new_array = heap->AllocateFixedArray(array->length() + 1, TENURED); if (!maybe_new_array->To<FixedArray>(&new_array)) { return maybe_new_array; } int i = 0; while (i < array->length()) { new_array->set(i, array->get(i)); ++i; } new_array->set(i, new_map); return new_array; } String* Map::elements_transition_sentinel_name() { return GetHeap()->empty_symbol(); } Object* Map::GetDescriptorContents(String* sentinel_name, bool* safe_to_add_transition) { // Get the cached index for the descriptors lookup, or find and cache it. DescriptorArray* descriptors = instance_descriptors(); DescriptorLookupCache* cache = GetIsolate()->descriptor_lookup_cache(); int index = cache->Lookup(descriptors, sentinel_name); if (index == DescriptorLookupCache::kAbsent) { index = descriptors->Search(sentinel_name); cache->Update(descriptors, sentinel_name, index); } // If the transition already exists, return its descriptor. if (index != DescriptorArray::kNotFound) { PropertyDetails details(descriptors->GetDetails(index)); if (details.type() == ELEMENTS_TRANSITION) { return descriptors->GetValue(index); } else { if (safe_to_add_transition != NULL) { *safe_to_add_transition = false; } } } return NULL; } Map* Map::LookupElementsTransitionMap(ElementsKind elements_kind, bool* safe_to_add_transition) { // Special case: indirect SMI->FAST transition (cf. comment in // AddElementsTransition()). if (this->elements_kind() == FAST_SMI_ONLY_ELEMENTS && elements_kind == FAST_ELEMENTS) { Map* double_map = this->LookupElementsTransitionMap(FAST_DOUBLE_ELEMENTS, safe_to_add_transition); if (double_map == NULL) return double_map; return double_map->LookupElementsTransitionMap(FAST_ELEMENTS, safe_to_add_transition); } Object* descriptor_contents = GetDescriptorContents( elements_transition_sentinel_name(), safe_to_add_transition); if (descriptor_contents != NULL) { Map* maybe_transition_map = GetElementsTransitionMapFromDescriptor(descriptor_contents, elements_kind); ASSERT(maybe_transition_map == NULL || maybe_transition_map->IsMap()); return maybe_transition_map; } return NULL; } MaybeObject* Map::AddElementsTransition(ElementsKind elements_kind, Map* transitioned_map) { // The map transition graph should be a tree, therefore the transition // from SMI to FAST elements is not done directly, but by going through // DOUBLE elements first. if (this->elements_kind() == FAST_SMI_ONLY_ELEMENTS && elements_kind == FAST_ELEMENTS) { bool safe_to_add = true; Map* double_map = this->LookupElementsTransitionMap( FAST_DOUBLE_ELEMENTS, &safe_to_add); // This method is only called when safe_to_add_transition has been found // to be true earlier. ASSERT(safe_to_add); if (double_map == NULL) { MaybeObject* maybe_map = this->CopyDropTransitions(); if (!maybe_map->To(&double_map)) return maybe_map; double_map->set_elements_kind(FAST_DOUBLE_ELEMENTS); MaybeObject* maybe_double_transition = this->AddElementsTransition( FAST_DOUBLE_ELEMENTS, double_map); if (maybe_double_transition->IsFailure()) return maybe_double_transition; } return double_map->AddElementsTransition(FAST_ELEMENTS, transitioned_map); } bool safe_to_add_transition = true; Object* descriptor_contents = GetDescriptorContents( elements_transition_sentinel_name(), &safe_to_add_transition); // This method is only called when safe_to_add_transition has been found // to be true earlier. ASSERT(safe_to_add_transition); MaybeObject* maybe_new_contents = AddElementsTransitionMapToDescriptor(descriptor_contents, transitioned_map); Object* new_contents; if (!maybe_new_contents->ToObject(&new_contents)) { return maybe_new_contents; } ElementsTransitionDescriptor desc(elements_transition_sentinel_name(), new_contents); Object* new_descriptors; MaybeObject* maybe_new_descriptors = instance_descriptors()->CopyInsert(&desc, KEEP_TRANSITIONS); if (!maybe_new_descriptors->ToObject(&new_descriptors)) { return maybe_new_descriptors; } set_instance_descriptors(DescriptorArray::cast(new_descriptors)); return this; } Handle<Map> JSObject::GetElementsTransitionMap(Handle<JSObject> object, ElementsKind to_kind) { Isolate* isolate = object->GetIsolate(); CALL_HEAP_FUNCTION(isolate, object->GetElementsTransitionMap(isolate, to_kind), Map); } MaybeObject* JSObject::GetElementsTransitionMapSlow(ElementsKind to_kind) { Map* current_map = map(); ElementsKind from_kind = current_map->elements_kind(); if (from_kind == to_kind) return current_map; // Only objects with FastProperties can have DescriptorArrays and can track // element-related maps. Also don't add descriptors to maps that are shared. bool safe_to_add_transition = HasFastProperties() && !current_map->IsUndefined() && !current_map->is_shared(); // Prevent long chains of DICTIONARY -> FAST_ELEMENTS maps caused by objects // with elements that switch back and forth between dictionary and fast // element mode. if (from_kind == DICTIONARY_ELEMENTS && to_kind == FAST_ELEMENTS) { safe_to_add_transition = false; } if (safe_to_add_transition) { // It's only safe to manipulate the descriptor array if it would be // safe to add a transition. Map* maybe_transition_map = current_map->LookupElementsTransitionMap( to_kind, &safe_to_add_transition); if (maybe_transition_map != NULL) { return maybe_transition_map; } } Map* new_map = NULL; // No transition to an existing map for the given ElementsKind. Make a new // one. { MaybeObject* maybe_map = current_map->CopyDropTransitions(); if (!maybe_map->To(&new_map)) return maybe_map; } new_map->set_elements_kind(to_kind); // Only remember the map transition if the object's map is NOT equal to the // global object_function's map and there is not an already existing // non-matching element transition. Context* global_context = GetIsolate()->context()->global_context(); bool allow_map_transition = safe_to_add_transition && (global_context->object_function()->map() != map()); if (allow_map_transition) { MaybeObject* maybe_transition = current_map->AddElementsTransition(to_kind, new_map); if (maybe_transition->IsFailure()) return maybe_transition; } return new_map; } void JSObject::LocalLookupRealNamedProperty(String* name, LookupResult* result) { if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return result->NotFound(); ASSERT(proto->IsJSGlobalObject()); // A GlobalProxy's prototype should always be a proper JSObject. return JSObject::cast(proto)->LocalLookupRealNamedProperty(name, result); } if (HasFastProperties()) { LookupInDescriptor(name, result); if (result->IsFound()) { // A property, a map transition or a null descriptor was found. // We return all of these result types because // LocalLookupRealNamedProperty is used when setting properties // where map transitions and null descriptors are handled. ASSERT(result->holder() == this && result->type() != NORMAL); // Disallow caching for uninitialized constants. These can only // occur as fields. if (result->IsReadOnly() && result->type() == FIELD && FastPropertyAt(result->GetFieldIndex())->IsTheHole()) { result->DisallowCaching(); } return; } } else { int entry = property_dictionary()->FindEntry(name); if (entry != StringDictionary::kNotFound) { Object* value = property_dictionary()->ValueAt(entry); if (IsGlobalObject()) { PropertyDetails d = property_dictionary()->DetailsAt(entry); if (d.IsDeleted()) { result->NotFound(); return; } value = JSGlobalPropertyCell::cast(value)->value(); } // Make sure to disallow caching for uninitialized constants // found in the dictionary-mode objects. if (value->IsTheHole()) result->DisallowCaching(); result->DictionaryResult(this, entry); return; } } result->NotFound(); } void JSObject::LookupRealNamedProperty(String* name, LookupResult* result) { LocalLookupRealNamedProperty(name, result); if (result->IsProperty()) return; LookupRealNamedPropertyInPrototypes(name, result); } void JSObject::LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result) { Heap* heap = GetHeap(); for (Object* pt = GetPrototype(); pt != heap->null_value(); pt = JSObject::cast(pt)->GetPrototype()) { JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result); if (result->IsProperty() && (result->type() != INTERCEPTOR)) return; } result->NotFound(); } // We only need to deal with CALLBACKS and INTERCEPTORS MaybeObject* JSObject::SetPropertyWithFailedAccessCheck( LookupResult* result, String* name, Object* value, bool check_prototype, StrictModeFlag strict_mode) { if (check_prototype && !result->IsProperty()) { LookupCallbackSetterInPrototypes(name, result); } if (result->IsProperty()) { if (!result->IsReadOnly()) { switch (result->type()) { case CALLBACKS: { Object* obj = result->GetCallbackObject(); if (obj->IsAccessorInfo()) { AccessorInfo* info = AccessorInfo::cast(obj); if (info->all_can_write()) { return SetPropertyWithCallback(result->GetCallbackObject(), name, value, result->holder(), strict_mode); } } break; } case INTERCEPTOR: { // Try lookup real named properties. Note that only property can be // set is callbacks marked as ALL_CAN_WRITE on the prototype chain. LookupResult r(GetIsolate()); LookupRealNamedProperty(name, &r); if (r.IsProperty()) { return SetPropertyWithFailedAccessCheck(&r, name, value, check_prototype, strict_mode); } break; } default: { break; } } } } Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle<Object> value_handle(value); isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET); return *value_handle; } MaybeObject* JSReceiver::SetProperty(LookupResult* result, String* key, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { if (result->IsFound() && result->type() == HANDLER) { return result->proxy()->SetPropertyWithHandler( key, value, attributes, strict_mode); } else { return JSObject::cast(this)->SetPropertyForResult( result, key, value, attributes, strict_mode); } } bool JSProxy::HasPropertyWithHandler(String* name_raw) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle<Object> receiver(this); Handle<Object> name(name_raw); Handle<Object> args[] = { name }; Handle<Object> result = CallTrap( "has", isolate->derived_has_trap(), ARRAY_SIZE(args), args); if (isolate->has_pending_exception()) return Failure::Exception(); return result->ToBoolean()->IsTrue(); } MUST_USE_RESULT MaybeObject* JSProxy::SetPropertyWithHandler( String* name_raw, Object* value_raw, PropertyAttributes attributes, StrictModeFlag strict_mode) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle<Object> receiver(this); Handle<Object> name(name_raw); Handle<Object> value(value_raw); Handle<Object> args[] = { receiver, name, value }; CallTrap("set", isolate->derived_set_trap(), ARRAY_SIZE(args), args); if (isolate->has_pending_exception()) return Failure::Exception(); return *value; } MUST_USE_RESULT MaybeObject* JSProxy::SetPropertyWithHandlerIfDefiningSetter( String* name_raw, Object* value_raw, PropertyAttributes attributes, StrictModeFlag strict_mode, bool* found) { *found = true; // except where defined otherwise... Isolate* isolate = GetHeap()->isolate(); Handle<JSProxy> proxy(this); Handle<Object> handler(this->handler()); // Trap might morph proxy. Handle<String> name(name_raw); Handle<Object> value(value_raw); Handle<Object> args[] = { name }; Handle<Object> result = proxy->CallTrap( "getPropertyDescriptor", Handle<Object>(), ARRAY_SIZE(args), args); if (isolate->has_pending_exception()) return Failure::Exception(); if (!result->IsUndefined()) { // The proxy handler cares about this property. // Check whether it is virtualized as an accessor. // Emulate [[GetProperty]] semantics for proxies. bool has_pending_exception; Handle<Object> argv[] = { result }; Handle<Object> desc = Execution::Call(isolate->to_complete_property_descriptor(), result, ARRAY_SIZE(argv), argv, &has_pending_exception); if (has_pending_exception) return Failure::Exception(); Handle<String> conf_name = isolate->factory()->LookupAsciiSymbol("configurable_"); Handle<Object> configurable(v8::internal::GetProperty(desc, conf_name)); ASSERT(!isolate->has_pending_exception()); if (configurable->IsFalse()) { Handle<String> trap = isolate->factory()->LookupAsciiSymbol("getPropertyDescriptor"); Handle<Object> args[] = { handler, trap, name }; Handle<Object> error = isolate->factory()->NewTypeError( "proxy_prop_not_configurable", HandleVector(args, ARRAY_SIZE(args))); return isolate->Throw(*error); } ASSERT(configurable->IsTrue()); // Check for AccessorDescriptor. Handle<String> set_name = isolate->factory()->LookupAsciiSymbol("set_"); Handle<Object> setter(v8::internal::GetProperty(desc, set_name)); ASSERT(!isolate->has_pending_exception()); if (!setter->IsUndefined()) { // We have a setter -- invoke it. // TODO(rossberg): nicer would be to cast to some JSCallable here... return proxy->SetPropertyWithDefinedSetter( JSReceiver::cast(*setter), *value); } else { Handle<String> get_name = isolate->factory()->LookupAsciiSymbol("get_"); Handle<Object> getter(v8::internal::GetProperty(desc, get_name)); ASSERT(!isolate->has_pending_exception()); if (!getter->IsUndefined()) { // We have a getter but no setter -- the property may not be // written. In strict mode, throw an error. if (strict_mode == kNonStrictMode) return *value; Handle<Object> args[] = { name, proxy }; Handle<Object> error = isolate->factory()->NewTypeError( "no_setter_in_callback", HandleVector(args, ARRAY_SIZE(args))); return isolate->Throw(*error); } } // Fall-through. } // The proxy does not define the property as an accessor. *found = false; return *value; } MUST_USE_RESULT MaybeObject* JSProxy::DeletePropertyWithHandler( String* name_raw, DeleteMode mode) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle<Object> receiver(this); Handle<Object> name(name_raw); Handle<Object> args[] = { name }; Handle<Object> result = CallTrap( "delete", Handle<Object>(), ARRAY_SIZE(args), args); if (isolate->has_pending_exception()) return Failure::Exception(); Object* bool_result = result->ToBoolean(); if (mode == STRICT_DELETION && bool_result == GetHeap()->false_value()) { Handle<String> trap_name = isolate->factory()->LookupAsciiSymbol("delete"); Handle<Object> args[] = { Handle<Object>(handler()), trap_name }; Handle<Object> error = isolate->factory()->NewTypeError( "handler_failed", HandleVector(args, ARRAY_SIZE(args))); isolate->Throw(*error); return Failure::Exception(); } return bool_result; } MUST_USE_RESULT MaybeObject* JSProxy::DeleteElementWithHandler( uint32_t index, DeleteMode mode) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle<String> name = isolate->factory()->Uint32ToString(index); return JSProxy::DeletePropertyWithHandler(*name, mode); } MUST_USE_RESULT PropertyAttributes JSProxy::GetPropertyAttributeWithHandler( JSReceiver* receiver_raw, String* name_raw) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle<JSProxy> proxy(this); Handle<Object> handler(this->handler()); // Trap might morph proxy. Handle<JSReceiver> receiver(receiver_raw); Handle<Object> name(name_raw); Handle<Object> args[] = { name }; Handle<Object> result = CallTrap( "getPropertyDescriptor", Handle<Object>(), ARRAY_SIZE(args), args); if (isolate->has_pending_exception()) return NONE; if (result->IsUndefined()) return ABSENT; bool has_pending_exception; Handle<Object> argv[] = { result }; Handle<Object> desc = Execution::Call(isolate->to_complete_property_descriptor(), result, ARRAY_SIZE(argv), argv, &has_pending_exception); if (has_pending_exception) return NONE; // Convert result to PropertyAttributes. Handle<String> enum_n = isolate->factory()->LookupAsciiSymbol("enumerable"); Handle<Object> enumerable(v8::internal::GetProperty(desc, enum_n)); if (isolate->has_pending_exception()) return NONE; Handle<String> conf_n = isolate->factory()->LookupAsciiSymbol("configurable"); Handle<Object> configurable(v8::internal::GetProperty(desc, conf_n)); if (isolate->has_pending_exception()) return NONE; Handle<String> writ_n = isolate->factory()->LookupAsciiSymbol("writable"); Handle<Object> writable(v8::internal::GetProperty(desc, writ_n)); if (isolate->has_pending_exception()) return NONE; if (configurable->IsFalse()) { Handle<String> trap = isolate->factory()->LookupAsciiSymbol("getPropertyDescriptor"); Handle<Object> args[] = { handler, trap, name }; Handle<Object> error = isolate->factory()->NewTypeError( "proxy_prop_not_configurable", HandleVector(args, ARRAY_SIZE(args))); isolate->Throw(*error); return NONE; } int attributes = NONE; if (enumerable->ToBoolean()->IsFalse()) attributes |= DONT_ENUM; if (configurable->ToBoolean()->IsFalse()) attributes |= DONT_DELETE; if (writable->ToBoolean()->IsFalse()) attributes |= READ_ONLY; return static_cast<PropertyAttributes>(attributes); } MUST_USE_RESULT PropertyAttributes JSProxy::GetElementAttributeWithHandler( JSReceiver* receiver, uint32_t index) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle<String> name = isolate->factory()->Uint32ToString(index); return GetPropertyAttributeWithHandler(receiver, *name); } void JSProxy::Fix() { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle<JSProxy> self(this); // Save identity hash. MaybeObject* maybe_hash = GetIdentityHash(OMIT_CREATION); if (IsJSFunctionProxy()) { isolate->factory()->BecomeJSFunction(self); // Code will be set on the JavaScript side. } else { isolate->factory()->BecomeJSObject(self); } ASSERT(self->IsJSObject()); // Inherit identity, if it was present. Object* hash; if (maybe_hash->To<Object>(&hash) && hash->IsSmi()) { Handle<JSObject> new_self(JSObject::cast(*self)); isolate->factory()->SetIdentityHash(new_self, hash); } } MUST_USE_RESULT Handle<Object> JSProxy::CallTrap(const char* name, Handle<Object> derived, int argc, Handle<Object> argv[]) { Isolate* isolate = GetIsolate(); Handle<Object> handler(this->handler()); Handle<String> trap_name = isolate->factory()->LookupAsciiSymbol(name); Handle<Object> trap(v8::internal::GetProperty(handler, trap_name)); if (isolate->has_pending_exception()) return trap; if (trap->IsUndefined()) { if (derived.is_null()) { Handle<Object> args[] = { handler, trap_name }; Handle<Object> error = isolate->factory()->NewTypeError( "handler_trap_missing", HandleVector(args, ARRAY_SIZE(args))); isolate->Throw(*error); return Handle<Object>(); } trap = Handle<Object>(derived); } bool threw; return Execution::Call(trap, handler, argc, argv, &threw); } MaybeObject* JSObject::SetPropertyForResult(LookupResult* result, String* name, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode) { Heap* heap = GetHeap(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; // Optimization for 2-byte strings often used as keys in a decompression // dictionary. We make these short keys into symbols to avoid constantly // reallocating them. if (!name->IsSymbol() && name->length() <= 2) { Object* symbol_version; { MaybeObject* maybe_symbol_version = heap->LookupSymbol(name); if (maybe_symbol_version->ToObject(&symbol_version)) { name = String::cast(symbol_version); } } } // Check access rights if needed. if (IsAccessCheckNeeded()) { if (!heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_SET)) { return SetPropertyWithFailedAccessCheck( result, name, value, true, strict_mode); } } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return value; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->SetPropertyForResult( result, name, value, attributes, strict_mode); } if (!result->IsProperty() && !IsJSContextExtensionObject()) { bool found = false; MaybeObject* result_object; result_object = SetPropertyWithCallbackSetterInPrototypes(name, value, attributes, &found, strict_mode); if (found) return result_object; } // At this point, no GC should have happened, as this would invalidate // 'result', which we cannot handlify! if (!result->IsFound()) { // Neither properties nor transitions found. return AddProperty(name, value, attributes, strict_mode); } if (result->IsReadOnly() && result->IsProperty()) { if (strict_mode == kStrictMode) { Handle<JSObject> self(this); Handle<String> hname(name); Handle<Object> args[] = { hname, self }; return heap->isolate()->Throw(*heap->isolate()->factory()->NewTypeError( "strict_read_only_property", HandleVector(args, ARRAY_SIZE(args)))); } else { return value; } } // This is a real property that is not read-only, or it is a // transition or null descriptor and there are no setters in the prototypes. switch (result->type()) { case NORMAL: return SetNormalizedProperty(result, value); case FIELD: return FastPropertyAtPut(result->GetFieldIndex(), value); case MAP_TRANSITION: if (attributes == result->GetAttributes()) { // Only use map transition if the attributes match. return AddFastPropertyUsingMap(result->GetTransitionMap(), name, value); } return ConvertDescriptorToField(name, value, attributes); case CONSTANT_FUNCTION: // Only replace the function if necessary. if (value == result->GetConstantFunction()) return value; // Preserve the attributes of this existing property. attributes = result->GetAttributes(); return ConvertDescriptorToField(name, value, attributes); case CALLBACKS: return SetPropertyWithCallback(result->GetCallbackObject(), name, value, result->holder(), strict_mode); case INTERCEPTOR: return SetPropertyWithInterceptor(name, value, attributes, strict_mode); case CONSTANT_TRANSITION: { // If the same constant function is being added we can simply // transition to the target map. Map* target_map = result->GetTransitionMap(); DescriptorArray* target_descriptors = target_map->instance_descriptors(); int number = target_descriptors->SearchWithCache(name); ASSERT(number != DescriptorArray::kNotFound); ASSERT(target_descriptors->GetType(number) == CONSTANT_FUNCTION); JSFunction* function = JSFunction::cast(target_descriptors->GetValue(number)); if (value == function) { set_map(target_map); return value; } // Otherwise, replace with a MAP_TRANSITION to a new map with a // FIELD, even if the value is a constant function. return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); } case NULL_DESCRIPTOR: case ELEMENTS_TRANSITION: return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); case HANDLER: UNREACHABLE(); return value; } UNREACHABLE(); // keep the compiler happy return value; } // Set a real local property, even if it is READ_ONLY. If the property is not // present, add it with attributes NONE. This code is an exact clone of // SetProperty, with the check for IsReadOnly and the check for a // callback setter removed. The two lines looking up the LookupResult // result are also added. If one of the functions is changed, the other // should be. // Note that this method cannot be used to set the prototype of a function // because ConvertDescriptorToField() which is called in "case CALLBACKS:" // doesn't handle function prototypes correctly. Handle<Object> JSObject::SetLocalPropertyIgnoreAttributes( Handle<JSObject> object, Handle<String> key, Handle<Object> value, PropertyAttributes attributes) { CALL_HEAP_FUNCTION( object->GetIsolate(), object->SetLocalPropertyIgnoreAttributes(*key, *value, attributes), Object); } MaybeObject* JSObject::SetLocalPropertyIgnoreAttributes( String* name, Object* value, PropertyAttributes attributes) { // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; Isolate* isolate = GetIsolate(); LookupResult result(isolate); LocalLookup(name, &result); // Check access rights if needed. if (IsAccessCheckNeeded()) { if (!isolate->MayNamedAccess(this, name, v8::ACCESS_SET)) { return SetPropertyWithFailedAccessCheck(&result, name, value, false, kNonStrictMode); } } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return value; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->SetLocalPropertyIgnoreAttributes( name, value, attributes); } // Check for accessor in prototype chain removed here in clone. if (!result.IsFound()) { // Neither properties nor transitions found. return AddProperty(name, value, attributes, kNonStrictMode); } PropertyDetails details = PropertyDetails(attributes, NORMAL); // Check of IsReadOnly removed from here in clone. switch (result.type()) { case NORMAL: return SetNormalizedProperty(name, value, details); case FIELD: return FastPropertyAtPut(result.GetFieldIndex(), value); case MAP_TRANSITION: if (attributes == result.GetAttributes()) { // Only use map transition if the attributes match. return AddFastPropertyUsingMap(result.GetTransitionMap(), name, value); } return ConvertDescriptorToField(name, value, attributes); case CONSTANT_FUNCTION: // Only replace the function if necessary. if (value == result.GetConstantFunction()) return value; // Preserve the attributes of this existing property. attributes = result.GetAttributes(); return ConvertDescriptorToField(name, value, attributes); case CALLBACKS: case INTERCEPTOR: // Override callback in clone return ConvertDescriptorToField(name, value, attributes); case CONSTANT_TRANSITION: // Replace with a MAP_TRANSITION to a new map with a FIELD, even // if the value is a function. return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); case NULL_DESCRIPTOR: case ELEMENTS_TRANSITION: return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); case HANDLER: UNREACHABLE(); return value; } UNREACHABLE(); // keep the compiler happy return value; } PropertyAttributes JSObject::GetPropertyAttributePostInterceptor( JSObject* receiver, String* name, bool continue_search) { // Check local property, ignore interceptor. LookupResult result(GetIsolate()); LocalLookupRealNamedProperty(name, &result); if (result.IsProperty()) return result.GetAttributes(); if (continue_search) { // Continue searching via the prototype chain. Object* pt = GetPrototype(); if (!pt->IsNull()) { return JSObject::cast(pt)-> GetPropertyAttributeWithReceiver(receiver, name); } } return ABSENT; } PropertyAttributes JSObject::GetPropertyAttributeWithInterceptor( JSObject* receiver, String* name, bool continue_search) { Isolate* isolate = GetIsolate(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc; HandleScope scope(isolate); Handle<InterceptorInfo> interceptor(GetNamedInterceptor()); Handle<JSObject> receiver_handle(receiver); Handle<JSObject> holder_handle(this); Handle<String> name_handle(name); CustomArguments args(isolate, interceptor->data(), receiver, this); v8::AccessorInfo info(args.end()); if (!interceptor->query()->IsUndefined()) { v8::NamedPropertyQuery query = v8::ToCData<v8::NamedPropertyQuery>(interceptor->query()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-has", *holder_handle, name)); v8::Handle<v8::Integer> result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = query(v8::Utils::ToLocal(name_handle), info); } if (!result.IsEmpty()) { ASSERT(result->IsInt32()); return static_cast<PropertyAttributes>(result->Int32Value()); } } else if (!interceptor->getter()->IsUndefined()) { v8::NamedPropertyGetter getter = v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-get-has", this, name)); v8::Handle<v8::Value> result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = getter(v8::Utils::ToLocal(name_handle), info); } if (!result.IsEmpty()) return DONT_ENUM; } return holder_handle->GetPropertyAttributePostInterceptor(*receiver_handle, *name_handle, continue_search); } PropertyAttributes JSReceiver::GetPropertyAttributeWithReceiver( JSReceiver* receiver, String* key) { uint32_t index = 0; if (IsJSObject() && key->AsArrayIndex(&index)) { return JSObject::cast(this)->HasElementWithReceiver(receiver, index) ? NONE : ABSENT; } // Named property. LookupResult result(GetIsolate()); Lookup(key, &result); return GetPropertyAttribute(receiver, &result, key, true); } PropertyAttributes JSReceiver::GetPropertyAttribute(JSReceiver* receiver, LookupResult* result, String* name, bool continue_search) { // Check access rights if needed. if (IsAccessCheckNeeded()) { JSObject* this_obj = JSObject::cast(this); Heap* heap = GetHeap(); if (!heap->isolate()->MayNamedAccess(this_obj, name, v8::ACCESS_HAS)) { return this_obj->GetPropertyAttributeWithFailedAccessCheck( receiver, result, name, continue_search); } } if (result->IsProperty()) { switch (result->type()) { case NORMAL: // fall through case FIELD: case CONSTANT_FUNCTION: case CALLBACKS: return result->GetAttributes(); case HANDLER: { return JSProxy::cast(result->proxy())->GetPropertyAttributeWithHandler( receiver, name); } case INTERCEPTOR: return result->holder()->GetPropertyAttributeWithInterceptor( JSObject::cast(receiver), name, continue_search); default: UNREACHABLE(); } } return ABSENT; } PropertyAttributes JSReceiver::GetLocalPropertyAttribute(String* name) { // Check whether the name is an array index. uint32_t index = 0; if (IsJSObject() && name->AsArrayIndex(&index)) { if (JSObject::cast(this)->HasLocalElement(index)) return NONE; return ABSENT; } // Named property. LookupResult result(GetIsolate()); LocalLookup(name, &result); return GetPropertyAttribute(this, &result, name, false); } MaybeObject* NormalizedMapCache::Get(JSObject* obj, PropertyNormalizationMode mode) { Isolate* isolate = obj->GetIsolate(); Map* fast = obj->map(); int index = fast->Hash() % kEntries; Object* result = get(index); if (result->IsMap() && Map::cast(result)->EquivalentToForNormalization(fast, mode)) { #ifdef DEBUG if (FLAG_verify_heap) { Map::cast(result)->SharedMapVerify(); } if (FLAG_enable_slow_asserts) { // The cached map should match newly created normalized map bit-by-bit. Object* fresh; { MaybeObject* maybe_fresh = fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP); if (maybe_fresh->ToObject(&fresh)) { ASSERT(memcmp(Map::cast(fresh)->address(), Map::cast(result)->address(), Map::kSize) == 0); } } } #endif return result; } { MaybeObject* maybe_result = fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP); if (!maybe_result->ToObject(&result)) return maybe_result; } set(index, result); isolate->counters()->normalized_maps()->Increment(); return result; } void NormalizedMapCache::Clear() { int entries = length(); for (int i = 0; i != entries; i++) { set_undefined(i); } } void JSObject::UpdateMapCodeCache(Handle<JSObject> object, Handle<String> name, Handle<Code> code) { Isolate* isolate = object->GetIsolate(); CALL_HEAP_FUNCTION_VOID(isolate, object->UpdateMapCodeCache(*name, *code)); } MaybeObject* JSObject::UpdateMapCodeCache(String* name, Code* code) { if (map()->is_shared()) { // Fast case maps are never marked as shared. ASSERT(!HasFastProperties()); // Replace the map with an identical copy that can be safely modified. Object* obj; { MaybeObject* maybe_obj = map()->CopyNormalized(KEEP_INOBJECT_PROPERTIES, UNIQUE_NORMALIZED_MAP); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } GetIsolate()->counters()->normalized_maps()->Increment(); set_map(Map::cast(obj)); } return map()->UpdateCodeCache(name, code); } void JSObject::NormalizeProperties(Handle<JSObject> object, PropertyNormalizationMode mode, int expected_additional_properties) { CALL_HEAP_FUNCTION_VOID(object->GetIsolate(), object->NormalizeProperties( mode, expected_additional_properties)); } MaybeObject* JSObject::NormalizeProperties(PropertyNormalizationMode mode, int expected_additional_properties) { if (!HasFastProperties()) return this; // The global object is always normalized. ASSERT(!IsGlobalObject()); // JSGlobalProxy must never be normalized ASSERT(!IsJSGlobalProxy()); Map* map_of_this = map(); // Allocate new content. int property_count = map_of_this->NumberOfDescribedProperties(); if (expected_additional_properties > 0) { property_count += expected_additional_properties; } else { property_count += 2; // Make space for two more properties. } StringDictionary* dictionary; { MaybeObject* maybe_dictionary = StringDictionary::Allocate(property_count); if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary; } DescriptorArray* descs = map_of_this->instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { PropertyDetails details(descs->GetDetails(i)); switch (details.type()) { case CONSTANT_FUNCTION: { PropertyDetails d = PropertyDetails(details.attributes(), NORMAL, details.index()); Object* value = descs->GetConstantFunction(i); MaybeObject* maybe_dictionary = dictionary->Add(descs->GetKey(i), value, d); if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary; break; } case FIELD: { PropertyDetails d = PropertyDetails(details.attributes(), NORMAL, details.index()); Object* value = FastPropertyAt(descs->GetFieldIndex(i)); MaybeObject* maybe_dictionary = dictionary->Add(descs->GetKey(i), value, d); if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary; break; } case CALLBACKS: { if (!descs->IsProperty(i)) break; Object* value = descs->GetCallbacksObject(i); if (value->IsAccessorPair()) { MaybeObject* maybe_copy = AccessorPair::cast(value)->CopyWithoutTransitions(); if (!maybe_copy->To(&value)) return maybe_copy; } MaybeObject* maybe_dictionary = dictionary->Add(descs->GetKey(i), value, details); if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary; break; } case MAP_TRANSITION: case CONSTANT_TRANSITION: case NULL_DESCRIPTOR: case INTERCEPTOR: case ELEMENTS_TRANSITION: break; case HANDLER: case NORMAL: UNREACHABLE(); break; } } Heap* current_heap = GetHeap(); // Copy the next enumeration index from instance descriptor. int index = map_of_this->instance_descriptors()->NextEnumerationIndex(); dictionary->SetNextEnumerationIndex(index); Map* new_map; { MaybeObject* maybe_map = current_heap->isolate()->context()->global_context()-> normalized_map_cache()->Get(this, mode); if (!maybe_map->To(&new_map)) return maybe_map; } // We have now successfully allocated all the necessary objects. // Changes can now be made with the guarantee that all of them take effect. // Resize the object in the heap if necessary. int new_instance_size = new_map->instance_size(); int instance_size_delta = map_of_this->instance_size() - new_instance_size; ASSERT(instance_size_delta >= 0); current_heap->CreateFillerObjectAt(this->address() + new_instance_size, instance_size_delta); if (Marking::IsBlack(Marking::MarkBitFrom(this))) { MemoryChunk::IncrementLiveBytesFromMutator(this->address(), -instance_size_delta); } set_map(new_map); new_map->clear_instance_descriptors(); set_properties(dictionary); current_heap->isolate()->counters()->props_to_dictionary()->Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { PrintF("Object properties have been normalized:\n"); Print(); } #endif return this; } void JSObject::TransformToFastProperties(Handle<JSObject> object, int unused_property_fields) { CALL_HEAP_FUNCTION_VOID( object->GetIsolate(), object->TransformToFastProperties(unused_property_fields)); } MaybeObject* JSObject::TransformToFastProperties(int unused_property_fields) { if (HasFastProperties()) return this; ASSERT(!IsGlobalObject()); return property_dictionary()-> TransformPropertiesToFastFor(this, unused_property_fields); } Handle<SeededNumberDictionary> JSObject::NormalizeElements( Handle<JSObject> object) { CALL_HEAP_FUNCTION(object->GetIsolate(), object->NormalizeElements(), SeededNumberDictionary); } MaybeObject* JSObject::NormalizeElements() { ASSERT(!HasExternalArrayElements()); // Find the backing store. FixedArrayBase* array = FixedArrayBase::cast(elements()); Map* old_map = array->map(); bool is_arguments = (old_map == old_map->GetHeap()->non_strict_arguments_elements_map()); if (is_arguments) { array = FixedArrayBase::cast(FixedArray::cast(array)->get(1)); } if (array->IsDictionary()) return array; ASSERT(HasFastElements() || HasFastSmiOnlyElements() || HasFastDoubleElements() || HasFastArgumentsElements()); // Compute the effective length and allocate a new backing store. int length = IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : array->length(); int old_capacity = 0; int used_elements = 0; GetElementsCapacityAndUsage(&old_capacity, &used_elements); SeededNumberDictionary* dictionary = NULL; { Object* object; MaybeObject* maybe = SeededNumberDictionary::Allocate(used_elements); if (!maybe->ToObject(&object)) return maybe; dictionary = SeededNumberDictionary::cast(object); } // Copy the elements to the new backing store. bool has_double_elements = array->IsFixedDoubleArray(); for (int i = 0; i < length; i++) { Object* value = NULL; if (has_double_elements) { FixedDoubleArray* double_array = FixedDoubleArray::cast(array); if (double_array->is_the_hole(i)) { value = GetIsolate()->heap()->the_hole_value(); } else { // Objects must be allocated in the old object space, since the // overall number of HeapNumbers needed for the conversion might // exceed the capacity of new space, and we would fail repeatedly // trying to convert the FixedDoubleArray. MaybeObject* maybe_value_object = GetHeap()->AllocateHeapNumber(double_array->get_scalar(i), TENURED); if (!maybe_value_object->ToObject(&value)) return maybe_value_object; } } else { ASSERT(old_map->has_fast_elements() || old_map->has_fast_smi_only_elements()); value = FixedArray::cast(array)->get(i); } PropertyDetails details = PropertyDetails(NONE, NORMAL); if (!value->IsTheHole()) { Object* result; MaybeObject* maybe_result = dictionary->AddNumberEntry(i, value, details); if (!maybe_result->ToObject(&result)) return maybe_result; dictionary = SeededNumberDictionary::cast(result); } } // Switch to using the dictionary as the backing storage for elements. if (is_arguments) { FixedArray::cast(elements())->set(1, dictionary); } else { // Set the new map first to satify the elements type assert in // set_elements(). Object* new_map; MaybeObject* maybe = GetElementsTransitionMap(GetIsolate(), DICTIONARY_ELEMENTS); if (!maybe->ToObject(&new_map)) return maybe; set_map(Map::cast(new_map)); set_elements(dictionary); } old_map->GetHeap()->isolate()->counters()->elements_to_dictionary()-> Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { PrintF("Object elements have been normalized:\n"); Print(); } #endif ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements()); return dictionary; } Smi* JSReceiver::GenerateIdentityHash() { Isolate* isolate = GetIsolate(); int hash_value; int attempts = 0; do { // Generate a random 32-bit hash value but limit range to fit // within a smi. hash_value = V8::RandomPrivate(isolate) & Smi::kMaxValue; attempts++; } while (hash_value == 0 && attempts < 30); hash_value = hash_value != 0 ? hash_value : 1; // never return 0 return Smi::FromInt(hash_value); } MaybeObject* JSObject::SetIdentityHash(Object* hash, CreationFlag flag) { MaybeObject* maybe = SetHiddenProperty(GetHeap()->identity_hash_symbol(), hash); if (maybe->IsFailure()) return maybe; return this; } int JSObject::GetIdentityHash(Handle<JSObject> obj) { CALL_AND_RETRY(obj->GetIsolate(), obj->GetIdentityHash(ALLOW_CREATION), return Smi::cast(__object__)->value(), return 0); } MaybeObject* JSObject::GetIdentityHash(CreationFlag flag) { Object* stored_value = GetHiddenProperty(GetHeap()->identity_hash_symbol()); if (stored_value->IsSmi()) return stored_value; // Do not generate permanent identity hash code if not requested. if (flag == OMIT_CREATION) return GetHeap()->undefined_value(); Smi* hash = GenerateIdentityHash(); MaybeObject* result = SetHiddenProperty(GetHeap()->identity_hash_symbol(), hash); if (result->IsFailure()) return result; if (result->ToObjectUnchecked()->IsUndefined()) { // Trying to get hash of detached proxy. return Smi::FromInt(0); } return hash; } MaybeObject* JSProxy::GetIdentityHash(CreationFlag flag) { Object* hash = this->hash(); if (!hash->IsSmi() && flag == ALLOW_CREATION) { hash = GenerateIdentityHash(); set_hash(hash); } return hash; } Object* JSObject::GetHiddenProperty(String* key) { if (IsJSGlobalProxy()) { // For a proxy, use the prototype as target object. Object* proxy_parent = GetPrototype(); // If the proxy is detached, return undefined. if (proxy_parent->IsNull()) return GetHeap()->undefined_value(); ASSERT(proxy_parent->IsJSGlobalObject()); return JSObject::cast(proxy_parent)->GetHiddenProperty(key); } ASSERT(!IsJSGlobalProxy()); MaybeObject* hidden_lookup = GetHiddenPropertiesDictionary(false); ASSERT(!hidden_lookup->IsFailure()); // No failure when passing false as arg. if (hidden_lookup->ToObjectUnchecked()->IsUndefined()) { return GetHeap()->undefined_value(); } StringDictionary* dictionary = StringDictionary::cast(hidden_lookup->ToObjectUnchecked()); int entry = dictionary->FindEntry(key); if (entry == StringDictionary::kNotFound) return GetHeap()->undefined_value(); return dictionary->ValueAt(entry); } Handle<Object> JSObject::SetHiddenProperty(Handle<JSObject> obj, Handle<String> key, Handle<Object> value) { CALL_HEAP_FUNCTION(obj->GetIsolate(), obj->SetHiddenProperty(*key, *value), Object); } MaybeObject* JSObject::SetHiddenProperty(String* key, Object* value) { if (IsJSGlobalProxy()) { // For a proxy, use the prototype as target object. Object* proxy_parent = GetPrototype(); // If the proxy is detached, return undefined. if (proxy_parent->IsNull()) return GetHeap()->undefined_value(); ASSERT(proxy_parent->IsJSGlobalObject()); return JSObject::cast(proxy_parent)->SetHiddenProperty(key, value); } ASSERT(!IsJSGlobalProxy()); MaybeObject* hidden_lookup = GetHiddenPropertiesDictionary(true); StringDictionary* dictionary; if (!hidden_lookup->To<StringDictionary>(&dictionary)) return hidden_lookup; // If it was found, check if the key is already in the dictionary. int entry = dictionary->FindEntry(key); if (entry != StringDictionary::kNotFound) { // If key was found, just update the value. dictionary->ValueAtPut(entry, value); return this; } // Key was not already in the dictionary, so add the entry. MaybeObject* insert_result = dictionary->Add(key, value, PropertyDetails(NONE, NORMAL)); StringDictionary* new_dict; if (!insert_result->To<StringDictionary>(&new_dict)) return insert_result; if (new_dict != dictionary) { // If adding the key expanded the dictionary (i.e., Add returned a new // dictionary), store it back to the object. MaybeObject* store_result = SetHiddenPropertiesDictionary(new_dict); if (store_result->IsFailure()) return store_result; } // Return this to mark success. return this; } void JSObject::DeleteHiddenProperty(String* key) { if (IsJSGlobalProxy()) { // For a proxy, use the prototype as target object. Object* proxy_parent = GetPrototype(); // If the proxy is detached, return immediately. if (proxy_parent->IsNull()) return; ASSERT(proxy_parent->IsJSGlobalObject()); JSObject::cast(proxy_parent)->DeleteHiddenProperty(key); return; } MaybeObject* hidden_lookup = GetHiddenPropertiesDictionary(false); ASSERT(!hidden_lookup->IsFailure()); // No failure when passing false as arg. if (hidden_lookup->ToObjectUnchecked()->IsUndefined()) return; StringDictionary* dictionary = StringDictionary::cast(hidden_lookup->ToObjectUnchecked()); int entry = dictionary->FindEntry(key); if (entry == StringDictionary::kNotFound) { // Key wasn't in dictionary. Deletion is a success. return; } // Key was in the dictionary. Remove it. dictionary->DeleteProperty(entry, JSReceiver::FORCE_DELETION); } bool JSObject::HasHiddenProperties() { return GetPropertyAttributePostInterceptor(this, GetHeap()->hidden_symbol(), false) != ABSENT; } MaybeObject* JSObject::GetHiddenPropertiesDictionary(bool create_if_absent) { ASSERT(!IsJSGlobalProxy()); if (HasFastProperties()) { // If the object has fast properties, check whether the first slot // in the descriptor array matches the hidden symbol. Since the // hidden symbols hash code is zero (and no other string has hash // code zero) it will always occupy the first entry if present. DescriptorArray* descriptors = this->map()->instance_descriptors(); if ((descriptors->number_of_descriptors() > 0) && (descriptors->GetKey(0) == GetHeap()->hidden_symbol())) { if (descriptors->GetType(0) == FIELD) { Object* hidden_store = this->FastPropertyAt(descriptors->GetFieldIndex(0)); return StringDictionary::cast(hidden_store); } else { ASSERT(descriptors->GetType(0) == NULL_DESCRIPTOR || descriptors->GetType(0) == MAP_TRANSITION); } } } else { PropertyAttributes attributes; // You can't install a getter on a property indexed by the hidden symbol, // so we can be sure that GetLocalPropertyPostInterceptor returns a real // object. Object* lookup = GetLocalPropertyPostInterceptor(this, GetHeap()->hidden_symbol(), &attributes)->ToObjectUnchecked(); if (!lookup->IsUndefined()) { return StringDictionary::cast(lookup); } } if (!create_if_absent) return GetHeap()->undefined_value(); const int kInitialSize = 5; MaybeObject* dict_alloc = StringDictionary::Allocate(kInitialSize); StringDictionary* dictionary; if (!dict_alloc->To<StringDictionary>(&dictionary)) return dict_alloc; MaybeObject* store_result = SetPropertyPostInterceptor(GetHeap()->hidden_symbol(), dictionary, DONT_ENUM, kNonStrictMode); if (store_result->IsFailure()) return store_result; return dictionary; } MaybeObject* JSObject::SetHiddenPropertiesDictionary( StringDictionary* dictionary) { ASSERT(!IsJSGlobalProxy()); ASSERT(HasHiddenProperties()); if (HasFastProperties()) { // If the object has fast properties, check whether the first slot // in the descriptor array matches the hidden symbol. Since the // hidden symbols hash code is zero (and no other string has hash // code zero) it will always occupy the first entry if present. DescriptorArray* descriptors = this->map()->instance_descriptors(); if ((descriptors->number_of_descriptors() > 0) && (descriptors->GetKey(0) == GetHeap()->hidden_symbol())) { if (descriptors->GetType(0) == FIELD) { this->FastPropertyAtPut(descriptors->GetFieldIndex(0), dictionary); return this; } else { ASSERT(descriptors->GetType(0) == NULL_DESCRIPTOR || descriptors->GetType(0) == MAP_TRANSITION); } } } MaybeObject* store_result = SetPropertyPostInterceptor(GetHeap()->hidden_symbol(), dictionary, DONT_ENUM, kNonStrictMode); if (store_result->IsFailure()) return store_result; return this; } MaybeObject* JSObject::DeletePropertyPostInterceptor(String* name, DeleteMode mode) { // Check local property, ignore interceptor. LookupResult result(GetIsolate()); LocalLookupRealNamedProperty(name, &result); if (!result.IsProperty()) return GetHeap()->true_value(); // Normalize object if needed. Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return DeleteNormalizedProperty(name, mode); } MaybeObject* JSObject::DeletePropertyWithInterceptor(String* name) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); Handle<InterceptorInfo> interceptor(GetNamedInterceptor()); Handle<String> name_handle(name); Handle<JSObject> this_handle(this); if (!interceptor->deleter()->IsUndefined()) { v8::NamedPropertyDeleter deleter = v8::ToCData<v8::NamedPropertyDeleter>(interceptor->deleter()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-delete", *this_handle, name)); CustomArguments args(isolate, interceptor->data(), this, this); v8::AccessorInfo info(args.end()); v8::Handle<v8::Boolean> result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = deleter(v8::Utils::ToLocal(name_handle), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!result.IsEmpty()) { ASSERT(result->IsBoolean()); return *v8::Utils::OpenHandle(*result); } } MaybeObject* raw_result = this_handle->DeletePropertyPostInterceptor(*name_handle, NORMAL_DELETION); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return raw_result; } MaybeObject* JSObject::DeleteElementWithInterceptor(uint32_t index) { Isolate* isolate = GetIsolate(); Heap* heap = isolate->heap(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc; HandleScope scope(isolate); Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); if (interceptor->deleter()->IsUndefined()) return heap->false_value(); v8::IndexedPropertyDeleter deleter = v8::ToCData<v8::IndexedPropertyDeleter>(interceptor->deleter()); Handle<JSObject> this_handle(this); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-delete", this, index)); CustomArguments args(isolate, interceptor->data(), this, this); v8::AccessorInfo info(args.end()); v8::Handle<v8::Boolean> result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = deleter(index, info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!result.IsEmpty()) { ASSERT(result->IsBoolean()); return *v8::Utils::OpenHandle(*result); } MaybeObject* raw_result = this_handle->GetElementsAccessor()->Delete( *this_handle, index, NORMAL_DELETION); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return raw_result; } Handle<Object> JSObject::DeleteElement(Handle<JSObject> obj, uint32_t index) { CALL_HEAP_FUNCTION(obj->GetIsolate(), obj->DeleteElement(index, JSObject::NORMAL_DELETION), Object); } MaybeObject* JSObject::DeleteElement(uint32_t index, DeleteMode mode) { Isolate* isolate = GetIsolate(); // Check access rights if needed. if (IsAccessCheckNeeded() && !isolate->MayIndexedAccess(this, index, v8::ACCESS_DELETE)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_DELETE); return isolate->heap()->false_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return isolate->heap()->false_value(); ASSERT(proto->IsJSGlobalObject()); return JSGlobalObject::cast(proto)->DeleteElement(index, mode); } if (HasIndexedInterceptor()) { // Skip interceptor if forcing deletion. if (mode != FORCE_DELETION) { return DeleteElementWithInterceptor(index); } mode = JSReceiver::FORCE_DELETION; } return GetElementsAccessor()->Delete(this, index, mode); } Handle<Object> JSObject::DeleteProperty(Handle<JSObject> obj, Handle<String> prop) { CALL_HEAP_FUNCTION(obj->GetIsolate(), obj->DeleteProperty(*prop, JSObject::NORMAL_DELETION), Object); } MaybeObject* JSObject::DeleteProperty(String* name, DeleteMode mode) { Isolate* isolate = GetIsolate(); // ECMA-262, 3rd, 8.6.2.5 ASSERT(name->IsString()); // Check access rights if needed. if (IsAccessCheckNeeded() && !isolate->MayNamedAccess(this, name, v8::ACCESS_DELETE)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_DELETE); return isolate->heap()->false_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return isolate->heap()->false_value(); ASSERT(proto->IsJSGlobalObject()); return JSGlobalObject::cast(proto)->DeleteProperty(name, mode); } uint32_t index = 0; if (name->AsArrayIndex(&index)) { return DeleteElement(index, mode); } else { LookupResult result(isolate); LocalLookup(name, &result); if (!result.IsProperty()) return isolate->heap()->true_value(); // Ignore attributes if forcing a deletion. if (result.IsDontDelete() && mode != FORCE_DELETION) { if (mode == STRICT_DELETION) { // Deleting a non-configurable property in strict mode. HandleScope scope(isolate); Handle<Object> args[2] = { Handle<Object>(name), Handle<Object>(this) }; return isolate->Throw(*isolate->factory()->NewTypeError( "strict_delete_property", HandleVector(args, 2))); } return isolate->heap()->false_value(); } // Check for interceptor. if (result.type() == INTERCEPTOR) { // Skip interceptor if forcing a deletion. if (mode == FORCE_DELETION) { return DeletePropertyPostInterceptor(name, mode); } return DeletePropertyWithInterceptor(name); } // Normalize object if needed. Object* obj; { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } // Make sure the properties are normalized before removing the entry. return DeleteNormalizedProperty(name, mode); } } MaybeObject* JSReceiver::DeleteElement(uint32_t index, DeleteMode mode) { if (IsJSProxy()) { return JSProxy::cast(this)->DeleteElementWithHandler(index, mode); } return JSObject::cast(this)->DeleteElement(index, mode); } MaybeObject* JSReceiver::DeleteProperty(String* name, DeleteMode mode) { if (IsJSProxy()) { return JSProxy::cast(this)->DeletePropertyWithHandler(name, mode); } return JSObject::cast(this)->DeleteProperty(name, mode); } bool JSObject::ReferencesObjectFromElements(FixedArray* elements, ElementsKind kind, Object* object) { ASSERT(kind == FAST_ELEMENTS || kind == DICTIONARY_ELEMENTS); if (kind == FAST_ELEMENTS) { int length = IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : elements->length(); for (int i = 0; i < length; ++i) { Object* element = elements->get(i); if (!element->IsTheHole() && element == object) return true; } } else { Object* key = SeededNumberDictionary::cast(elements)->SlowReverseLookup(object); if (!key->IsUndefined()) return true; } return false; } // Check whether this object references another object. bool JSObject::ReferencesObject(Object* obj) { Map* map_of_this = map(); Heap* heap = GetHeap(); AssertNoAllocation no_alloc; // Is the object the constructor for this object? if (map_of_this->constructor() == obj) { return true; } // Is the object the prototype for this object? if (map_of_this->prototype() == obj) { return true; } // Check if the object is among the named properties. Object* key = SlowReverseLookup(obj); if (!key->IsUndefined()) { return true; } // Check if the object is among the indexed properties. ElementsKind kind = GetElementsKind(); switch (kind) { case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: // Raw pixels and external arrays do not reference other // objects. break; case FAST_SMI_ONLY_ELEMENTS: break; case FAST_ELEMENTS: case DICTIONARY_ELEMENTS: { FixedArray* elements = FixedArray::cast(this->elements()); if (ReferencesObjectFromElements(elements, kind, obj)) return true; break; } case NON_STRICT_ARGUMENTS_ELEMENTS: { FixedArray* parameter_map = FixedArray::cast(elements()); // Check the mapped parameters. int length = parameter_map->length(); for (int i = 2; i < length; ++i) { Object* value = parameter_map->get(i); if (!value->IsTheHole() && value == obj) return true; } // Check the arguments. FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); kind = arguments->IsDictionary() ? DICTIONARY_ELEMENTS : FAST_ELEMENTS; if (ReferencesObjectFromElements(arguments, kind, obj)) return true; break; } } // For functions check the context. if (IsJSFunction()) { // Get the constructor function for arguments array. JSObject* arguments_boilerplate = heap->isolate()->context()->global_context()-> arguments_boilerplate(); JSFunction* arguments_function = JSFunction::cast(arguments_boilerplate->map()->constructor()); // Get the context and don't check if it is the global context. JSFunction* f = JSFunction::cast(this); Context* context = f->context(); if (context->IsGlobalContext()) { return false; } // Check the non-special context slots. for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) { // Only check JS objects. if (context->get(i)->IsJSObject()) { JSObject* ctxobj = JSObject::cast(context->get(i)); // If it is an arguments array check the content. if (ctxobj->map()->constructor() == arguments_function) { if (ctxobj->ReferencesObject(obj)) { return true; } } else if (ctxobj == obj) { return true; } } } // Check the context extension (if any) if it can have references. if (context->has_extension() && !context->IsCatchContext()) { return JSObject::cast(context->extension())->ReferencesObject(obj); } } // No references to object. return false; } Handle<Object> JSObject::PreventExtensions(Handle<JSObject> object) { CALL_HEAP_FUNCTION(object->GetIsolate(), object->PreventExtensions(), Object); } MaybeObject* JSObject::PreventExtensions() { Isolate* isolate = GetIsolate(); if (IsAccessCheckNeeded() && !isolate->MayNamedAccess(this, isolate->heap()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_KEYS); return isolate->heap()->false_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return this; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->PreventExtensions(); } // It's not possible to seal objects with external array elements if (HasExternalArrayElements()) { HandleScope scope(isolate); Handle<Object> object(this); Handle<Object> error = isolate->factory()->NewTypeError( "cant_prevent_ext_external_array_elements", HandleVector(&object, 1)); return isolate->Throw(*error); } // If there are fast elements we normalize. SeededNumberDictionary* dictionary = NULL; { MaybeObject* maybe = NormalizeElements(); if (!maybe->To<SeededNumberDictionary>(&dictionary)) return maybe; } ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements()); // Make sure that we never go back to fast case. dictionary->set_requires_slow_elements(); // Do a map transition, other objects with this map may still // be extensible. Map* new_map; { MaybeObject* maybe = map()->CopyDropTransitions(); if (!maybe->To<Map>(&new_map)) return maybe; } new_map->set_is_extensible(false); set_map(new_map); ASSERT(!map()->is_extensible()); return new_map; } // Tests for the fast common case for property enumeration: // - This object and all prototypes has an enum cache (which means that // it is no proxy, has no interceptors and needs no access checks). // - This object has no elements. // - No prototype has enumerable properties/elements. bool JSReceiver::IsSimpleEnum() { Heap* heap = GetHeap(); for (Object* o = this; o != heap->null_value(); o = JSObject::cast(o)->GetPrototype()) { if (!o->IsJSObject()) return false; JSObject* curr = JSObject::cast(o); if (!curr->map()->instance_descriptors()->HasEnumCache()) return false; ASSERT(!curr->HasNamedInterceptor()); ASSERT(!curr->HasIndexedInterceptor()); ASSERT(!curr->IsAccessCheckNeeded()); if (curr->NumberOfEnumElements() > 0) return false; if (curr != this) { FixedArray* curr_fixed_array = FixedArray::cast(curr->map()->instance_descriptors()->GetEnumCache()); if (curr_fixed_array->length() > 0) return false; } } return true; } int Map::NumberOfDescribedProperties(PropertyAttributes filter) { int result = 0; DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { PropertyDetails details(descs->GetDetails(i)); if (descs->IsProperty(i) && (details.attributes() & filter) == 0) { result++; } } return result; } int Map::PropertyIndexFor(String* name) { DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (name->Equals(descs->GetKey(i)) && !descs->IsNullDescriptor(i)) { return descs->GetFieldIndex(i); } } return -1; } int Map::NextFreePropertyIndex() { int max_index = -1; DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (descs->GetType(i) == FIELD) { int current_index = descs->GetFieldIndex(i); if (current_index > max_index) max_index = current_index; } } return max_index + 1; } AccessorDescriptor* Map::FindAccessor(String* name) { DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (name->Equals(descs->GetKey(i)) && descs->GetType(i) == CALLBACKS) { return descs->GetCallbacks(i); } } return NULL; } void JSReceiver::LocalLookup(String* name, LookupResult* result) { ASSERT(name->IsString()); Heap* heap = GetHeap(); if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return result->NotFound(); ASSERT(proto->IsJSGlobalObject()); return JSReceiver::cast(proto)->LocalLookup(name, result); } if (IsJSProxy()) { result->HandlerResult(JSProxy::cast(this)); return; } // Do not use inline caching if the object is a non-global object // that requires access checks. if (IsAccessCheckNeeded()) { result->DisallowCaching(); } JSObject* js_object = JSObject::cast(this); // Check __proto__ before interceptor. if (name->Equals(heap->Proto_symbol()) && !IsJSContextExtensionObject()) { result->ConstantResult(js_object); return; } // Check for lookup interceptor except when bootstrapping. if (js_object->HasNamedInterceptor() && !heap->isolate()->bootstrapper()->IsActive()) { result->InterceptorResult(js_object); return; } js_object->LocalLookupRealNamedProperty(name, result); } void JSReceiver::Lookup(String* name, LookupResult* result) { // Ecma-262 3rd 8.6.2.4 Heap* heap = GetHeap(); for (Object* current = this; current != heap->null_value(); current = JSObject::cast(current)->GetPrototype()) { JSReceiver::cast(current)->LocalLookup(name, result); if (result->IsProperty()) return; } result->NotFound(); } // Search object and it's prototype chain for callback properties. void JSObject::LookupCallback(String* name, LookupResult* result) { Heap* heap = GetHeap(); for (Object* current = this; current != heap->null_value() && current->IsJSObject(); current = JSObject::cast(current)->GetPrototype()) { JSObject::cast(current)->LocalLookupRealNamedProperty(name, result); if (result->IsFound() && result->type() == CALLBACKS) return; } result->NotFound(); } // Try to update an accessor in an elements dictionary. Return true if the // update succeeded, and false otherwise. static bool UpdateGetterSetterInDictionary( SeededNumberDictionary* dictionary, uint32_t index, Object* getter, Object* setter, PropertyAttributes attributes) { int entry = dictionary->FindEntry(index); if (entry != SeededNumberDictionary::kNotFound) { Object* result = dictionary->ValueAt(entry); PropertyDetails details = dictionary->DetailsAt(entry); if (details.type() == CALLBACKS && result->IsAccessorPair()) { ASSERT(!details.IsDontDelete()); if (details.attributes() != attributes) { dictionary->DetailsAtPut(entry, PropertyDetails(attributes, CALLBACKS, index)); } AccessorPair::cast(result)->SetComponents(getter, setter); return true; } } return false; } MaybeObject* JSObject::DefineElementAccessor(uint32_t index, Object* getter, Object* setter, PropertyAttributes attributes) { switch (GetElementsKind()) { case FAST_SMI_ONLY_ELEMENTS: case FAST_ELEMENTS: case FAST_DOUBLE_ELEMENTS: break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: // Ignore getters and setters on pixel and external array elements. return GetHeap()->undefined_value(); case DICTIONARY_ELEMENTS: if (UpdateGetterSetterInDictionary(element_dictionary(), index, getter, setter, attributes)) { return GetHeap()->undefined_value(); } break; case NON_STRICT_ARGUMENTS_ELEMENTS: { // Ascertain whether we have read-only properties or an existing // getter/setter pair in an arguments elements dictionary backing // store. FixedArray* parameter_map = FixedArray::cast(elements()); uint32_t length = parameter_map->length(); Object* probe = index < (length - 2) ? parameter_map->get(index + 2) : NULL; if (probe == NULL || probe->IsTheHole()) { FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); if (arguments->IsDictionary()) { SeededNumberDictionary* dictionary = SeededNumberDictionary::cast(arguments); if (UpdateGetterSetterInDictionary(dictionary, index, getter, setter, attributes)) { return GetHeap()->undefined_value(); } } } break; } } AccessorPair* accessors; { MaybeObject* maybe_accessors = GetHeap()->AllocateAccessorPair(); if (!maybe_accessors->To(&accessors)) return maybe_accessors; } accessors->SetComponents(getter, setter); return SetElementCallback(index, accessors, attributes); } MaybeObject* JSObject::DefinePropertyAccessor(String* name, Object* getter, Object* setter, PropertyAttributes attributes) { // Lookup the name. LookupResult result(GetHeap()->isolate()); LocalLookupRealNamedProperty(name, &result); if (result.IsFound()) { if (result.type() == CALLBACKS) { ASSERT(!result.IsDontDelete()); Object* obj = result.GetCallbackObject(); // Need to preserve old getters/setters. if (obj->IsAccessorPair()) { AccessorPair* copy; { MaybeObject* maybe_copy = AccessorPair::cast(obj)->CopyWithoutTransitions(); if (!maybe_copy->To(©)) return maybe_copy; } copy->SetComponents(getter, setter); // Use set to update attributes. return SetPropertyCallback(name, copy, attributes); } } } AccessorPair* accessors; { MaybeObject* maybe_accessors = GetHeap()->AllocateAccessorPair(); if (!maybe_accessors->To(&accessors)) return maybe_accessors; } accessors->SetComponents(getter, setter); return SetPropertyCallback(name, accessors, attributes); } bool JSObject::CanSetCallback(String* name) { ASSERT(!IsAccessCheckNeeded() || GetIsolate()->MayNamedAccess(this, name, v8::ACCESS_SET)); // Check if there is an API defined callback object which prohibits // callback overwriting in this object or it's prototype chain. // This mechanism is needed for instance in a browser setting, where // certain accessors such as window.location should not be allowed // to be overwritten because allowing overwriting could potentially // cause security problems. LookupResult callback_result(GetIsolate()); LookupCallback(name, &callback_result); if (callback_result.IsProperty()) { Object* obj = callback_result.GetCallbackObject(); if (obj->IsAccessorInfo() && AccessorInfo::cast(obj)->prohibits_overwriting()) { return false; } } return true; } MaybeObject* JSObject::SetElementCallback(uint32_t index, Object* structure, PropertyAttributes attributes) { PropertyDetails details = PropertyDetails(attributes, CALLBACKS); // Normalize elements to make this operation simple. SeededNumberDictionary* dictionary; { MaybeObject* maybe_dictionary = NormalizeElements(); if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary; } ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements()); // Update the dictionary with the new CALLBACKS property. { MaybeObject* maybe_dictionary = dictionary->Set(index, structure, details); if (!maybe_dictionary->To(&dictionary)) return maybe_dictionary; } dictionary->set_requires_slow_elements(); // Update the dictionary backing store on the object. if (elements()->map() == GetHeap()->non_strict_arguments_elements_map()) { // Also delete any parameter alias. // // TODO(kmillikin): when deleting the last parameter alias we could // switch to a direct backing store without the parameter map. This // would allow GC of the context. FixedArray* parameter_map = FixedArray::cast(elements()); if (index < static_cast<uint32_t>(parameter_map->length()) - 2) { parameter_map->set(index + 2, GetHeap()->the_hole_value()); } parameter_map->set(1, dictionary); } else { set_elements(dictionary); } return GetHeap()->undefined_value(); } MaybeObject* JSObject::SetPropertyCallback(String* name, Object* structure, PropertyAttributes attributes) { // Normalize object to make this operation simple. { MaybeObject* maybe_ok = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); if (maybe_ok->IsFailure()) return maybe_ok; } // For the global object allocate a new map to invalidate the global inline // caches which have a global property cell reference directly in the code. if (IsGlobalObject()) { Map* new_map; { MaybeObject* maybe_new_map = map()->CopyDropDescriptors(); if (!maybe_new_map->To(&new_map)) return maybe_new_map; } set_map(new_map); // When running crankshaft, changing the map is not enough. We // need to deoptimize all functions that rely on this global // object. Deoptimizer::DeoptimizeGlobalObject(this); } // Update the dictionary with the new CALLBACKS property. PropertyDetails details = PropertyDetails(attributes, CALLBACKS); { MaybeObject* maybe_ok = SetNormalizedProperty(name, structure, details); if (maybe_ok->IsFailure()) return maybe_ok; } return GetHeap()->undefined_value(); } void JSObject::DefineAccessor(Handle<JSObject> object, Handle<String> name, Handle<Object> getter, Handle<Object> setter, PropertyAttributes attributes) { CALL_HEAP_FUNCTION_VOID( object->GetIsolate(), object->DefineAccessor(*name, *getter, *setter, attributes)); } MaybeObject* JSObject::DefineAccessor(String* name, Object* getter, Object* setter, PropertyAttributes attributes) { Isolate* isolate = GetIsolate(); // Check access rights if needed. if (IsAccessCheckNeeded() && !isolate->MayNamedAccess(this, name, v8::ACCESS_SET)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET); return isolate->heap()->undefined_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return this; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->DefineAccessor( name, getter, setter, attributes); } // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; // Try to flatten before operating on the string. name->TryFlatten(); if (!CanSetCallback(name)) return isolate->heap()->undefined_value(); uint32_t index = 0; return name->AsArrayIndex(&index) ? DefineElementAccessor(index, getter, setter, attributes) : DefinePropertyAccessor(name, getter, setter, attributes); } MaybeObject* JSObject::DefineAccessor(AccessorInfo* info) { Isolate* isolate = GetIsolate(); String* name = String::cast(info->name()); // Check access rights if needed. if (IsAccessCheckNeeded() && !isolate->MayNamedAccess(this, name, v8::ACCESS_SET)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET); return isolate->heap()->undefined_value(); } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return this; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->DefineAccessor(info); } // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; // Try to flatten before operating on the string. name->TryFlatten(); if (!CanSetCallback(name)) { return isolate->heap()->undefined_value(); } uint32_t index = 0; bool is_element = name->AsArrayIndex(&index); if (is_element) { if (IsJSArray()) return isolate->heap()->undefined_value(); // Accessors overwrite previous callbacks (cf. with getters/setters). switch (GetElementsKind()) { case FAST_SMI_ONLY_ELEMENTS: case FAST_ELEMENTS: case FAST_DOUBLE_ELEMENTS: break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: // Ignore getters and setters on pixel and external array // elements. return isolate->heap()->undefined_value(); case DICTIONARY_ELEMENTS: break; case NON_STRICT_ARGUMENTS_ELEMENTS: UNIMPLEMENTED(); break; } { MaybeObject* maybe_ok = SetElementCallback(index, info, info->property_attributes()); if (maybe_ok->IsFailure()) return maybe_ok; } } else { // Lookup the name. LookupResult result(isolate); LocalLookup(name, &result); // ES5 forbids turning a property into an accessor if it's not // configurable (that is IsDontDelete in ES3 and v8), see 8.6.1 (Table 5). if (result.IsProperty() && (result.IsReadOnly() || result.IsDontDelete())) { return isolate->heap()->undefined_value(); } { MaybeObject* maybe_ok = SetPropertyCallback(name, info, info->property_attributes()); if (maybe_ok->IsFailure()) return maybe_ok; } } return this; } Object* JSObject::LookupAccessor(String* name, AccessorComponent component) { Heap* heap = GetHeap(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc; // Check access rights if needed. if (IsAccessCheckNeeded() && !heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_HAS)) { heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); return heap->undefined_value(); } // Make the lookup and include prototypes. uint32_t index = 0; if (name->AsArrayIndex(&index)) { for (Object* obj = this; obj != heap->null_value(); obj = JSObject::cast(obj)->GetPrototype()) { JSObject* js_object = JSObject::cast(obj); if (js_object->HasDictionaryElements()) { SeededNumberDictionary* dictionary = js_object->element_dictionary(); int entry = dictionary->FindEntry(index); if (entry != SeededNumberDictionary::kNotFound) { Object* element = dictionary->ValueAt(entry); if (dictionary->DetailsAt(entry).type() == CALLBACKS && element->IsAccessorPair()) { return AccessorPair::cast(element)->GetComponent(component); } } } } } else { for (Object* obj = this; obj != heap->null_value(); obj = JSObject::cast(obj)->GetPrototype()) { LookupResult result(heap->isolate()); JSObject::cast(obj)->LocalLookup(name, &result); if (result.IsProperty()) { if (result.IsReadOnly()) return heap->undefined_value(); if (result.type() == CALLBACKS) { Object* obj = result.GetCallbackObject(); if (obj->IsAccessorPair()) { return AccessorPair::cast(obj)->GetComponent(component); } } } } } return heap->undefined_value(); } Object* JSObject::SlowReverseLookup(Object* value) { if (HasFastProperties()) { DescriptorArray* descs = map()->instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (descs->GetType(i) == FIELD) { if (FastPropertyAt(descs->GetFieldIndex(i)) == value) { return descs->GetKey(i); } } else if (descs->GetType(i) == CONSTANT_FUNCTION) { if (descs->GetConstantFunction(i) == value) { return descs->GetKey(i); } } } return GetHeap()->undefined_value(); } else { return property_dictionary()->SlowReverseLookup(value); } } MaybeObject* Map::CopyDropDescriptors() { Heap* heap = GetHeap(); Object* result; { MaybeObject* maybe_result = heap->AllocateMap(instance_type(), instance_size()); if (!maybe_result->ToObject(&result)) return maybe_result; } Map::cast(result)->set_prototype(prototype()); Map::cast(result)->set_constructor(constructor()); // Don't copy descriptors, so map transitions always remain a forest. // If we retained the same descriptors we would have two maps // pointing to the same transition which is bad because the garbage // collector relies on being able to reverse pointers from transitions // to maps. If properties need to be retained use CopyDropTransitions. Map::cast(result)->clear_instance_descriptors(); // Please note instance_type and instance_size are set when allocated. Map::cast(result)->set_inobject_properties(inobject_properties()); Map::cast(result)->set_unused_property_fields(unused_property_fields()); // If the map has pre-allocated properties always start out with a descriptor // array describing these properties. if (pre_allocated_property_fields() > 0) { ASSERT(constructor()->IsJSFunction()); JSFunction* ctor = JSFunction::cast(constructor()); Object* descriptors; { MaybeObject* maybe_descriptors = ctor->initial_map()->instance_descriptors()->RemoveTransitions(); if (!maybe_descriptors->ToObject(&descriptors)) return maybe_descriptors; } Map::cast(result)->set_instance_descriptors( DescriptorArray::cast(descriptors)); Map::cast(result)->set_pre_allocated_property_fields( pre_allocated_property_fields()); } Map::cast(result)->set_bit_field(bit_field()); Map::cast(result)->set_bit_field2(bit_field2()); Map::cast(result)->set_bit_field3(bit_field3()); Map::cast(result)->set_is_shared(false); Map::cast(result)->ClearCodeCache(heap); return result; } MaybeObject* Map::CopyNormalized(PropertyNormalizationMode mode, NormalizedMapSharingMode sharing) { int new_instance_size = instance_size(); if (mode == CLEAR_INOBJECT_PROPERTIES) { new_instance_size -= inobject_properties() * kPointerSize; } Object* result; { MaybeObject* maybe_result = GetHeap()->AllocateMap(instance_type(), new_instance_size); if (!maybe_result->ToObject(&result)) return maybe_result; } if (mode != CLEAR_INOBJECT_PROPERTIES) { Map::cast(result)->set_inobject_properties(inobject_properties()); } Map::cast(result)->set_prototype(prototype()); Map::cast(result)->set_constructor(constructor()); Map::cast(result)->set_bit_field(bit_field()); Map::cast(result)->set_bit_field2(bit_field2()); Map::cast(result)->set_bit_field3(bit_field3()); Map::cast(result)->set_is_shared(sharing == SHARED_NORMALIZED_MAP); #ifdef DEBUG if (FLAG_verify_heap && Map::cast(result)->is_shared()) { Map::cast(result)->SharedMapVerify(); } #endif return result; } MaybeObject* Map::CopyDropTransitions() { Object* new_map; { MaybeObject* maybe_new_map = CopyDropDescriptors(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } Object* descriptors; { MaybeObject* maybe_descriptors = instance_descriptors()->RemoveTransitions(); if (!maybe_descriptors->ToObject(&descriptors)) return maybe_descriptors; } cast(new_map)->set_instance_descriptors(DescriptorArray::cast(descriptors)); return new_map; } void Map::UpdateCodeCache(Handle<Map> map, Handle<String> name, Handle<Code> code) { Isolate* isolate = map->GetIsolate(); CALL_HEAP_FUNCTION_VOID(isolate, map->UpdateCodeCache(*name, *code)); } MaybeObject* Map::UpdateCodeCache(String* name, Code* code) { // Allocate the code cache if not present. if (code_cache()->IsFixedArray()) { Object* result; { MaybeObject* maybe_result = GetHeap()->AllocateCodeCache(); if (!maybe_result->ToObject(&result)) return maybe_result; } set_code_cache(result); } // Update the code cache. return CodeCache::cast(code_cache())->Update(name, code); } Object* Map::FindInCodeCache(String* name, Code::Flags flags) { // Do a lookup if a code cache exists. if (!code_cache()->IsFixedArray()) { return CodeCache::cast(code_cache())->Lookup(name, flags); } else { return GetHeap()->undefined_value(); } } int Map::IndexInCodeCache(Object* name, Code* code) { // Get the internal index if a code cache exists. if (!code_cache()->IsFixedArray()) { return CodeCache::cast(code_cache())->GetIndex(name, code); } return -1; } void Map::RemoveFromCodeCache(String* name, Code* code, int index) { // No GC is supposed to happen between a call to IndexInCodeCache and // RemoveFromCodeCache so the code cache must be there. ASSERT(!code_cache()->IsFixedArray()); CodeCache::cast(code_cache())->RemoveByIndex(name, code, index); } // An iterator over all map transitions in an descriptor array, reusing the map // field of the contens array while it is running. class IntrusiveMapTransitionIterator { public: explicit IntrusiveMapTransitionIterator(DescriptorArray* descriptor_array) : descriptor_array_(descriptor_array) { } void Start() { ASSERT(!IsIterating()); if (HasContentArray()) *ContentHeader() = Smi::FromInt(0); } bool IsIterating() { return HasContentArray() && (*ContentHeader())->IsSmi(); } Map* Next() { ASSERT(IsIterating()); FixedArray* contents = ContentArray(); // Attention, tricky index manipulation ahead: Every entry in the contents // array consists of a value/details pair, so the index is typically even. // An exception is made for CALLBACKS entries: An even index means we look // at its getter, and an odd index means we look at its setter. int index = Smi::cast(*ContentHeader())->value(); while (index < contents->length()) { PropertyDetails details(Smi::cast(contents->get(index | 1))); switch (details.type()) { case MAP_TRANSITION: case CONSTANT_TRANSITION: case ELEMENTS_TRANSITION: // We definitely have a map transition. *ContentHeader() = Smi::FromInt(index + 2); return static_cast<Map*>(contents->get(index)); case CALLBACKS: { // We might have a map transition in a getter or in a setter. AccessorPair* accessors = static_cast<AccessorPair*>(contents->get(index & ~1)); Object* accessor = ((index & 1) == 0) ? accessors->getter() : accessors->setter(); index++; if (accessor->IsMap()) { *ContentHeader() = Smi::FromInt(index); return static_cast<Map*>(accessor); } break; } case NORMAL: case FIELD: case CONSTANT_FUNCTION: case HANDLER: case INTERCEPTOR: case NULL_DESCRIPTOR: // We definitely have no map transition. index += 2; break; } } *ContentHeader() = descriptor_array_->GetHeap()->fixed_array_map(); return NULL; } private: bool HasContentArray() { return descriptor_array_-> length() > DescriptorArray::kContentArrayIndex; } FixedArray* ContentArray() { Object* array = descriptor_array_->get(DescriptorArray::kContentArrayIndex); return static_cast<FixedArray*>(array); } Object** ContentHeader() { return HeapObject::RawField(ContentArray(), DescriptorArray::kMapOffset); } DescriptorArray* descriptor_array_; }; // An iterator over all prototype transitions, reusing the map field of the // underlying array while it is running. class IntrusivePrototypeTransitionIterator { public: explicit IntrusivePrototypeTransitionIterator(FixedArray* proto_trans) : proto_trans_(proto_trans) { } void Start() { ASSERT(!IsIterating()); if (HasTransitions()) *Header() = Smi::FromInt(0); } bool IsIterating() { return HasTransitions() && (*Header())->IsSmi(); } Map* Next() { ASSERT(IsIterating()); int transitionNumber = Smi::cast(*Header())->value(); if (transitionNumber < NumberOfTransitions()) { *Header() = Smi::FromInt(transitionNumber + 1); return GetTransition(transitionNumber); } *Header() = proto_trans_->GetHeap()->fixed_array_map(); return NULL; } private: bool HasTransitions() { return proto_trans_->length() >= Map::kProtoTransitionHeaderSize; } Object** Header() { return HeapObject::RawField(proto_trans_, FixedArray::kMapOffset); } int NumberOfTransitions() { Object* num = proto_trans_->get(Map::kProtoTransitionNumberOfEntriesOffset); return Smi::cast(num)->value(); } Map* GetTransition(int transitionNumber) { return Map::cast(proto_trans_->get(IndexFor(transitionNumber))); } int IndexFor(int transitionNumber) { return Map::kProtoTransitionHeaderSize + Map::kProtoTransitionMapOffset + transitionNumber * Map::kProtoTransitionElementsPerEntry; } FixedArray* proto_trans_; }; // To traverse the transition tree iteratively, we have to store two kinds of // information in a map: The parent map in the traversal and which children of a // node have already been visited. To do this without additional memory, we // temporarily reuse two maps with known values: // // (1) The map of the map temporarily holds the parent, and is restored to the // meta map afterwards. // // (2) The info which children have already been visited depends on which part // of the map we currently iterate: // // (a) If we currently follow normal map transitions, we temporarily store // the current index in the map of the FixedArray of the desciptor // array's contents, and restore it to the fixed array map afterwards. // Note that a single descriptor can have 0, 1, or 2 transitions. // // (b) If we currently follow prototype transitions, we temporarily store // the current index in the map of the FixedArray holding the prototype // transitions, and restore it to the fixed array map afterwards. // // Note that the child iterator is just a concatenation of two iterators: One // iterating over map transitions and one iterating over prototype transisitons. class TraversableMap : public Map { public: // Record the parent in the traversal within this map. Note that this destroys // this map's map! void SetParent(TraversableMap* parent) { set_map_no_write_barrier(parent); } // Reset the current map's map, returning the parent previously stored in it. TraversableMap* GetAndResetParent() { TraversableMap* old_parent = static_cast<TraversableMap*>(map()); set_map_no_write_barrier(GetHeap()->meta_map()); return old_parent; } // Start iterating over this map's children, possibly destroying a FixedArray // map (see explanation above). void ChildIteratorStart() { IntrusiveMapTransitionIterator(instance_descriptors()).Start(); IntrusivePrototypeTransitionIterator( unchecked_prototype_transitions()).Start(); } // If we have an unvisited child map, return that one and advance. If we have // none, return NULL and reset any destroyed FixedArray maps. TraversableMap* ChildIteratorNext() { IntrusiveMapTransitionIterator descriptor_iterator(instance_descriptors()); if (descriptor_iterator.IsIterating()) { Map* next = descriptor_iterator.Next(); if (next != NULL) return static_cast<TraversableMap*>(next); } IntrusivePrototypeTransitionIterator proto_iterator(unchecked_prototype_transitions()); if (proto_iterator.IsIterating()) { Map* next = proto_iterator.Next(); if (next != NULL) return static_cast<TraversableMap*>(next); } return NULL; } }; // Traverse the transition tree in postorder without using the C++ stack by // doing pointer reversal. void Map::TraverseTransitionTree(TraverseCallback callback, void* data) { TraversableMap* current = static_cast<TraversableMap*>(this); current->ChildIteratorStart(); while (true) { TraversableMap* child = current->ChildIteratorNext(); if (child != NULL) { child->ChildIteratorStart(); child->SetParent(current); current = child; } else { TraversableMap* parent = current->GetAndResetParent(); callback(current, data); if (current == this) break; current = parent; } } } MaybeObject* CodeCache::Update(String* name, Code* code) { // The number of monomorphic stubs for normal load/store/call IC's can grow to // a large number and therefore they need to go into a hash table. They are // used to load global properties from cells. if (code->type() == NORMAL) { // Make sure that a hash table is allocated for the normal load code cache. if (normal_type_cache()->IsUndefined()) { Object* result; { MaybeObject* maybe_result = CodeCacheHashTable::Allocate(CodeCacheHashTable::kInitialSize); if (!maybe_result->ToObject(&result)) return maybe_result; } set_normal_type_cache(result); } return UpdateNormalTypeCache(name, code); } else { ASSERT(default_cache()->IsFixedArray()); return UpdateDefaultCache(name, code); } } MaybeObject* CodeCache::UpdateDefaultCache(String* name, Code* code) { // When updating the default code cache we disregard the type encoded in the // flags. This allows call constant stubs to overwrite call field // stubs, etc. Code::Flags flags = Code::RemoveTypeFromFlags(code->flags()); // First check whether we can update existing code cache without // extending it. FixedArray* cache = default_cache(); int length = cache->length(); int deleted_index = -1; for (int i = 0; i < length; i += kCodeCacheEntrySize) { Object* key = cache->get(i); if (key->IsNull()) { if (deleted_index < 0) deleted_index = i; continue; } if (key->IsUndefined()) { if (deleted_index >= 0) i = deleted_index; cache->set(i + kCodeCacheEntryNameOffset, name); cache->set(i + kCodeCacheEntryCodeOffset, code); return this; } if (name->Equals(String::cast(key))) { Code::Flags found = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset))->flags(); if (Code::RemoveTypeFromFlags(found) == flags) { cache->set(i + kCodeCacheEntryCodeOffset, code); return this; } } } // Reached the end of the code cache. If there were deleted // elements, reuse the space for the first of them. if (deleted_index >= 0) { cache->set(deleted_index + kCodeCacheEntryNameOffset, name); cache->set(deleted_index + kCodeCacheEntryCodeOffset, code); return this; } // Extend the code cache with some new entries (at least one). Must be a // multiple of the entry size. int new_length = length + ((length >> 1)) + kCodeCacheEntrySize; new_length = new_length - new_length % kCodeCacheEntrySize; ASSERT((new_length % kCodeCacheEntrySize) == 0); Object* result; { MaybeObject* maybe_result = cache->CopySize(new_length); if (!maybe_result->ToObject(&result)) return maybe_result; } // Add the (name, code) pair to the new cache. cache = FixedArray::cast(result); cache->set(length + kCodeCacheEntryNameOffset, name); cache->set(length + kCodeCacheEntryCodeOffset, code); set_default_cache(cache); return this; } MaybeObject* CodeCache::UpdateNormalTypeCache(String* name, Code* code) { // Adding a new entry can cause a new cache to be allocated. CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); Object* new_cache; { MaybeObject* maybe_new_cache = cache->Put(name, code); if (!maybe_new_cache->ToObject(&new_cache)) return maybe_new_cache; } set_normal_type_cache(new_cache); return this; } Object* CodeCache::Lookup(String* name, Code::Flags flags) { if (Code::ExtractTypeFromFlags(flags) == NORMAL) { return LookupNormalTypeCache(name, flags); } else { return LookupDefaultCache(name, flags); } } Object* CodeCache::LookupDefaultCache(String* name, Code::Flags flags) { FixedArray* cache = default_cache(); int length = cache->length(); for (int i = 0; i < length; i += kCodeCacheEntrySize) { Object* key = cache->get(i + kCodeCacheEntryNameOffset); // Skip deleted elements. if (key->IsNull()) continue; if (key->IsUndefined()) return key; if (name->Equals(String::cast(key))) { Code* code = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset)); if (code->flags() == flags) { return code; } } } return GetHeap()->undefined_value(); } Object* CodeCache::LookupNormalTypeCache(String* name, Code::Flags flags) { if (!normal_type_cache()->IsUndefined()) { CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); return cache->Lookup(name, flags); } else { return GetHeap()->undefined_value(); } } int CodeCache::GetIndex(Object* name, Code* code) { if (code->type() == NORMAL) { if (normal_type_cache()->IsUndefined()) return -1; CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); return cache->GetIndex(String::cast(name), code->flags()); } FixedArray* array = default_cache(); int len = array->length(); for (int i = 0; i < len; i += kCodeCacheEntrySize) { if (array->get(i + kCodeCacheEntryCodeOffset) == code) return i + 1; } return -1; } void CodeCache::RemoveByIndex(Object* name, Code* code, int index) { if (code->type() == NORMAL) { ASSERT(!normal_type_cache()->IsUndefined()); CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); ASSERT(cache->GetIndex(String::cast(name), code->flags()) == index); cache->RemoveByIndex(index); } else { FixedArray* array = default_cache(); ASSERT(array->length() >= index && array->get(index)->IsCode()); // Use null instead of undefined for deleted elements to distinguish // deleted elements from unused elements. This distinction is used // when looking up in the cache and when updating the cache. ASSERT_EQ(1, kCodeCacheEntryCodeOffset - kCodeCacheEntryNameOffset); array->set_null(index - 1); // Name. array->set_null(index); // Code. } } // The key in the code cache hash table consists of the property name and the // code object. The actual match is on the name and the code flags. If a key // is created using the flags and not a code object it can only be used for // lookup not to create a new entry. class CodeCacheHashTableKey : public HashTableKey { public: CodeCacheHashTableKey(String* name, Code::Flags flags) : name_(name), flags_(flags), code_(NULL) { } CodeCacheHashTableKey(String* name, Code* code) : name_(name), flags_(code->flags()), code_(code) { } bool IsMatch(Object* other) { if (!other->IsFixedArray()) return false; FixedArray* pair = FixedArray::cast(other); String* name = String::cast(pair->get(0)); Code::Flags flags = Code::cast(pair->get(1))->flags(); if (flags != flags_) { return false; } return name_->Equals(name); } static uint32_t NameFlagsHashHelper(String* name, Code::Flags flags) { return name->Hash() ^ flags; } uint32_t Hash() { return NameFlagsHashHelper(name_, flags_); } uint32_t HashForObject(Object* obj) { FixedArray* pair = FixedArray::cast(obj); String* name = String::cast(pair->get(0)); Code* code = Code::cast(pair->get(1)); return NameFlagsHashHelper(name, code->flags()); } MUST_USE_RESULT MaybeObject* AsObject() { ASSERT(code_ != NULL); Object* obj; { MaybeObject* maybe_obj = code_->GetHeap()->AllocateFixedArray(2); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } FixedArray* pair = FixedArray::cast(obj); pair->set(0, name_); pair->set(1, code_); return pair; } private: String* name_; Code::Flags flags_; // TODO(jkummerow): We should be able to get by without this. Code* code_; }; Object* CodeCacheHashTable::Lookup(String* name, Code::Flags flags) { CodeCacheHashTableKey key(name, flags); int entry = FindEntry(&key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } MaybeObject* CodeCacheHashTable::Put(String* name, Code* code) { CodeCacheHashTableKey key(name, code); Object* obj; { MaybeObject* maybe_obj = EnsureCapacity(1, &key); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } // Don't use |this|, as the table might have grown. CodeCacheHashTable* cache = reinterpret_cast<CodeCacheHashTable*>(obj); int entry = cache->FindInsertionEntry(key.Hash()); Object* k; { MaybeObject* maybe_k = key.AsObject(); if (!maybe_k->ToObject(&k)) return maybe_k; } cache->set(EntryToIndex(entry), k); cache->set(EntryToIndex(entry) + 1, code); cache->ElementAdded(); return cache; } int CodeCacheHashTable::GetIndex(String* name, Code::Flags flags) { CodeCacheHashTableKey key(name, flags); int entry = FindEntry(&key); return (entry == kNotFound) ? -1 : entry; } void CodeCacheHashTable::RemoveByIndex(int index) { ASSERT(index >= 0); Heap* heap = GetHeap(); set(EntryToIndex(index), heap->the_hole_value()); set(EntryToIndex(index) + 1, heap->the_hole_value()); ElementRemoved(); } void PolymorphicCodeCache::Update(Handle<PolymorphicCodeCache> cache, MapHandleList* maps, Code::Flags flags, Handle<Code> code) { Isolate* isolate = cache->GetIsolate(); CALL_HEAP_FUNCTION_VOID(isolate, cache->Update(maps, flags, *code)); } MaybeObject* PolymorphicCodeCache::Update(MapHandleList* maps, Code::Flags flags, Code* code) { // Initialize cache if necessary. if (cache()->IsUndefined()) { Object* result; { MaybeObject* maybe_result = PolymorphicCodeCacheHashTable::Allocate( PolymorphicCodeCacheHashTable::kInitialSize); if (!maybe_result->ToObject(&result)) return maybe_result; } set_cache(result); } else { // This entry shouldn't be contained in the cache yet. ASSERT(PolymorphicCodeCacheHashTable::cast(cache()) ->Lookup(maps, flags)->IsUndefined()); } PolymorphicCodeCacheHashTable* hash_table = PolymorphicCodeCacheHashTable::cast(cache()); Object* new_cache; { MaybeObject* maybe_new_cache = hash_table->Put(maps, flags, code); if (!maybe_new_cache->ToObject(&new_cache)) return maybe_new_cache; } set_cache(new_cache); return this; } Handle<Object> PolymorphicCodeCache::Lookup(MapHandleList* maps, Code::Flags flags) { if (!cache()->IsUndefined()) { PolymorphicCodeCacheHashTable* hash_table = PolymorphicCodeCacheHashTable::cast(cache()); return Handle<Object>(hash_table->Lookup(maps, flags)); } else { return GetIsolate()->factory()->undefined_value(); } } // Despite their name, object of this class are not stored in the actual // hash table; instead they're temporarily used for lookups. It is therefore // safe to have a weak (non-owning) pointer to a MapList as a member field. class PolymorphicCodeCacheHashTableKey : public HashTableKey { public: // Callers must ensure that |maps| outlives the newly constructed object. PolymorphicCodeCacheHashTableKey(MapHandleList* maps, int code_flags) : maps_(maps), code_flags_(code_flags) {} bool IsMatch(Object* other) { MapHandleList other_maps(kDefaultListAllocationSize); int other_flags; FromObject(other, &other_flags, &other_maps); if (code_flags_ != other_flags) return false; if (maps_->length() != other_maps.length()) return false; // Compare just the hashes first because it's faster. int this_hash = MapsHashHelper(maps_, code_flags_); int other_hash = MapsHashHelper(&other_maps, other_flags); if (this_hash != other_hash) return false; // Full comparison: for each map in maps_, look for an equivalent map in // other_maps. This implementation is slow, but probably good enough for // now because the lists are short (<= 4 elements currently). for (int i = 0; i < maps_->length(); ++i) { bool match_found = false; for (int j = 0; j < other_maps.length(); ++j) { if (*(maps_->at(i)) == *(other_maps.at(j))) { match_found = true; break; } } if (!match_found) return false; } return true; } static uint32_t MapsHashHelper(MapHandleList* maps, int code_flags) { uint32_t hash = code_flags; for (int i = 0; i < maps->length(); ++i) { hash ^= maps->at(i)->Hash(); } return hash; } uint32_t Hash() { return MapsHashHelper(maps_, code_flags_); } uint32_t HashForObject(Object* obj) { MapHandleList other_maps(kDefaultListAllocationSize); int other_flags; FromObject(obj, &other_flags, &other_maps); return MapsHashHelper(&other_maps, other_flags); } MUST_USE_RESULT MaybeObject* AsObject() { Object* obj; // The maps in |maps_| must be copied to a newly allocated FixedArray, // both because the referenced MapList is short-lived, and because C++ // objects can't be stored in the heap anyway. { MaybeObject* maybe_obj = HEAP->AllocateUninitializedFixedArray(maps_->length() + 1); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } FixedArray* list = FixedArray::cast(obj); list->set(0, Smi::FromInt(code_flags_)); for (int i = 0; i < maps_->length(); ++i) { list->set(i + 1, *maps_->at(i)); } return list; } private: static MapHandleList* FromObject(Object* obj, int* code_flags, MapHandleList* maps) { FixedArray* list = FixedArray::cast(obj); maps->Rewind(0); *code_flags = Smi::cast(list->get(0))->value(); for (int i = 1; i < list->length(); ++i) { maps->Add(Handle<Map>(Map::cast(list->get(i)))); } return maps; } MapHandleList* maps_; // weak. int code_flags_; static const int kDefaultListAllocationSize = kMaxKeyedPolymorphism + 1; }; Object* PolymorphicCodeCacheHashTable::Lookup(MapHandleList* maps, int code_flags) { PolymorphicCodeCacheHashTableKey key(maps, code_flags); int entry = FindEntry(&key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } MaybeObject* PolymorphicCodeCacheHashTable::Put(MapHandleList* maps, int code_flags, Code* code) { PolymorphicCodeCacheHashTableKey key(maps, code_flags); Object* obj; { MaybeObject* maybe_obj = EnsureCapacity(1, &key); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } PolymorphicCodeCacheHashTable* cache = reinterpret_cast<PolymorphicCodeCacheHashTable*>(obj); int entry = cache->FindInsertionEntry(key.Hash()); { MaybeObject* maybe_obj = key.AsObject(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } cache->set(EntryToIndex(entry), obj); cache->set(EntryToIndex(entry) + 1, code); cache->ElementAdded(); return cache; } MaybeObject* FixedArray::AddKeysFromJSArray(JSArray* array) { ElementsAccessor* accessor = array->GetElementsAccessor(); MaybeObject* maybe_result = accessor->AddElementsToFixedArray(array, array, this); FixedArray* result; if (!maybe_result->To<FixedArray>(&result)) return maybe_result; #ifdef DEBUG if (FLAG_enable_slow_asserts) { for (int i = 0; i < result->length(); i++) { Object* current = result->get(i); ASSERT(current->IsNumber() || current->IsString()); } } #endif return result; } MaybeObject* FixedArray::UnionOfKeys(FixedArray* other) { ElementsAccessor* accessor = ElementsAccessor::ForArray(other); MaybeObject* maybe_result = accessor->AddElementsToFixedArray(NULL, NULL, this, other); FixedArray* result; if (!maybe_result->To<FixedArray>(&result)) return maybe_result; #ifdef DEBUG if (FLAG_enable_slow_asserts) { for (int i = 0; i < result->length(); i++) { Object* current = result->get(i); ASSERT(current->IsNumber() || current->IsString()); } } #endif return result; } MaybeObject* FixedArray::CopySize(int new_length) { Heap* heap = GetHeap(); if (new_length == 0) return heap->empty_fixed_array(); Object* obj; { MaybeObject* maybe_obj = heap->AllocateFixedArray(new_length); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } FixedArray* result = FixedArray::cast(obj); // Copy the content AssertNoAllocation no_gc; int len = length(); if (new_length < len) len = new_length; // We are taking the map from the old fixed array so the map is sure to // be an immortal immutable object. result->set_map_no_write_barrier(map()); WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len; i++) { result->set(i, get(i), mode); } return result; } void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) { AssertNoAllocation no_gc; WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc); for (int index = 0; index < len; index++) { dest->set(dest_pos+index, get(pos+index), mode); } } #ifdef DEBUG bool FixedArray::IsEqualTo(FixedArray* other) { if (length() != other->length()) return false; for (int i = 0 ; i < length(); ++i) { if (get(i) != other->get(i)) return false; } return true; } #endif MaybeObject* DescriptorArray::Allocate(int number_of_descriptors) { Heap* heap = Isolate::Current()->heap(); if (number_of_descriptors == 0) { return heap->empty_descriptor_array(); } // Allocate the array of keys. Object* array; { MaybeObject* maybe_array = heap->AllocateFixedArray(ToKeyIndex(number_of_descriptors)); if (!maybe_array->ToObject(&array)) return maybe_array; } // Do not use DescriptorArray::cast on incomplete object. FixedArray* result = FixedArray::cast(array); // Allocate the content array and set it in the descriptor array. { MaybeObject* maybe_array = heap->AllocateFixedArray(number_of_descriptors << 1); if (!maybe_array->ToObject(&array)) return maybe_array; } result->set(kBitField3StorageIndex, Smi::FromInt(0)); result->set(kContentArrayIndex, array); result->set(kEnumerationIndexIndex, Smi::FromInt(PropertyDetails::kInitialIndex)); return result; } void DescriptorArray::SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache, Object* new_index_cache) { ASSERT(bridge_storage->length() >= kEnumCacheBridgeLength); ASSERT(new_index_cache->IsSmi() || new_index_cache->IsFixedArray()); if (HasEnumCache()) { FixedArray::cast(get(kEnumerationIndexIndex))-> set(kEnumCacheBridgeCacheIndex, new_cache); FixedArray::cast(get(kEnumerationIndexIndex))-> set(kEnumCacheBridgeIndicesCacheIndex, new_index_cache); } else { if (IsEmpty()) return; // Do nothing for empty descriptor array. FixedArray::cast(bridge_storage)-> set(kEnumCacheBridgeCacheIndex, new_cache); FixedArray::cast(bridge_storage)-> set(kEnumCacheBridgeIndicesCacheIndex, new_index_cache); NoWriteBarrierSet(FixedArray::cast(bridge_storage), kEnumCacheBridgeEnumIndex, get(kEnumerationIndexIndex)); set(kEnumerationIndexIndex, bridge_storage); } } static bool InsertionPointFound(String* key1, String* key2) { return key1->Hash() > key2->Hash() || key1 == key2; } void DescriptorArray::CopyFrom(Handle<DescriptorArray> dst, int dst_index, Handle<DescriptorArray> src, int src_index, const WhitenessWitness& witness) { CALL_HEAP_FUNCTION_VOID(dst->GetIsolate(), dst->CopyFrom(dst_index, *src, src_index, witness)); } MaybeObject* DescriptorArray::CopyFrom(int dst_index, DescriptorArray* src, int src_index, const WhitenessWitness& witness) { Object* value = src->GetValue(src_index); PropertyDetails details(src->GetDetails(src_index)); if (details.type() == CALLBACKS && value->IsAccessorPair()) { MaybeObject* maybe_copy = AccessorPair::cast(value)->CopyWithoutTransitions(); if (!maybe_copy->To(&value)) return maybe_copy; } Descriptor desc(src->GetKey(src_index), value, details); Set(dst_index, &desc, witness); return this; } MaybeObject* DescriptorArray::CopyInsert(Descriptor* descriptor, TransitionFlag transition_flag) { // Transitions are only kept when inserting another transition. // This precondition is not required by this function's implementation, but // is currently required by the semantics of maps, so we check it. // Conversely, we filter after replacing, so replacing a transition and // removing all other transitions is not supported. bool remove_transitions = transition_flag == REMOVE_TRANSITIONS; ASSERT(remove_transitions == !descriptor->ContainsTransition()); ASSERT(descriptor->GetDetails().type() != NULL_DESCRIPTOR); // Ensure the key is a symbol. { MaybeObject* maybe_result = descriptor->KeyToSymbol(); if (maybe_result->IsFailure()) return maybe_result; } int new_size = 0; for (int i = 0; i < number_of_descriptors(); i++) { if (IsNullDescriptor(i)) continue; if (remove_transitions && IsTransitionOnly(i)) continue; new_size++; } // If key is in descriptor, we replace it in-place when filtering. // Count a null descriptor for key as inserted, not replaced. int index = Search(descriptor->GetKey()); const bool replacing = (index != kNotFound); bool keep_enumeration_index = false; if (replacing) { // We are replacing an existing descriptor. We keep the enumeration // index of a visible property. PropertyType t = PropertyDetails(GetDetails(index)).type(); if (t == CONSTANT_FUNCTION || t == FIELD || t == CALLBACKS || t == INTERCEPTOR) { keep_enumeration_index = true; } else if (remove_transitions) { // Replaced descriptor has been counted as removed if it is // a transition that will be replaced. Adjust count in this case. ++new_size; } } else { ++new_size; } DescriptorArray* new_descriptors; { MaybeObject* maybe_result = Allocate(new_size); if (!maybe_result->To(&new_descriptors)) return maybe_result; } DescriptorArray::WhitenessWitness witness(new_descriptors); // Set the enumeration index in the descriptors and set the enumeration index // in the result. int enumeration_index = NextEnumerationIndex(); if (!descriptor->ContainsTransition()) { if (keep_enumeration_index) { descriptor->SetEnumerationIndex( PropertyDetails(GetDetails(index)).index()); } else { descriptor->SetEnumerationIndex(enumeration_index); ++enumeration_index; } } new_descriptors->SetNextEnumerationIndex(enumeration_index); // Copy the descriptors, filtering out transitions and null descriptors, // and inserting or replacing a descriptor. int to_index = 0; int insertion_index = -1; int from_index = 0; while (from_index < number_of_descriptors()) { if (insertion_index < 0 && InsertionPointFound(GetKey(from_index), descriptor->GetKey())) { insertion_index = to_index++; if (replacing) from_index++; } else { if (!(IsNullDescriptor(from_index) || (remove_transitions && IsTransitionOnly(from_index)))) { MaybeObject* copy_result = new_descriptors->CopyFrom(to_index++, this, from_index, witness); if (copy_result->IsFailure()) return copy_result; } from_index++; } } if (insertion_index < 0) insertion_index = to_index++; new_descriptors->Set(insertion_index, descriptor, witness); ASSERT(to_index == new_descriptors->number_of_descriptors()); SLOW_ASSERT(new_descriptors->IsSortedNoDuplicates()); return new_descriptors; } MaybeObject* DescriptorArray::RemoveTransitions() { // Allocate the new descriptor array. int new_number_of_descriptors = 0; for (int i = 0; i < number_of_descriptors(); i++) { if (IsProperty(i)) new_number_of_descriptors++; } DescriptorArray* new_descriptors; { MaybeObject* maybe_result = Allocate(new_number_of_descriptors); if (!maybe_result->To(&new_descriptors)) return maybe_result; } // Copy the content. DescriptorArray::WhitenessWitness witness(new_descriptors); int next_descriptor = 0; for (int i = 0; i < number_of_descriptors(); i++) { if (IsProperty(i)) { MaybeObject* copy_result = new_descriptors->CopyFrom(next_descriptor++, this, i, witness); if (copy_result->IsFailure()) return copy_result; } } ASSERT(next_descriptor == new_descriptors->number_of_descriptors()); return new_descriptors; } void DescriptorArray::SortUnchecked(const WhitenessWitness& witness) { // In-place heap sort. int len = number_of_descriptors(); // Bottom-up max-heap construction. // Index of the last node with children const int max_parent_index = (len / 2) - 1; for (int i = max_parent_index; i >= 0; --i) { int parent_index = i; const uint32_t parent_hash = GetKey(i)->Hash(); while (parent_index <= max_parent_index) { int child_index = 2 * parent_index + 1; uint32_t child_hash = GetKey(child_index)->Hash(); if (child_index + 1 < len) { uint32_t right_child_hash = GetKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; NoIncrementalWriteBarrierSwapDescriptors(parent_index, child_index); // Now element at child_index could be < its children. parent_index = child_index; // parent_hash remains correct. } } // Extract elements and create sorted array. for (int i = len - 1; i > 0; --i) { // Put max element at the back of the array. NoIncrementalWriteBarrierSwapDescriptors(0, i); // Shift down the new top element. int parent_index = 0; const uint32_t parent_hash = GetKey(parent_index)->Hash(); const int max_parent_index = (i / 2) - 1; while (parent_index <= max_parent_index) { int child_index = parent_index * 2 + 1; uint32_t child_hash = GetKey(child_index)->Hash(); if (child_index + 1 < i) { uint32_t right_child_hash = GetKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; NoIncrementalWriteBarrierSwapDescriptors(parent_index, child_index); parent_index = child_index; } } } void DescriptorArray::Sort(const WhitenessWitness& witness) { SortUnchecked(witness); SLOW_ASSERT(IsSortedNoDuplicates()); } int DescriptorArray::BinarySearch(String* name, int low, int high) { uint32_t hash = name->Hash(); while (low <= high) { int mid = (low + high) / 2; String* mid_name = GetKey(mid); uint32_t mid_hash = mid_name->Hash(); if (mid_hash > hash) { high = mid - 1; continue; } if (mid_hash < hash) { low = mid + 1; continue; } // Found an element with the same hash-code. ASSERT(hash == mid_hash); // There might be more, so we find the first one and // check them all to see if we have a match. if (name == mid_name && !is_null_descriptor(mid)) return mid; while ((mid > low) && (GetKey(mid - 1)->Hash() == hash)) mid--; for (; (mid <= high) && (GetKey(mid)->Hash() == hash); mid++) { if (GetKey(mid)->Equals(name) && !is_null_descriptor(mid)) return mid; } break; } return kNotFound; } int DescriptorArray::LinearSearch(String* name, int len) { uint32_t hash = name->Hash(); for (int number = 0; number < len; number++) { String* entry = GetKey(number); if ((entry->Hash() == hash) && name->Equals(entry) && !is_null_descriptor(number)) { return number; } } return kNotFound; } MaybeObject* AccessorPair::CopyWithoutTransitions() { Heap* heap = GetHeap(); AccessorPair* copy; { MaybeObject* maybe_copy = heap->AllocateAccessorPair(); if (!maybe_copy->To(©)) return maybe_copy; } copy->set_getter(getter()->IsMap() ? heap->the_hole_value() : getter()); copy->set_setter(setter()->IsMap() ? heap->the_hole_value() : setter()); return copy; } Object* AccessorPair::GetComponent(AccessorComponent component) { Object* accessor = (component == ACCESSOR_GETTER) ? getter() : setter(); return accessor->IsTheHole() ? GetHeap()->undefined_value() : accessor; } MaybeObject* DeoptimizationInputData::Allocate(int deopt_entry_count, PretenureFlag pretenure) { ASSERT(deopt_entry_count > 0); return HEAP->AllocateFixedArray(LengthFor(deopt_entry_count), pretenure); } MaybeObject* DeoptimizationOutputData::Allocate(int number_of_deopt_points, PretenureFlag pretenure) { if (number_of_deopt_points == 0) return HEAP->empty_fixed_array(); return HEAP->AllocateFixedArray(LengthOfFixedArray(number_of_deopt_points), pretenure); } #ifdef DEBUG bool DescriptorArray::IsEqualTo(DescriptorArray* other) { if (IsEmpty()) return other->IsEmpty(); if (other->IsEmpty()) return false; if (length() != other->length()) return false; for (int i = 0; i < length(); ++i) { if (get(i) != other->get(i) && i != kContentArrayIndex) return false; } return GetContentArray()->IsEqualTo(other->GetContentArray()); } #endif bool String::LooksValid() { if (!Isolate::Current()->heap()->Contains(this)) return false; return true; } String::FlatContent String::GetFlatContent() { int length = this->length(); StringShape shape(this); String* string = this; int offset = 0; if (shape.representation_tag() == kConsStringTag) { ConsString* cons = ConsString::cast(string); if (cons->second()->length() != 0) { return FlatContent(); } string = cons->first(); shape = StringShape(string); } if (shape.representation_tag() == kSlicedStringTag) { SlicedString* slice = SlicedString::cast(string); offset = slice->offset(); string = slice->parent(); shape = StringShape(string); ASSERT(shape.representation_tag() != kConsStringTag && shape.representation_tag() != kSlicedStringTag); } if (shape.encoding_tag() == kAsciiStringTag) { const char* start; if (shape.representation_tag() == kSeqStringTag) { start = SeqAsciiString::cast(string)->GetChars(); } else { start = ExternalAsciiString::cast(string)->GetChars(); } return FlatContent(Vector<const char>(start + offset, length)); } else { ASSERT(shape.encoding_tag() == kTwoByteStringTag); const uc16* start; if (shape.representation_tag() == kSeqStringTag) { start = SeqTwoByteString::cast(string)->GetChars(); } else { start = ExternalTwoByteString::cast(string)->GetChars(); } return FlatContent(Vector<const uc16>(start + offset, length)); } } SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int offset, int length, int* length_return) { if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { return SmartArrayPointer<char>(NULL); } Heap* heap = GetHeap(); // Negative length means the to the end of the string. if (length < 0) length = kMaxInt - offset; // Compute the size of the UTF-8 string. Start at the specified offset. Access<StringInputBuffer> buffer( heap->isolate()->objects_string_input_buffer()); buffer->Reset(offset, this); int character_position = offset; int utf8_bytes = 0; int last = unibrow::Utf16::kNoPreviousCharacter; while (buffer->has_more() && character_position++ < offset + length) { uint16_t character = buffer->GetNext(); utf8_bytes += unibrow::Utf8::Length(character, last); last = character; } if (length_return) { *length_return = utf8_bytes; } char* result = NewArray<char>(utf8_bytes + 1); // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset. buffer->Rewind(); buffer->Seek(offset); character_position = offset; int utf8_byte_position = 0; last = unibrow::Utf16::kNoPreviousCharacter; while (buffer->has_more() && character_position++ < offset + length) { uint16_t character = buffer->GetNext(); if (allow_nulls == DISALLOW_NULLS && character == 0) { character = ' '; } utf8_byte_position += unibrow::Utf8::Encode(result + utf8_byte_position, character, last); last = character; } result[utf8_byte_position] = 0; return SmartArrayPointer<char>(result); } SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int* length_return) { return ToCString(allow_nulls, robust_flag, 0, -1, length_return); } const uc16* String::GetTwoByteData() { return GetTwoByteData(0); } const uc16* String::GetTwoByteData(unsigned start) { ASSERT(!IsAsciiRepresentationUnderneath()); switch (StringShape(this).representation_tag()) { case kSeqStringTag: return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start); case kExternalStringTag: return ExternalTwoByteString::cast(this)-> ExternalTwoByteStringGetData(start); case kSlicedStringTag: { SlicedString* slice = SlicedString::cast(this); return slice->parent()->GetTwoByteData(start + slice->offset()); } case kConsStringTag: UNREACHABLE(); return NULL; } UNREACHABLE(); return NULL; } SmartArrayPointer<uc16> String::ToWideCString(RobustnessFlag robust_flag) { if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { return SmartArrayPointer<uc16>(); } Heap* heap = GetHeap(); Access<StringInputBuffer> buffer( heap->isolate()->objects_string_input_buffer()); buffer->Reset(this); uc16* result = NewArray<uc16>(length() + 1); int i = 0; while (buffer->has_more()) { uint16_t character = buffer->GetNext(); result[i++] = character; } result[i] = 0; return SmartArrayPointer<uc16>(result); } const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) { return reinterpret_cast<uc16*>( reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start; } void SeqTwoByteString::SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { unsigned chars_read = 0; unsigned offset = *offset_ptr; while (chars_read < max_chars) { uint16_t c = *reinterpret_cast<uint16_t*>( reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize + offset * kShortSize); if (c <= kMaxAsciiCharCode) { // Fast case for ASCII characters. Cursor is an input output argument. if (!unibrow::CharacterStream::EncodeAsciiCharacter(c, rbb->util_buffer, rbb->capacity, rbb->cursor)) { break; } } else { if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c, rbb->util_buffer, rbb->capacity, rbb->cursor)) { break; } } offset++; chars_read++; } *offset_ptr = offset; rbb->remaining += chars_read; } const unibrow::byte* SeqAsciiString::SeqAsciiStringReadBlock( unsigned* remaining, unsigned* offset_ptr, unsigned max_chars) { const unibrow::byte* b = reinterpret_cast<unibrow::byte*>(this) - kHeapObjectTag + kHeaderSize + *offset_ptr * kCharSize; *remaining = max_chars; *offset_ptr += max_chars; return b; } // This will iterate unless the block of string data spans two 'halves' of // a ConsString, in which case it will recurse. Since the block of string // data to be read has a maximum size this limits the maximum recursion // depth to something sane. Since C++ does not have tail call recursion // elimination, the iteration must be explicit. Since this is not an // -IntoBuffer method it can delegate to one of the efficient // *AsciiStringReadBlock routines. const unibrow::byte* ConsString::ConsStringReadBlock(ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { ConsString* current = this; unsigned offset = *offset_ptr; int offset_correction = 0; while (true) { String* left = current->first(); unsigned left_length = (unsigned)left->length(); if (left_length > offset && (max_chars <= left_length - offset || (rbb->capacity <= left_length - offset && (max_chars = left_length - offset, true)))) { // comma operator! // Left hand side only - iterate unless we have reached the bottom of // the cons tree. The assignment on the left of the comma operator is // in order to make use of the fact that the -IntoBuffer routines can // produce at most 'capacity' characters. This enables us to postpone // the point where we switch to the -IntoBuffer routines (below) in order // to maximize the chances of delegating a big chunk of work to the // efficient *AsciiStringReadBlock routines. if (StringShape(left).IsCons()) { current = ConsString::cast(left); continue; } else { const unibrow::byte* answer = String::ReadBlock(left, rbb, &offset, max_chars); *offset_ptr = offset + offset_correction; return answer; } } else if (left_length <= offset) { // Right hand side only - iterate unless we have reached the bottom of // the cons tree. String* right = current->second(); offset -= left_length; offset_correction += left_length; if (StringShape(right).IsCons()) { current = ConsString::cast(right); continue; } else { const unibrow::byte* answer = String::ReadBlock(right, rbb, &offset, max_chars); *offset_ptr = offset + offset_correction; return answer; } } else { // The block to be read spans two sides of the ConsString, so we call the // -IntoBuffer version, which will recurse. The -IntoBuffer methods // are able to assemble data from several part strings because they use // the util_buffer to store their data and never return direct pointers // to their storage. We don't try to read more than the buffer capacity // here or we can get too much recursion. ASSERT(rbb->remaining == 0); ASSERT(rbb->cursor == 0); current->ConsStringReadBlockIntoBuffer( rbb, &offset, max_chars > rbb->capacity ? rbb->capacity : max_chars); *offset_ptr = offset + offset_correction; return rbb->util_buffer; } } } const unibrow::byte* ExternalAsciiString::ExternalAsciiStringReadBlock( unsigned* remaining, unsigned* offset_ptr, unsigned max_chars) { // Cast const char* to unibrow::byte* (signedness difference). const unibrow::byte* b = reinterpret_cast<const unibrow::byte*>(GetChars()) + *offset_ptr; *remaining = max_chars; *offset_ptr += max_chars; return b; } void ExternalTwoByteString::ExternalTwoByteStringReadBlockIntoBuffer( ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { unsigned chars_read = 0; unsigned offset = *offset_ptr; const uint16_t* data = GetChars(); while (chars_read < max_chars) { uint16_t c = data[offset]; if (c <= kMaxAsciiCharCode) { // Fast case for ASCII characters. Cursor is an input output argument. if (!unibrow::CharacterStream::EncodeAsciiCharacter(c, rbb->util_buffer, rbb->capacity, rbb->cursor)) break; } else { if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c, rbb->util_buffer, rbb->capacity, rbb->cursor)) break; } offset++; chars_read++; } *offset_ptr = offset; rbb->remaining += chars_read; } void SeqAsciiString::SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { unsigned capacity = rbb->capacity - rbb->cursor; if (max_chars > capacity) max_chars = capacity; memcpy(rbb->util_buffer + rbb->cursor, reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize + *offset_ptr * kCharSize, max_chars); rbb->remaining += max_chars; *offset_ptr += max_chars; rbb->cursor += max_chars; } void ExternalAsciiString::ExternalAsciiStringReadBlockIntoBuffer( ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { unsigned capacity = rbb->capacity - rbb->cursor; if (max_chars > capacity) max_chars = capacity; memcpy(rbb->util_buffer + rbb->cursor, GetChars() + *offset_ptr, max_chars); rbb->remaining += max_chars; *offset_ptr += max_chars; rbb->cursor += max_chars; } // This method determines the type of string involved and then copies // a whole chunk of characters into a buffer, or returns a pointer to a buffer // where they can be found. The pointer is not necessarily valid across a GC // (see AsciiStringReadBlock). const unibrow::byte* String::ReadBlock(String* input, ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { ASSERT(*offset_ptr <= static_cast<unsigned>(input->length())); if (max_chars == 0) { rbb->remaining = 0; return NULL; } switch (StringShape(input).representation_tag()) { case kSeqStringTag: if (input->IsAsciiRepresentation()) { SeqAsciiString* str = SeqAsciiString::cast(input); return str->SeqAsciiStringReadBlock(&rbb->remaining, offset_ptr, max_chars); } else { SeqTwoByteString* str = SeqTwoByteString::cast(input); str->SeqTwoByteStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return rbb->util_buffer; } case kConsStringTag: return ConsString::cast(input)->ConsStringReadBlock(rbb, offset_ptr, max_chars); case kExternalStringTag: if (input->IsAsciiRepresentation()) { return ExternalAsciiString::cast(input)->ExternalAsciiStringReadBlock( &rbb->remaining, offset_ptr, max_chars); } else { ExternalTwoByteString::cast(input)-> ExternalTwoByteStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return rbb->util_buffer; } case kSlicedStringTag: return SlicedString::cast(input)->SlicedStringReadBlock(rbb, offset_ptr, max_chars); default: break; } UNREACHABLE(); return 0; } void Relocatable::PostGarbageCollectionProcessing() { Isolate* isolate = Isolate::Current(); Relocatable* current = isolate->relocatable_top(); while (current != NULL) { current->PostGarbageCollection(); current = current->prev_; } } // Reserve space for statics needing saving and restoring. int Relocatable::ArchiveSpacePerThread() { return sizeof(Isolate::Current()->relocatable_top()); } // Archive statics that are thread local. char* Relocatable::ArchiveState(Isolate* isolate, char* to) { *reinterpret_cast<Relocatable**>(to) = isolate->relocatable_top(); isolate->set_relocatable_top(NULL); return to + ArchiveSpacePerThread(); } // Restore statics that are thread local. char* Relocatable::RestoreState(Isolate* isolate, char* from) { isolate->set_relocatable_top(*reinterpret_cast<Relocatable**>(from)); return from + ArchiveSpacePerThread(); } char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) { Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage); Iterate(v, top); return thread_storage + ArchiveSpacePerThread(); } void Relocatable::Iterate(ObjectVisitor* v) { Isolate* isolate = Isolate::Current(); Iterate(v, isolate->relocatable_top()); } void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) { Relocatable* current = top; while (current != NULL) { current->IterateInstance(v); current = current->prev_; } } FlatStringReader::FlatStringReader(Isolate* isolate, Handle<String> str) : Relocatable(isolate), str_(str.location()), length_(str->length()) { PostGarbageCollection(); } FlatStringReader::FlatStringReader(Isolate* isolate, Vector<const char> input) : Relocatable(isolate), str_(0), is_ascii_(true), length_(input.length()), start_(input.start()) { } void FlatStringReader::PostGarbageCollection() { if (str_ == NULL) return; Handle<String> str(str_); ASSERT(str->IsFlat()); String::FlatContent content = str->GetFlatContent(); ASSERT(content.IsFlat()); is_ascii_ = content.IsAscii(); if (is_ascii_) { start_ = content.ToAsciiVector().start(); } else { start_ = content.ToUC16Vector().start(); } } void StringInputBuffer::Seek(unsigned pos) { Reset(pos, input_); } void SafeStringInputBuffer::Seek(unsigned pos) { Reset(pos, input_); } // This method determines the type of string involved and then copies // a whole chunk of characters into a buffer. It can be used with strings // that have been glued together to form a ConsString and which must cooperate // to fill up a buffer. void String::ReadBlockIntoBuffer(String* input, ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { ASSERT(*offset_ptr <= (unsigned)input->length()); if (max_chars == 0) return; switch (StringShape(input).representation_tag()) { case kSeqStringTag: if (input->IsAsciiRepresentation()) { SeqAsciiString::cast(input)->SeqAsciiStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return; } else { SeqTwoByteString::cast(input)->SeqTwoByteStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return; } case kConsStringTag: ConsString::cast(input)->ConsStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return; case kExternalStringTag: if (input->IsAsciiRepresentation()) { ExternalAsciiString::cast(input)-> ExternalAsciiStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); } else { ExternalTwoByteString::cast(input)-> ExternalTwoByteStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); } return; case kSlicedStringTag: SlicedString::cast(input)->SlicedStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); return; default: break; } UNREACHABLE(); return; } const unibrow::byte* String::ReadBlock(String* input, unibrow::byte* util_buffer, unsigned capacity, unsigned* remaining, unsigned* offset_ptr) { ASSERT(*offset_ptr <= (unsigned)input->length()); unsigned chars = input->length() - *offset_ptr; ReadBlockBuffer rbb(util_buffer, 0, capacity, 0); const unibrow::byte* answer = ReadBlock(input, &rbb, offset_ptr, chars); ASSERT(rbb.remaining <= static_cast<unsigned>(input->length())); *remaining = rbb.remaining; return answer; } const unibrow::byte* String::ReadBlock(String** raw_input, unibrow::byte* util_buffer, unsigned capacity, unsigned* remaining, unsigned* offset_ptr) { Handle<String> input(raw_input); ASSERT(*offset_ptr <= (unsigned)input->length()); unsigned chars = input->length() - *offset_ptr; if (chars > capacity) chars = capacity; ReadBlockBuffer rbb(util_buffer, 0, capacity, 0); ReadBlockIntoBuffer(*input, &rbb, offset_ptr, chars); ASSERT(rbb.remaining <= static_cast<unsigned>(input->length())); *remaining = rbb.remaining; return rbb.util_buffer; } // This will iterate unless the block of string data spans two 'halves' of // a ConsString, in which case it will recurse. Since the block of string // data to be read has a maximum size this limits the maximum recursion // depth to something sane. Since C++ does not have tail call recursion // elimination, the iteration must be explicit. void ConsString::ConsStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, unsigned* offset_ptr, unsigned max_chars) { ConsString* current = this; unsigned offset = *offset_ptr; int offset_correction = 0; while (true) { String* left = current->first(); unsigned left_length = (unsigned)left->length(); if (left_length > offset && max_chars <= left_length - offset) { // Left hand side only - iterate unless we have reached the bottom of // the cons tree. if (StringShape(left).IsCons()) { current = ConsString::cast(left); continue; } else { String::ReadBlockIntoBuffer(left, rbb, &offset, max_chars); *offset_ptr = offset + offset_correction; return; } } else if (left_length <= offset) { // Right hand side only - iterate unless we have reached the bottom of // the cons tree. offset -= left_length; offset_correction += left_length; String* right = current->second(); if (StringShape(right).IsCons()) { current = ConsString::cast(right); continue; } else { String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars); *offset_ptr = offset + offset_correction; return; } } else { // The block to be read spans two sides of the ConsString, so we recurse. // First recurse on the left. max_chars -= left_length - offset; String::ReadBlockIntoBuffer(left, rbb, &offset, left_length - offset); // We may have reached the max or there may not have been enough space // in the buffer for the characters in the left hand side. if (offset == left_length) { // Recurse on the right. String* right = String::cast(current->second()); offset -= left_length; offset_correction += left_length; String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars); } *offset_ptr = offset + offset_correction; return; } } } uint16_t ConsString::ConsStringGet(int index) { ASSERT(index >= 0 && index < this->length()); // Check for a flattened cons string if (second()->length() == 0) { String* left = first(); return left->Get(index); } String* string = String::cast(this); while (true) { if (StringShape(string).IsCons()) { ConsString* cons_string = ConsString::cast(string); String* left = cons_string->first(); if (left->length() > index) { string = left; } else { index -= left->length(); string = cons_string->second(); } } else { return string->Get(index); } } UNREACHABLE(); return 0; } uint16_t SlicedString::SlicedStringGet(int index) { return parent()->Get(offset() + index); } const unibrow::byte* SlicedString::SlicedStringReadBlock( ReadBlockBuffer* buffer, unsigned* offset_ptr, unsigned chars) { unsigned offset = this->offset(); *offset_ptr += offset; const unibrow::byte* answer = String::ReadBlock(String::cast(parent()), buffer, offset_ptr, chars); *offset_ptr -= offset; return answer; } void SlicedString::SlicedStringReadBlockIntoBuffer( ReadBlockBuffer* buffer, unsigned* offset_ptr, unsigned chars) { unsigned offset = this->offset(); *offset_ptr += offset; String::ReadBlockIntoBuffer(String::cast(parent()), buffer, offset_ptr, chars); *offset_ptr -= offset; } template <typename sinkchar> void String::WriteToFlat(String* src, sinkchar* sink, int f, int t) { String* source = src; int from = f; int to = t; while (true) { ASSERT(0 <= from && from <= to && to <= source->length()); switch (StringShape(source).full_representation_tag()) { case kAsciiStringTag | kExternalStringTag: { CopyChars(sink, ExternalAsciiString::cast(source)->GetChars() + from, to - from); return; } case kTwoByteStringTag | kExternalStringTag: { const uc16* data = ExternalTwoByteString::cast(source)->GetChars(); CopyChars(sink, data + from, to - from); return; } case kAsciiStringTag | kSeqStringTag: { CopyChars(sink, SeqAsciiString::cast(source)->GetChars() + from, to - from); return; } case kTwoByteStringTag | kSeqStringTag: { CopyChars(sink, SeqTwoByteString::cast(source)->GetChars() + from, to - from); return; } case kAsciiStringTag | kConsStringTag: case kTwoByteStringTag | kConsStringTag: { ConsString* cons_string = ConsString::cast(source); String* first = cons_string->first(); int boundary = first->length(); if (to - boundary >= boundary - from) { // Right hand side is longer. Recurse over left. if (from < boundary) { WriteToFlat(first, sink, from, boundary); sink += boundary - from; from = 0; } else { from -= boundary; } to -= boundary; source = cons_string->second(); } else { // Left hand side is longer. Recurse over right. if (to > boundary) { String* second = cons_string->second(); // When repeatedly appending to a string, we get a cons string that // is unbalanced to the left, a list, essentially. We inline the // common case of sequential ascii right child. if (to - boundary == 1) { sink[boundary - from] = static_cast<sinkchar>(second->Get(0)); } else if (second->IsSeqAsciiString()) { CopyChars(sink + boundary - from, SeqAsciiString::cast(second)->GetChars(), to - boundary); } else { WriteToFlat(second, sink + boundary - from, 0, to - boundary); } to = boundary; } source = first; } break; } case kAsciiStringTag | kSlicedStringTag: case kTwoByteStringTag | kSlicedStringTag: { SlicedString* slice = SlicedString::cast(source); unsigned offset = slice->offset(); WriteToFlat(slice->parent(), sink, from + offset, to + offset); return; } } } } template <typename IteratorA, typename IteratorB> static inline bool CompareStringContents(IteratorA* ia, IteratorB* ib) { // General slow case check. We know that the ia and ib iterators // have the same length. while (ia->has_more()) { uint32_t ca = ia->GetNext(); uint32_t cb = ib->GetNext(); ASSERT(ca <= unibrow::Utf16::kMaxNonSurrogateCharCode); ASSERT(cb <= unibrow::Utf16::kMaxNonSurrogateCharCode); if (ca != cb) return false; } return true; } // Compares the contents of two strings by reading and comparing // int-sized blocks of characters. template <typename Char> static inline bool CompareRawStringContents(Vector<Char> a, Vector<Char> b) { int length = a.length(); ASSERT_EQ(length, b.length()); const Char* pa = a.start(); const Char* pb = b.start(); int i = 0; #ifndef V8_HOST_CAN_READ_UNALIGNED // If this architecture isn't comfortable reading unaligned ints // then we have to check that the strings are aligned before // comparing them blockwise. const int kAlignmentMask = sizeof(uint32_t) - 1; // NOLINT uint32_t pa_addr = reinterpret_cast<uint32_t>(pa); uint32_t pb_addr = reinterpret_cast<uint32_t>(pb); if (((pa_addr & kAlignmentMask) | (pb_addr & kAlignmentMask)) == 0) { #endif const int kStepSize = sizeof(int) / sizeof(Char); // NOLINT int endpoint = length - kStepSize; // Compare blocks until we reach near the end of the string. for (; i <= endpoint; i += kStepSize) { uint32_t wa = *reinterpret_cast<const uint32_t*>(pa + i); uint32_t wb = *reinterpret_cast<const uint32_t*>(pb + i); if (wa != wb) { return false; } } #ifndef V8_HOST_CAN_READ_UNALIGNED } #endif // Compare the remaining characters that didn't fit into a block. for (; i < length; i++) { if (a[i] != b[i]) { return false; } } return true; } template <typename IteratorA> static inline bool CompareStringContentsPartial(Isolate* isolate, IteratorA* ia, String* b) { String::FlatContent content = b->GetFlatContent(); if (content.IsFlat()) { if (content.IsAscii()) { VectorIterator<char> ib(content.ToAsciiVector()); return CompareStringContents(ia, &ib); } else { VectorIterator<uc16> ib(content.ToUC16Vector()); return CompareStringContents(ia, &ib); } } else { isolate->objects_string_compare_buffer_b()->Reset(0, b); return CompareStringContents(ia, isolate->objects_string_compare_buffer_b()); } } bool String::SlowEquals(String* other) { // Fast check: negative check with lengths. int len = length(); if (len != other->length()) return false; if (len == 0) return true; // Fast check: if hash code is computed for both strings // a fast negative check can be performed. if (HasHashCode() && other->HasHashCode()) { #ifdef DEBUG if (FLAG_enable_slow_asserts) { if (Hash() != other->Hash()) { bool found_difference = false; for (int i = 0; i < len; i++) { if (Get(i) != other->Get(i)) { found_difference = true; break; } } ASSERT(found_difference); } } #endif if (Hash() != other->Hash()) return false; } // We know the strings are both non-empty. Compare the first chars // before we try to flatten the strings. if (this->Get(0) != other->Get(0)) return false; String* lhs = this->TryFlattenGetString(); String* rhs = other->TryFlattenGetString(); if (StringShape(lhs).IsSequentialAscii() && StringShape(rhs).IsSequentialAscii()) { const char* str1 = SeqAsciiString::cast(lhs)->GetChars(); const char* str2 = SeqAsciiString::cast(rhs)->GetChars(); return CompareRawStringContents(Vector<const char>(str1, len), Vector<const char>(str2, len)); } Isolate* isolate = GetIsolate(); String::FlatContent lhs_content = lhs->GetFlatContent(); String::FlatContent rhs_content = rhs->GetFlatContent(); if (lhs_content.IsFlat()) { if (lhs_content.IsAscii()) { Vector<const char> vec1 = lhs_content.ToAsciiVector(); if (rhs_content.IsFlat()) { if (rhs_content.IsAscii()) { Vector<const char> vec2 = rhs_content.ToAsciiVector(); return CompareRawStringContents(vec1, vec2); } else { VectorIterator<char> buf1(vec1); VectorIterator<uc16> ib(rhs_content.ToUC16Vector()); return CompareStringContents(&buf1, &ib); } } else { VectorIterator<char> buf1(vec1); isolate->objects_string_compare_buffer_b()->Reset(0, rhs); return CompareStringContents(&buf1, isolate->objects_string_compare_buffer_b()); } } else { Vector<const uc16> vec1 = lhs_content.ToUC16Vector(); if (rhs_content.IsFlat()) { if (rhs_content.IsAscii()) { VectorIterator<uc16> buf1(vec1); VectorIterator<char> ib(rhs_content.ToAsciiVector()); return CompareStringContents(&buf1, &ib); } else { Vector<const uc16> vec2(rhs_content.ToUC16Vector()); return CompareRawStringContents(vec1, vec2); } } else { VectorIterator<uc16> buf1(vec1); isolate->objects_string_compare_buffer_b()->Reset(0, rhs); return CompareStringContents(&buf1, isolate->objects_string_compare_buffer_b()); } } } else { isolate->objects_string_compare_buffer_a()->Reset(0, lhs); return CompareStringContentsPartial(isolate, isolate->objects_string_compare_buffer_a(), rhs); } } bool String::MarkAsUndetectable() { if (StringShape(this).IsSymbol()) return false; Map* map = this->map(); Heap* heap = GetHeap(); if (map == heap->string_map()) { this->set_map(heap->undetectable_string_map()); return true; } else if (map == heap->ascii_string_map()) { this->set_map(heap->undetectable_ascii_string_map()); return true; } // Rest cannot be marked as undetectable return false; } bool String::IsEqualTo(Vector<const char> str) { Isolate* isolate = GetIsolate(); int slen = length(); Access<UnicodeCache::Utf8Decoder> decoder(isolate->unicode_cache()->utf8_decoder()); decoder->Reset(str.start(), str.length()); int i; for (i = 0; i < slen && decoder->has_more(); i++) { uint32_t r = decoder->GetNext(); if (r > unibrow::Utf16::kMaxNonSurrogateCharCode) { if (i > slen - 1) return false; if (Get(i++) != unibrow::Utf16::LeadSurrogate(r)) return false; if (Get(i) != unibrow::Utf16::TrailSurrogate(r)) return false; } else { if (Get(i) != r) return false; } } return i == slen && !decoder->has_more(); } bool String::IsAsciiEqualTo(Vector<const char> str) { int slen = length(); if (str.length() != slen) return false; FlatContent content = GetFlatContent(); if (content.IsAscii()) { return CompareChars(content.ToAsciiVector().start(), str.start(), slen) == 0; } for (int i = 0; i < slen; i++) { if (Get(i) != static_cast<uint16_t>(str[i])) return false; } return true; } bool String::IsTwoByteEqualTo(Vector<const uc16> str) { int slen = length(); if (str.length() != slen) return false; FlatContent content = GetFlatContent(); if (content.IsTwoByte()) { return CompareChars(content.ToUC16Vector().start(), str.start(), slen) == 0; } for (int i = 0; i < slen; i++) { if (Get(i) != str[i]) return false; } return true; } uint32_t String::ComputeAndSetHash() { // Should only be called if hash code has not yet been computed. ASSERT(!HasHashCode()); const int len = length(); // Compute the hash code. uint32_t field = 0; if (StringShape(this).IsSequentialAscii()) { field = HashSequentialString(SeqAsciiString::cast(this)->GetChars(), len, GetHeap()->HashSeed()); } else if (StringShape(this).IsSequentialTwoByte()) { field = HashSequentialString(SeqTwoByteString::cast(this)->GetChars(), len, GetHeap()->HashSeed()); } else { StringInputBuffer buffer(this); field = ComputeHashField(&buffer, len, GetHeap()->HashSeed()); } // Store the hash code in the object. set_hash_field(field); // Check the hash code is there. ASSERT(HasHashCode()); uint32_t result = field >> kHashShift; ASSERT(result != 0); // Ensure that the hash value of 0 is never computed. return result; } bool String::ComputeArrayIndex(unibrow::CharacterStream* buffer, uint32_t* index, int length) { if (length == 0 || length > kMaxArrayIndexSize) return false; uc32 ch = buffer->GetNext(); // If the string begins with a '0' character, it must only consist // of it to be a legal array index. if (ch == '0') { *index = 0; return length == 1; } // Convert string to uint32 array index; character by character. int d = ch - '0'; if (d < 0 || d > 9) return false; uint32_t result = d; while (buffer->has_more()) { d = buffer->GetNext() - '0'; if (d < 0 || d > 9) return false; // Check that the new result is below the 32 bit limit. if (result > 429496729U - ((d > 5) ? 1 : 0)) return false; result = (result * 10) + d; } *index = result; return true; } bool String::SlowAsArrayIndex(uint32_t* index) { if (length() <= kMaxCachedArrayIndexLength) { Hash(); // force computation of hash code uint32_t field = hash_field(); if ((field & kIsNotArrayIndexMask) != 0) return false; // Isolate the array index form the full hash field. *index = (kArrayIndexHashMask & field) >> kHashShift; return true; } else { StringInputBuffer buffer(this); return ComputeArrayIndex(&buffer, index, length()); } } uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) { // For array indexes mix the length into the hash as an array index could // be zero. ASSERT(length > 0); ASSERT(length <= String::kMaxArrayIndexSize); ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); value <<= String::kHashShift; value |= length << String::kArrayIndexHashLengthShift; ASSERT((value & String::kIsNotArrayIndexMask) == 0); ASSERT((length > String::kMaxCachedArrayIndexLength) || (value & String::kContainsCachedArrayIndexMask) == 0); return value; } void StringHasher::AddSurrogatePair(uc32 c) { uint16_t lead = unibrow::Utf16::LeadSurrogate(c); AddCharacter(lead); uint16_t trail = unibrow::Utf16::TrailSurrogate(c); AddCharacter(trail); } void StringHasher::AddSurrogatePairNoIndex(uc32 c) { uint16_t lead = unibrow::Utf16::LeadSurrogate(c); AddCharacterNoIndex(lead); uint16_t trail = unibrow::Utf16::TrailSurrogate(c); AddCharacterNoIndex(trail); } uint32_t StringHasher::GetHashField() { ASSERT(is_valid()); if (length_ <= String::kMaxHashCalcLength) { if (is_array_index()) { return MakeArrayIndexHash(array_index(), length_); } return (GetHash() << String::kHashShift) | String::kIsNotArrayIndexMask; } else { return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask; } } uint32_t String::ComputeHashField(unibrow::CharacterStream* buffer, int length, uint32_t seed) { StringHasher hasher(length, seed); // Very long strings have a trivial hash that doesn't inspect the // string contents. if (hasher.has_trivial_hash()) { return hasher.GetHashField(); } // Do the iterative array index computation as long as there is a // chance this is an array index. while (buffer->has_more() && hasher.is_array_index()) { hasher.AddCharacter(buffer->GetNext()); } // Process the remaining characters without updating the array // index. while (buffer->has_more()) { hasher.AddCharacterNoIndex(buffer->GetNext()); } return hasher.GetHashField(); } MaybeObject* String::SubString(int start, int end, PretenureFlag pretenure) { Heap* heap = GetHeap(); if (start == 0 && end == length()) return this; MaybeObject* result = heap->AllocateSubString(this, start, end, pretenure); return result; } void String::PrintOn(FILE* file) { int length = this->length(); for (int i = 0; i < length; i++) { fprintf(file, "%c", Get(i)); } } void Map::CreateOneBackPointer(Object* transition_target) { if (!transition_target->IsMap()) return; Map* target = Map::cast(transition_target); #ifdef DEBUG // Verify target. Object* source_prototype = prototype(); Object* target_prototype = target->prototype(); ASSERT(source_prototype->IsJSReceiver() || source_prototype->IsMap() || source_prototype->IsNull()); ASSERT(target_prototype->IsJSReceiver() || target_prototype->IsNull()); ASSERT(source_prototype->IsMap() || source_prototype == target_prototype); #endif // Point target back to source. set_prototype() will not let us set // the prototype to a map, as we do here. *RawField(target, kPrototypeOffset) = this; } void Map::CreateBackPointers() { DescriptorArray* descriptors = instance_descriptors(); for (int i = 0; i < descriptors->number_of_descriptors(); i++) { switch (descriptors->GetType(i)) { case MAP_TRANSITION: case CONSTANT_TRANSITION: CreateOneBackPointer(descriptors->GetValue(i)); break; case ELEMENTS_TRANSITION: { Object* object = descriptors->GetValue(i); if (object->IsMap()) { CreateOneBackPointer(object); } else { FixedArray* array = FixedArray::cast(object); for (int i = 0; i < array->length(); ++i) { CreateOneBackPointer(array->get(i)); } } break; } case CALLBACKS: { Object* object = descriptors->GetValue(i); if (object->IsAccessorPair()) { AccessorPair* accessors = AccessorPair::cast(object); CreateOneBackPointer(accessors->getter()); CreateOneBackPointer(accessors->setter()); } break; } case NORMAL: case FIELD: case CONSTANT_FUNCTION: case HANDLER: case INTERCEPTOR: case NULL_DESCRIPTOR: break; } } } bool Map::RestoreOneBackPointer(Object* object, Object* real_prototype, bool* keep_entry) { if (!object->IsMap()) return false; Map* map = Map::cast(object); if (Marking::MarkBitFrom(map).Get()) { *keep_entry = true; return false; } ASSERT(map->prototype() == this || map->prototype() == real_prototype); // Getter prototype() is read-only, set_prototype() has side effects. *RawField(map, Map::kPrototypeOffset) = real_prototype; return true; } void Map::ClearNonLiveTransitions(Heap* heap, Object* real_prototype) { DescriptorArray* d = DescriptorArray::cast( *RawField(this, Map::kInstanceDescriptorsOrBitField3Offset)); if (d->IsEmpty()) return; Smi* NullDescriptorDetails = PropertyDetails(NONE, NULL_DESCRIPTOR).AsSmi(); FixedArray* contents = FixedArray::cast( d->get(DescriptorArray::kContentArrayIndex)); ASSERT(contents->length() >= 2); for (int i = 0; i < contents->length(); i += 2) { // If the pair (value, details) is a map transition, check if the target is // live. If not, null the descriptor. Also drop the back pointer for that // map transition, so that this map is not reached again by following a back // pointer from a non-live object. bool keep_entry = false; PropertyDetails details(Smi::cast(contents->get(i + 1))); switch (details.type()) { case MAP_TRANSITION: case CONSTANT_TRANSITION: RestoreOneBackPointer(contents->get(i), real_prototype, &keep_entry); break; case ELEMENTS_TRANSITION: { Object* object = contents->get(i); if (object->IsMap()) { RestoreOneBackPointer(object, real_prototype, &keep_entry); } else { FixedArray* array = FixedArray::cast(object); for (int j = 0; j < array->length(); ++j) { if (RestoreOneBackPointer(array->get(j), real_prototype, &keep_entry)) { array->set_undefined(j); } } } break; } case CALLBACKS: { Object* object = contents->get(i); if (object->IsAccessorPair()) { AccessorPair* accessors = AccessorPair::cast(object); if (RestoreOneBackPointer(accessors->getter(), real_prototype, &keep_entry)) { accessors->set_getter(heap->the_hole_value()); } if (RestoreOneBackPointer(accessors->setter(), real_prototype, &keep_entry)) { accessors->set_setter(heap->the_hole_value()); } } else { keep_entry = true; } break; } case NORMAL: case FIELD: case CONSTANT_FUNCTION: case HANDLER: case INTERCEPTOR: case NULL_DESCRIPTOR: keep_entry = true; break; } // Make sure that an entry containing only dead transitions gets collected. // What we *really* want to do here is removing this entry completely, but // for technical reasons we can't do this, so we zero it out instead. if (!keep_entry) { contents->set_unchecked(i + 1, NullDescriptorDetails); contents->set_null_unchecked(heap, i); } } } int Map::Hash() { // For performance reasons we only hash the 3 most variable fields of a map: // constructor, prototype and bit_field2. // Shift away the tag. int hash = (static_cast<uint32_t>( reinterpret_cast<uintptr_t>(constructor())) >> 2); // XOR-ing the prototype and constructor directly yields too many zero bits // when the two pointers are close (which is fairly common). // To avoid this we shift the prototype 4 bits relatively to the constructor. hash ^= (static_cast<uint32_t>( reinterpret_cast<uintptr_t>(prototype())) << 2); return hash ^ (hash >> 16) ^ bit_field2(); } bool Map::EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode) { return constructor() == other->constructor() && prototype() == other->prototype() && inobject_properties() == ((mode == CLEAR_INOBJECT_PROPERTIES) ? 0 : other->inobject_properties()) && instance_type() == other->instance_type() && bit_field() == other->bit_field() && bit_field2() == other->bit_field2() && (bit_field3() & ~(1<<Map::kIsShared)) == (other->bit_field3() & ~(1<<Map::kIsShared)); } void JSFunction::JSFunctionIterateBody(int object_size, ObjectVisitor* v) { // Iterate over all fields in the body but take care in dealing with // the code entry. IteratePointers(v, kPropertiesOffset, kCodeEntryOffset); v->VisitCodeEntry(this->address() + kCodeEntryOffset); IteratePointers(v, kCodeEntryOffset + kPointerSize, object_size); } void JSFunction::MarkForLazyRecompilation() { ASSERT(is_compiled() && !IsOptimized()); ASSERT(shared()->allows_lazy_compilation() || code()->optimizable()); Builtins* builtins = GetIsolate()->builtins(); ReplaceCode(builtins->builtin(Builtins::kLazyRecompile)); } bool SharedFunctionInfo::EnsureCompiled(Handle<SharedFunctionInfo> shared, ClearExceptionFlag flag) { return shared->is_compiled() || CompileLazy(shared, flag); } static bool CompileLazyHelper(CompilationInfo* info, ClearExceptionFlag flag) { // Compile the source information to a code object. ASSERT(info->IsOptimizing() || !info->shared_info()->is_compiled()); ASSERT(!info->isolate()->has_pending_exception()); bool result = Compiler::CompileLazy(info); ASSERT(result != Isolate::Current()->has_pending_exception()); if (!result && flag == CLEAR_EXCEPTION) { info->isolate()->clear_pending_exception(); } return result; } bool SharedFunctionInfo::CompileLazy(Handle<SharedFunctionInfo> shared, ClearExceptionFlag flag) { CompilationInfo info(shared); return CompileLazyHelper(&info, flag); } bool JSFunction::CompileLazy(Handle<JSFunction> function, ClearExceptionFlag flag) { bool result = true; if (function->shared()->is_compiled()) { function->ReplaceCode(function->shared()->code()); function->shared()->set_code_age(0); } else { CompilationInfo info(function); result = CompileLazyHelper(&info, flag); ASSERT(!result || function->is_compiled()); } return result; } bool JSFunction::CompileOptimized(Handle<JSFunction> function, int osr_ast_id, ClearExceptionFlag flag) { CompilationInfo info(function); info.SetOptimizing(osr_ast_id); return CompileLazyHelper(&info, flag); } bool JSFunction::IsInlineable() { if (IsBuiltin()) return false; SharedFunctionInfo* shared_info = shared(); // Check that the function has a script associated with it. if (!shared_info->script()->IsScript()) return false; if (shared_info->optimization_disabled()) return false; Code* code = shared_info->code(); if (code->kind() == Code::OPTIMIZED_FUNCTION) return true; // If we never ran this (unlikely) then lets try to optimize it. if (code->kind() != Code::FUNCTION) return true; return code->optimizable(); } MaybeObject* JSFunction::SetInstancePrototype(Object* value) { ASSERT(value->IsJSReceiver()); Heap* heap = GetHeap(); if (has_initial_map()) { // If the function has allocated the initial map // replace it with a copy containing the new prototype. Map* new_map; MaybeObject* maybe_new_map = initial_map()->CopyDropTransitions(); if (!maybe_new_map->To(&new_map)) return maybe_new_map; new_map->set_prototype(value); MaybeObject* maybe_object = set_initial_map_and_cache_transitions(new_map); if (maybe_object->IsFailure()) return maybe_object; } else { // Put the value in the initial map field until an initial map is // needed. At that point, a new initial map is created and the // prototype is put into the initial map where it belongs. set_prototype_or_initial_map(value); } heap->ClearInstanceofCache(); return value; } MaybeObject* JSFunction::SetPrototype(Object* value) { ASSERT(should_have_prototype()); Object* construct_prototype = value; // If the value is not a JSReceiver, store the value in the map's // constructor field so it can be accessed. Also, set the prototype // used for constructing objects to the original object prototype. // See ECMA-262 13.2.2. if (!value->IsJSReceiver()) { // Copy the map so this does not affect unrelated functions. // Remove map transitions because they point to maps with a // different prototype. Map* new_map; { MaybeObject* maybe_new_map = map()->CopyDropTransitions(); if (!maybe_new_map->To(&new_map)) return maybe_new_map; } Heap* heap = new_map->GetHeap(); set_map(new_map); new_map->set_constructor(value); new_map->set_non_instance_prototype(true); construct_prototype = heap->isolate()->context()->global_context()-> initial_object_prototype(); } else { map()->set_non_instance_prototype(false); } return SetInstancePrototype(construct_prototype); } Object* JSFunction::RemovePrototype() { Context* global_context = context()->global_context(); Map* no_prototype_map = shared()->is_classic_mode() ? global_context->function_without_prototype_map() : global_context->strict_mode_function_without_prototype_map(); if (map() == no_prototype_map) { // Be idempotent. return this; } ASSERT(map() == (shared()->is_classic_mode() ? global_context->function_map() : global_context->strict_mode_function_map())); set_map(no_prototype_map); set_prototype_or_initial_map(no_prototype_map->GetHeap()->the_hole_value()); return this; } Object* JSFunction::SetInstanceClassName(String* name) { shared()->set_instance_class_name(name); return this; } void JSFunction::PrintName(FILE* out) { SmartArrayPointer<char> name = shared()->DebugName()->ToCString(); PrintF(out, "%s", *name); } Context* JSFunction::GlobalContextFromLiterals(FixedArray* literals) { return Context::cast(literals->get(JSFunction::kLiteralGlobalContextIndex)); } MaybeObject* Oddball::Initialize(const char* to_string, Object* to_number, byte kind) { String* symbol; { MaybeObject* maybe_symbol = Isolate::Current()->heap()->LookupAsciiSymbol(to_string); if (!maybe_symbol->To(&symbol)) return maybe_symbol; } set_to_string(symbol); set_to_number(to_number); set_kind(kind); return this; } String* SharedFunctionInfo::DebugName() { Object* n = name(); if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name(); return String::cast(n); } bool SharedFunctionInfo::HasSourceCode() { return !script()->IsUndefined() && !reinterpret_cast<Script*>(script())->source()->IsUndefined(); } Handle<Object> SharedFunctionInfo::GetSourceCode() { if (!HasSourceCode()) return GetIsolate()->factory()->undefined_value(); Handle<String> source(String::cast(Script::cast(script())->source())); return SubString(source, start_position(), end_position()); } int SharedFunctionInfo::SourceSize() { return end_position() - start_position(); } int SharedFunctionInfo::CalculateInstanceSize() { int instance_size = JSObject::kHeaderSize + expected_nof_properties() * kPointerSize; if (instance_size > JSObject::kMaxInstanceSize) { instance_size = JSObject::kMaxInstanceSize; } return instance_size; } int SharedFunctionInfo::CalculateInObjectProperties() { return (CalculateInstanceSize() - JSObject::kHeaderSize) / kPointerSize; } bool SharedFunctionInfo::CanGenerateInlineConstructor(Object* prototype) { // Check the basic conditions for generating inline constructor code. if (!FLAG_inline_new || !has_only_simple_this_property_assignments() || this_property_assignments_count() == 0) { return false; } // If the prototype is null inline constructors cause no problems. if (!prototype->IsJSObject()) { ASSERT(prototype->IsNull()); return true; } Heap* heap = GetHeap(); // Traverse the proposed prototype chain looking for setters for properties of // the same names as are set by the inline constructor. for (Object* obj = prototype; obj != heap->null_value(); obj = obj->GetPrototype()) { JSObject* js_object = JSObject::cast(obj); for (int i = 0; i < this_property_assignments_count(); i++) { LookupResult result(heap->isolate()); String* name = GetThisPropertyAssignmentName(i); js_object->LocalLookupRealNamedProperty(name, &result); if (result.IsFound() && result.type() == CALLBACKS) { return false; } } } return true; } void SharedFunctionInfo::ForbidInlineConstructor() { set_compiler_hints(BooleanBit::set(compiler_hints(), kHasOnlySimpleThisPropertyAssignments, false)); } void SharedFunctionInfo::SetThisPropertyAssignmentsInfo( bool only_simple_this_property_assignments, FixedArray* assignments) { set_compiler_hints(BooleanBit::set(compiler_hints(), kHasOnlySimpleThisPropertyAssignments, only_simple_this_property_assignments)); set_this_property_assignments(assignments); set_this_property_assignments_count(assignments->length() / 3); } void SharedFunctionInfo::ClearThisPropertyAssignmentsInfo() { Heap* heap = GetHeap(); set_compiler_hints(BooleanBit::set(compiler_hints(), kHasOnlySimpleThisPropertyAssignments, false)); set_this_property_assignments(heap->undefined_value()); set_this_property_assignments_count(0); } String* SharedFunctionInfo::GetThisPropertyAssignmentName(int index) { Object* obj = this_property_assignments(); ASSERT(obj->IsFixedArray()); ASSERT(index < this_property_assignments_count()); obj = FixedArray::cast(obj)->get(index * 3); ASSERT(obj->IsString()); return String::cast(obj); } bool SharedFunctionInfo::IsThisPropertyAssignmentArgument(int index) { Object* obj = this_property_assignments(); ASSERT(obj->IsFixedArray()); ASSERT(index < this_property_assignments_count()); obj = FixedArray::cast(obj)->get(index * 3 + 1); return Smi::cast(obj)->value() != -1; } int SharedFunctionInfo::GetThisPropertyAssignmentArgument(int index) { ASSERT(IsThisPropertyAssignmentArgument(index)); Object* obj = FixedArray::cast(this_property_assignments())->get(index * 3 + 1); return Smi::cast(obj)->value(); } Object* SharedFunctionInfo::GetThisPropertyAssignmentConstant(int index) { ASSERT(!IsThisPropertyAssignmentArgument(index)); Object* obj = FixedArray::cast(this_property_assignments())->get(index * 3 + 2); return obj; } // Support function for printing the source code to a StringStream // without any allocation in the heap. void SharedFunctionInfo::SourceCodePrint(StringStream* accumulator, int max_length) { // For some native functions there is no source. if (!HasSourceCode()) { accumulator->Add("<No Source>"); return; } // Get the source for the script which this function came from. // Don't use String::cast because we don't want more assertion errors while // we are already creating a stack dump. String* script_source = reinterpret_cast<String*>(Script::cast(script())->source()); if (!script_source->LooksValid()) { accumulator->Add("<Invalid Source>"); return; } if (!is_toplevel()) { accumulator->Add("function "); Object* name = this->name(); if (name->IsString() && String::cast(name)->length() > 0) { accumulator->PrintName(name); } } int len = end_position() - start_position(); if (len <= max_length || max_length < 0) { accumulator->Put(script_source, start_position(), end_position()); } else { accumulator->Put(script_source, start_position(), start_position() + max_length); accumulator->Add("...\n"); } } static bool IsCodeEquivalent(Code* code, Code* recompiled) { if (code->instruction_size() != recompiled->instruction_size()) return false; ByteArray* code_relocation = code->relocation_info(); ByteArray* recompiled_relocation = recompiled->relocation_info(); int length = code_relocation->length(); if (length != recompiled_relocation->length()) return false; int compare = memcmp(code_relocation->GetDataStartAddress(), recompiled_relocation->GetDataStartAddress(), length); return compare == 0; } void SharedFunctionInfo::EnableDeoptimizationSupport(Code* recompiled) { ASSERT(!has_deoptimization_support()); AssertNoAllocation no_allocation; Code* code = this->code(); if (IsCodeEquivalent(code, recompiled)) { // Copy the deoptimization data from the recompiled code. code->set_deoptimization_data(recompiled->deoptimization_data()); code->set_has_deoptimization_support(true); } else { // TODO(3025757): In case the recompiled isn't equivalent to the // old code, we have to replace it. We should try to avoid this // altogether because it flushes valuable type feedback by // effectively resetting all IC state. set_code(recompiled); } ASSERT(has_deoptimization_support()); } void SharedFunctionInfo::DisableOptimization() { // Disable optimization for the shared function info and mark the // code as non-optimizable. The marker on the shared function info // is there because we flush non-optimized code thereby loosing the // non-optimizable information for the code. When the code is // regenerated and set on the shared function info it is marked as // non-optimizable if optimization is disabled for the shared // function info. set_optimization_disabled(true); // Code should be the lazy compilation stub or else unoptimized. If the // latter, disable optimization for the code too. ASSERT(code()->kind() == Code::FUNCTION || code()->kind() == Code::BUILTIN); if (code()->kind() == Code::FUNCTION) { code()->set_optimizable(false); } if (FLAG_trace_opt) { PrintF("[disabled optimization for %s]\n", *DebugName()->ToCString()); } } bool SharedFunctionInfo::VerifyBailoutId(int id) { ASSERT(id != AstNode::kNoNumber); Code* unoptimized = code(); DeoptimizationOutputData* data = DeoptimizationOutputData::cast(unoptimized->deoptimization_data()); unsigned ignore = Deoptimizer::GetOutputInfo(data, id, this); USE(ignore); return true; // Return true if there was no ASSERT. } void SharedFunctionInfo::StartInobjectSlackTracking(Map* map) { ASSERT(!IsInobjectSlackTrackingInProgress()); if (!FLAG_clever_optimizations) return; // Only initiate the tracking the first time. if (live_objects_may_exist()) return; set_live_objects_may_exist(true); // No tracking during the snapshot construction phase. if (Serializer::enabled()) return; if (map->unused_property_fields() == 0) return; // Nonzero counter is a leftover from the previous attempt interrupted // by GC, keep it. if (construction_count() == 0) { set_construction_count(kGenerousAllocationCount); } set_initial_map(map); Builtins* builtins = map->GetHeap()->isolate()->builtins(); ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubGeneric), construct_stub()); set_construct_stub(builtins->builtin(Builtins::kJSConstructStubCountdown)); } // Called from GC, hence reinterpret_cast and unchecked accessors. void SharedFunctionInfo::DetachInitialMap() { Map* map = reinterpret_cast<Map*>(initial_map()); // Make the map remember to restore the link if it survives the GC. map->set_bit_field2( map->bit_field2() | (1 << Map::kAttachedToSharedFunctionInfo)); // Undo state changes made by StartInobjectTracking (except the // construction_count). This way if the initial map does not survive the GC // then StartInobjectTracking will be called again the next time the // constructor is called. The countdown will continue and (possibly after // several more GCs) CompleteInobjectSlackTracking will eventually be called. Heap* heap = map->GetHeap(); set_initial_map(heap->raw_unchecked_undefined_value()); Builtins* builtins = heap->isolate()->builtins(); ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubCountdown), *RawField(this, kConstructStubOffset)); set_construct_stub(builtins->builtin(Builtins::kJSConstructStubGeneric)); // It is safe to clear the flag: it will be set again if the map is live. set_live_objects_may_exist(false); } // Called from GC, hence reinterpret_cast and unchecked accessors. void SharedFunctionInfo::AttachInitialMap(Map* map) { map->set_bit_field2( map->bit_field2() & ~(1 << Map::kAttachedToSharedFunctionInfo)); // Resume inobject slack tracking. set_initial_map(map); Builtins* builtins = map->GetHeap()->isolate()->builtins(); ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubGeneric), *RawField(this, kConstructStubOffset)); set_construct_stub(builtins->builtin(Builtins::kJSConstructStubCountdown)); // The map survived the gc, so there may be objects referencing it. set_live_objects_may_exist(true); } void SharedFunctionInfo::ResetForNewContext(int new_ic_age) { code()->ClearInlineCaches(); set_ic_age(new_ic_age); if (code()->kind() == Code::FUNCTION) { code()->set_profiler_ticks(0); if (optimization_disabled() && opt_count() >= Compiler::kDefaultMaxOptCount) { // Re-enable optimizations if they were disabled due to opt_count limit. set_optimization_disabled(false); code()->set_optimizable(true); } set_opt_count(0); } } static void GetMinInobjectSlack(Map* map, void* data) { int slack = map->unused_property_fields(); if (*reinterpret_cast<int*>(data) > slack) { *reinterpret_cast<int*>(data) = slack; } } static void ShrinkInstanceSize(Map* map, void* data) { int slack = *reinterpret_cast<int*>(data); map->set_inobject_properties(map->inobject_properties() - slack); map->set_unused_property_fields(map->unused_property_fields() - slack); map->set_instance_size(map->instance_size() - slack * kPointerSize); // Visitor id might depend on the instance size, recalculate it. map->set_visitor_id(StaticVisitorBase::GetVisitorId(map)); } void SharedFunctionInfo::CompleteInobjectSlackTracking() { ASSERT(live_objects_may_exist() && IsInobjectSlackTrackingInProgress()); Map* map = Map::cast(initial_map()); Heap* heap = map->GetHeap(); set_initial_map(heap->undefined_value()); Builtins* builtins = heap->isolate()->builtins(); ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubCountdown), construct_stub()); set_construct_stub(builtins->builtin(Builtins::kJSConstructStubGeneric)); int slack = map->unused_property_fields(); map->TraverseTransitionTree(&GetMinInobjectSlack, &slack); if (slack != 0) { // Resize the initial map and all maps in its transition tree. map->TraverseTransitionTree(&ShrinkInstanceSize, &slack); // Give the correct expected_nof_properties to initial maps created later. ASSERT(expected_nof_properties() >= slack); set_expected_nof_properties(expected_nof_properties() - slack); } } void SharedFunctionInfo::SharedFunctionInfoIterateBody(ObjectVisitor* v) { v->VisitSharedFunctionInfo(this); SharedFunctionInfo::BodyDescriptor::IterateBody(this, v); } #define DECLARE_TAG(ignore1, name, ignore2) name, const char* const VisitorSynchronization::kTags[ VisitorSynchronization::kNumberOfSyncTags] = { VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG) }; #undef DECLARE_TAG #define DECLARE_TAG(ignore1, ignore2, name) name, const char* const VisitorSynchronization::kTagNames[ VisitorSynchronization::kNumberOfSyncTags] = { VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG) }; #undef DECLARE_TAG void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) { ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); Object* old_target = target; VisitPointer(&target); CHECK_EQ(target, old_target); // VisitPointer doesn't change Code* *target. } void ObjectVisitor::VisitCodeEntry(Address entry_address) { Object* code = Code::GetObjectFromEntryAddress(entry_address); Object* old_code = code; VisitPointer(&code); if (code != old_code) { Memory::Address_at(entry_address) = reinterpret_cast<Code*>(code)->entry(); } } void ObjectVisitor::VisitGlobalPropertyCell(RelocInfo* rinfo) { ASSERT(rinfo->rmode() == RelocInfo::GLOBAL_PROPERTY_CELL); Object* cell = rinfo->target_cell(); Object* old_cell = cell; VisitPointer(&cell); if (cell != old_cell) { rinfo->set_target_cell(reinterpret_cast<JSGlobalPropertyCell*>(cell)); } } void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) { ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) && rinfo->IsPatchedReturnSequence()) || (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) && rinfo->IsPatchedDebugBreakSlotSequence())); Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address()); Object* old_target = target; VisitPointer(&target); CHECK_EQ(target, old_target); // VisitPointer doesn't change Code* *target. } void ObjectVisitor::VisitEmbeddedPointer(RelocInfo* rinfo) { ASSERT(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT); VisitPointer(rinfo->target_object_address()); } void ObjectVisitor::VisitExternalReference(RelocInfo* rinfo) { Address* p = rinfo->target_reference_address(); VisitExternalReferences(p, p + 1); } void Code::InvalidateRelocation() { set_relocation_info(GetHeap()->empty_byte_array()); } void Code::Relocate(intptr_t delta) { for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) { it.rinfo()->apply(delta); } CPU::FlushICache(instruction_start(), instruction_size()); } void Code::CopyFrom(const CodeDesc& desc) { ASSERT(Marking::Color(this) == Marking::WHITE_OBJECT); // copy code memmove(instruction_start(), desc.buffer, desc.instr_size); // copy reloc info memmove(relocation_start(), desc.buffer + desc.buffer_size - desc.reloc_size, desc.reloc_size); // unbox handles and relocate intptr_t delta = instruction_start() - desc.buffer; int mode_mask = RelocInfo::kCodeTargetMask | RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | RelocInfo::ModeMask(RelocInfo::GLOBAL_PROPERTY_CELL) | RelocInfo::kApplyMask; Assembler* origin = desc.origin; // Needed to find target_object on X64. for (RelocIterator it(this, mode_mask); !it.done(); it.next()) { RelocInfo::Mode mode = it.rinfo()->rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { Handle<Object> p = it.rinfo()->target_object_handle(origin); it.rinfo()->set_target_object(*p, SKIP_WRITE_BARRIER); } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) { Handle<JSGlobalPropertyCell> cell = it.rinfo()->target_cell_handle(); it.rinfo()->set_target_cell(*cell, SKIP_WRITE_BARRIER); } else if (RelocInfo::IsCodeTarget(mode)) { // rewrite code handles in inline cache targets to direct // pointers to the first instruction in the code object Handle<Object> p = it.rinfo()->target_object_handle(origin); Code* code = Code::cast(*p); it.rinfo()->set_target_address(code->instruction_start(), SKIP_WRITE_BARRIER); } else { it.rinfo()->apply(delta); } } CPU::FlushICache(instruction_start(), instruction_size()); } // Locate the source position which is closest to the address in the code. This // is using the source position information embedded in the relocation info. // The position returned is relative to the beginning of the script where the // source for this function is found. int Code::SourcePosition(Address pc) { int distance = kMaxInt; int position = RelocInfo::kNoPosition; // Initially no position found. // Run through all the relocation info to find the best matching source // position. All the code needs to be considered as the sequence of the // instructions in the code does not necessarily follow the same order as the // source. RelocIterator it(this, RelocInfo::kPositionMask); while (!it.done()) { // Only look at positions after the current pc. if (it.rinfo()->pc() < pc) { // Get position and distance. int dist = static_cast<int>(pc - it.rinfo()->pc()); int pos = static_cast<int>(it.rinfo()->data()); // If this position is closer than the current candidate or if it has the // same distance as the current candidate and the position is higher then // this position is the new candidate. if ((dist < distance) || (dist == distance && pos > position)) { position = pos; distance = dist; } } it.next(); } return position; } // Same as Code::SourcePosition above except it only looks for statement // positions. int Code::SourceStatementPosition(Address pc) { // First find the position as close as possible using all position // information. int position = SourcePosition(pc); // Now find the closest statement position before the position. int statement_position = 0; RelocIterator it(this, RelocInfo::kPositionMask); while (!it.done()) { if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) { int p = static_cast<int>(it.rinfo()->data()); if (statement_position < p && p <= position) { statement_position = p; } } it.next(); } return statement_position; } SafepointEntry Code::GetSafepointEntry(Address pc) { SafepointTable table(this); return table.FindEntry(pc); } void Code::SetNoStackCheckTable() { // Indicate the absence of a stack-check table by a table start after the // end of the instructions. Table start must be aligned, so round up. set_stack_check_table_offset(RoundUp(instruction_size(), kIntSize)); } Map* Code::FindFirstMap() { ASSERT(is_inline_cache_stub()); AssertNoAllocation no_allocation; int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); for (RelocIterator it(this, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Object* object = info->target_object(); if (object->IsMap()) return Map::cast(object); } return NULL; } void Code::ClearInlineCaches() { int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) | RelocInfo::ModeMask(RelocInfo::CONSTRUCT_CALL) | RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID) | RelocInfo::ModeMask(RelocInfo::CODE_TARGET_CONTEXT); for (RelocIterator it(this, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Code* target(Code::GetCodeFromTargetAddress(info->target_address())); if (target->is_inline_cache_stub()) { IC::Clear(info->pc()); } } } #ifdef ENABLE_DISASSEMBLER void DeoptimizationInputData::DeoptimizationInputDataPrint(FILE* out) { disasm::NameConverter converter; int deopt_count = DeoptCount(); PrintF(out, "Deoptimization Input Data (deopt points = %d)\n", deopt_count); if (0 == deopt_count) return; PrintF(out, "%6s %6s %6s %6s %12s\n", "index", "ast id", "argc", "pc", FLAG_print_code_verbose ? "commands" : ""); for (int i = 0; i < deopt_count; i++) { PrintF(out, "%6d %6d %6d %6d", i, AstId(i)->value(), ArgumentsStackHeight(i)->value(), Pc(i)->value()); if (!FLAG_print_code_verbose) { PrintF(out, "\n"); continue; } // Print details of the frame translation. int translation_index = TranslationIndex(i)->value(); TranslationIterator iterator(TranslationByteArray(), translation_index); Translation::Opcode opcode = static_cast<Translation::Opcode>(iterator.Next()); ASSERT(Translation::BEGIN == opcode); int frame_count = iterator.Next(); int jsframe_count = iterator.Next(); PrintF(out, " %s {frame count=%d, js frame count=%d}\n", Translation::StringFor(opcode), frame_count, jsframe_count); while (iterator.HasNext() && Translation::BEGIN != (opcode = static_cast<Translation::Opcode>(iterator.Next()))) { PrintF(out, "%24s %s ", "", Translation::StringFor(opcode)); switch (opcode) { case Translation::BEGIN: UNREACHABLE(); break; case Translation::JS_FRAME: { int ast_id = iterator.Next(); int function_id = iterator.Next(); JSFunction* function = JSFunction::cast(LiteralArray()->get(function_id)); unsigned height = iterator.Next(); PrintF(out, "{ast_id=%d, function=", ast_id); function->PrintName(out); PrintF(out, ", height=%u}", height); break; } case Translation::ARGUMENTS_ADAPTOR_FRAME: case Translation::CONSTRUCT_STUB_FRAME: { int function_id = iterator.Next(); JSFunction* function = JSFunction::cast(LiteralArray()->get(function_id)); unsigned height = iterator.Next(); PrintF(out, "{function="); function->PrintName(out); PrintF(out, ", height=%u}", height); break; } case Translation::DUPLICATE: break; case Translation::REGISTER: { int reg_code = iterator.Next(); PrintF(out, "{input=%s}", converter.NameOfCPURegister(reg_code)); break; } case Translation::INT32_REGISTER: { int reg_code = iterator.Next(); PrintF(out, "{input=%s}", converter.NameOfCPURegister(reg_code)); break; } case Translation::DOUBLE_REGISTER: { int reg_code = iterator.Next(); PrintF(out, "{input=%s}", DoubleRegister::AllocationIndexToString(reg_code)); break; } case Translation::STACK_SLOT: { int input_slot_index = iterator.Next(); PrintF(out, "{input=%d}", input_slot_index); break; } case Translation::INT32_STACK_SLOT: { int input_slot_index = iterator.Next(); PrintF(out, "{input=%d}", input_slot_index); break; } case Translation::DOUBLE_STACK_SLOT: { int input_slot_index = iterator.Next(); PrintF(out, "{input=%d}", input_slot_index); break; } case Translation::LITERAL: { unsigned literal_index = iterator.Next(); PrintF(out, "{literal_id=%u}", literal_index); break; } case Translation::ARGUMENTS_OBJECT: break; } PrintF(out, "\n"); } } } void DeoptimizationOutputData::DeoptimizationOutputDataPrint(FILE* out) { PrintF(out, "Deoptimization Output Data (deopt points = %d)\n", this->DeoptPoints()); if (this->DeoptPoints() == 0) return; PrintF("%6s %8s %s\n", "ast id", "pc", "state"); for (int i = 0; i < this->DeoptPoints(); i++) { int pc_and_state = this->PcAndState(i)->value(); PrintF("%6d %8d %s\n", this->AstId(i)->value(), FullCodeGenerator::PcField::decode(pc_and_state), FullCodeGenerator::State2String( FullCodeGenerator::StateField::decode(pc_and_state))); } } // Identify kind of code. const char* Code::Kind2String(Kind kind) { switch (kind) { case FUNCTION: return "FUNCTION"; case OPTIMIZED_FUNCTION: return "OPTIMIZED_FUNCTION"; case STUB: return "STUB"; case BUILTIN: return "BUILTIN"; case LOAD_IC: return "LOAD_IC"; case KEYED_LOAD_IC: return "KEYED_LOAD_IC"; case STORE_IC: return "STORE_IC"; case KEYED_STORE_IC: return "KEYED_STORE_IC"; case CALL_IC: return "CALL_IC"; case KEYED_CALL_IC: return "KEYED_CALL_IC"; case UNARY_OP_IC: return "UNARY_OP_IC"; case BINARY_OP_IC: return "BINARY_OP_IC"; case COMPARE_IC: return "COMPARE_IC"; case TO_BOOLEAN_IC: return "TO_BOOLEAN_IC"; } UNREACHABLE(); return NULL; } const char* Code::ICState2String(InlineCacheState state) { switch (state) { case UNINITIALIZED: return "UNINITIALIZED"; case PREMONOMORPHIC: return "PREMONOMORPHIC"; case MONOMORPHIC: return "MONOMORPHIC"; case MONOMORPHIC_PROTOTYPE_FAILURE: return "MONOMORPHIC_PROTOTYPE_FAILURE"; case MEGAMORPHIC: return "MEGAMORPHIC"; case DEBUG_BREAK: return "DEBUG_BREAK"; case DEBUG_PREPARE_STEP_IN: return "DEBUG_PREPARE_STEP_IN"; } UNREACHABLE(); return NULL; } const char* Code::PropertyType2String(PropertyType type) { switch (type) { case NORMAL: return "NORMAL"; case FIELD: return "FIELD"; case CONSTANT_FUNCTION: return "CONSTANT_FUNCTION"; case CALLBACKS: return "CALLBACKS"; case HANDLER: return "HANDLER"; case INTERCEPTOR: return "INTERCEPTOR"; case MAP_TRANSITION: return "MAP_TRANSITION"; case ELEMENTS_TRANSITION: return "ELEMENTS_TRANSITION"; case CONSTANT_TRANSITION: return "CONSTANT_TRANSITION"; case NULL_DESCRIPTOR: return "NULL_DESCRIPTOR"; } UNREACHABLE(); // keep the compiler happy return NULL; } void Code::PrintExtraICState(FILE* out, Kind kind, ExtraICState extra) { const char* name = NULL; switch (kind) { case CALL_IC: if (extra == STRING_INDEX_OUT_OF_BOUNDS) { name = "STRING_INDEX_OUT_OF_BOUNDS"; } break; case STORE_IC: case KEYED_STORE_IC: if (extra == kStrictMode) { name = "STRICT"; } break; default: break; } if (name != NULL) { PrintF(out, "extra_ic_state = %s\n", name); } else { PrintF(out, "extra_ic_state = %d\n", extra); } } void Code::Disassemble(const char* name, FILE* out) { PrintF(out, "kind = %s\n", Kind2String(kind())); if (is_inline_cache_stub()) { PrintF(out, "ic_state = %s\n", ICState2String(ic_state())); PrintExtraICState(out, kind(), extra_ic_state()); if (ic_state() == MONOMORPHIC) { PrintF(out, "type = %s\n", PropertyType2String(type())); } if (is_call_stub() || is_keyed_call_stub()) { PrintF(out, "argc = %d\n", arguments_count()); } } if ((name != NULL) && (name[0] != '\0')) { PrintF(out, "name = %s\n", name); } if (kind() == OPTIMIZED_FUNCTION) { PrintF(out, "stack_slots = %d\n", stack_slots()); } PrintF(out, "Instructions (size = %d)\n", instruction_size()); Disassembler::Decode(out, this); PrintF(out, "\n"); if (kind() == FUNCTION) { DeoptimizationOutputData* data = DeoptimizationOutputData::cast(this->deoptimization_data()); data->DeoptimizationOutputDataPrint(out); } else if (kind() == OPTIMIZED_FUNCTION) { DeoptimizationInputData* data = DeoptimizationInputData::cast(this->deoptimization_data()); data->DeoptimizationInputDataPrint(out); } PrintF("\n"); if (kind() == OPTIMIZED_FUNCTION) { SafepointTable table(this); PrintF(out, "Safepoints (size = %u)\n", table.size()); for (unsigned i = 0; i < table.length(); i++) { unsigned pc_offset = table.GetPcOffset(i); PrintF(out, "%p %4d ", (instruction_start() + pc_offset), pc_offset); table.PrintEntry(i); PrintF(out, " (sp -> fp)"); SafepointEntry entry = table.GetEntry(i); if (entry.deoptimization_index() != Safepoint::kNoDeoptimizationIndex) { PrintF(out, " %6d", entry.deoptimization_index()); } else { PrintF(out, " <none>"); } if (entry.argument_count() > 0) { PrintF(out, " argc: %d", entry.argument_count()); } PrintF(out, "\n"); } PrintF(out, "\n"); } else if (kind() == FUNCTION) { unsigned offset = stack_check_table_offset(); // If there is no stack check table, the "table start" will at or after // (due to alignment) the end of the instruction stream. if (static_cast<int>(offset) < instruction_size()) { unsigned* address = reinterpret_cast<unsigned*>(instruction_start() + offset); unsigned length = address[0]; PrintF(out, "Stack checks (size = %u)\n", length); PrintF(out, "ast_id pc_offset\n"); for (unsigned i = 0; i < length; ++i) { unsigned index = (2 * i) + 1; PrintF(out, "%6u %9u\n", address[index], address[index + 1]); } PrintF(out, "\n"); } } PrintF("RelocInfo (size = %d)\n", relocation_size()); for (RelocIterator it(this); !it.done(); it.next()) it.rinfo()->Print(out); PrintF(out, "\n"); } #endif // ENABLE_DISASSEMBLER MaybeObject* JSObject::SetFastElementsCapacityAndLength( int capacity, int length, SetFastElementsCapacityMode set_capacity_mode) { Heap* heap = GetHeap(); // We should never end in here with a pixel or external array. ASSERT(!HasExternalArrayElements()); // Allocate a new fast elements backing store. FixedArray* new_elements; { MaybeObject* maybe = heap->AllocateFixedArrayWithHoles(capacity); if (!maybe->To(&new_elements)) return maybe; } // Find the new map to use for this object if there is a map change. Map* new_map = NULL; if (elements()->map() != heap->non_strict_arguments_elements_map()) { // The resized array has FAST_SMI_ONLY_ELEMENTS if the capacity mode forces // it, or if it's allowed and the old elements array contained only SMIs. bool has_fast_smi_only_elements = (set_capacity_mode == kForceSmiOnlyElements) || ((set_capacity_mode == kAllowSmiOnlyElements) && (elements()->map()->has_fast_smi_only_elements() || elements() == heap->empty_fixed_array())); ElementsKind elements_kind = has_fast_smi_only_elements ? FAST_SMI_ONLY_ELEMENTS : FAST_ELEMENTS; MaybeObject* maybe = GetElementsTransitionMap(GetIsolate(), elements_kind); if (!maybe->To(&new_map)) return maybe; } FixedArrayBase* old_elements = elements(); ElementsKind elements_kind = GetElementsKind(); ElementsAccessor* accessor = ElementsAccessor::ForKind(elements_kind); ElementsKind to_kind = (elements_kind == FAST_SMI_ONLY_ELEMENTS) ? FAST_SMI_ONLY_ELEMENTS : FAST_ELEMENTS; // int copy_size = Min(old_elements_raw->length(), new_elements->length()); accessor->CopyElements(this, new_elements, to_kind); if (elements_kind != NON_STRICT_ARGUMENTS_ELEMENTS) { set_map_and_elements(new_map, new_elements); } else { FixedArray* parameter_map = FixedArray::cast(old_elements); parameter_map->set(1, new_elements); } if (FLAG_trace_elements_transitions) { PrintElementsTransition(stdout, elements_kind, old_elements, GetElementsKind(), new_elements); } // Update the length if necessary. if (IsJSArray()) { JSArray::cast(this)->set_length(Smi::FromInt(length)); } return new_elements; } MaybeObject* JSObject::SetFastDoubleElementsCapacityAndLength( int capacity, int length) { Heap* heap = GetHeap(); // We should never end in here with a pixel or external array. ASSERT(!HasExternalArrayElements()); FixedArrayBase* elems; { MaybeObject* maybe_obj = heap->AllocateUninitializedFixedDoubleArray(capacity); if (!maybe_obj->To(&elems)) return maybe_obj; } Map* new_map; { MaybeObject* maybe_obj = GetElementsTransitionMap(heap->isolate(), FAST_DOUBLE_ELEMENTS); if (!maybe_obj->To(&new_map)) return maybe_obj; } FixedArrayBase* old_elements = elements(); ElementsKind elements_kind = GetElementsKind(); ElementsAccessor* accessor = ElementsAccessor::ForKind(elements_kind); accessor->CopyElements(this, elems, FAST_DOUBLE_ELEMENTS); if (elements_kind != NON_STRICT_ARGUMENTS_ELEMENTS) { set_map_and_elements(new_map, elems); } else { FixedArray* parameter_map = FixedArray::cast(old_elements); parameter_map->set(1, elems); } if (FLAG_trace_elements_transitions) { PrintElementsTransition(stdout, elements_kind, old_elements, FAST_DOUBLE_ELEMENTS, elems); } if (IsJSArray()) { JSArray::cast(this)->set_length(Smi::FromInt(length)); } return this; } MaybeObject* JSArray::Initialize(int capacity) { Heap* heap = GetHeap(); ASSERT(capacity >= 0); set_length(Smi::FromInt(0)); FixedArray* new_elements; if (capacity == 0) { new_elements = heap->empty_fixed_array(); } else { MaybeObject* maybe_obj = heap->AllocateFixedArrayWithHoles(capacity); if (!maybe_obj->To(&new_elements)) return maybe_obj; } set_elements(new_elements); return this; } void JSArray::Expand(int required_size) { GetIsolate()->factory()->SetElementsCapacityAndLength( Handle<JSArray>(this), required_size, required_size); } MaybeObject* JSArray::SetElementsLength(Object* len) { // We should never end in here with a pixel or external array. ASSERT(AllowsSetElementsLength()); return GetElementsAccessor()->SetLength(this, len); } Object* Map::GetPrototypeTransition(Object* prototype) { FixedArray* cache = prototype_transitions(); int number_of_transitions = NumberOfProtoTransitions(); const int proto_offset = kProtoTransitionHeaderSize + kProtoTransitionPrototypeOffset; const int map_offset = kProtoTransitionHeaderSize + kProtoTransitionMapOffset; const int step = kProtoTransitionElementsPerEntry; for (int i = 0; i < number_of_transitions; i++) { if (cache->get(proto_offset + i * step) == prototype) { Object* map = cache->get(map_offset + i * step); ASSERT(map->IsMap()); return map; } } return NULL; } MaybeObject* Map::PutPrototypeTransition(Object* prototype, Map* map) { ASSERT(map->IsMap()); ASSERT(HeapObject::cast(prototype)->map()->IsMap()); // Don't cache prototype transition if this map is shared. if (is_shared() || !FLAG_cache_prototype_transitions) return this; FixedArray* cache = prototype_transitions(); const int step = kProtoTransitionElementsPerEntry; const int header = kProtoTransitionHeaderSize; int capacity = (cache->length() - header) / step; int transitions = NumberOfProtoTransitions() + 1; if (transitions > capacity) { if (capacity > kMaxCachedPrototypeTransitions) return this; FixedArray* new_cache; // Grow array by factor 2 over and above what we need. { MaybeObject* maybe_cache = GetHeap()->AllocateFixedArray(transitions * 2 * step + header); if (!maybe_cache->To(&new_cache)) return maybe_cache; } for (int i = 0; i < capacity * step; i++) { new_cache->set(i + header, cache->get(i + header)); } cache = new_cache; set_prototype_transitions(cache); } int last = transitions - 1; cache->set(header + last * step + kProtoTransitionPrototypeOffset, prototype); cache->set(header + last * step + kProtoTransitionMapOffset, map); SetNumberOfProtoTransitions(transitions); return cache; } MaybeObject* JSReceiver::SetPrototype(Object* value, bool skip_hidden_prototypes) { #ifdef DEBUG int size = Size(); #endif Heap* heap = GetHeap(); // Silently ignore the change if value is not a JSObject or null. // SpiderMonkey behaves this way. if (!value->IsJSReceiver() && !value->IsNull()) return value; // From 8.6.2 Object Internal Methods // ... // In addition, if [[Extensible]] is false the value of the [[Class]] and // [[Prototype]] internal properties of the object may not be modified. // ... // Implementation specific extensions that modify [[Class]], [[Prototype]] // or [[Extensible]] must not violate the invariants defined in the preceding // paragraph. if (!this->map()->is_extensible()) { HandleScope scope(heap->isolate()); Handle<Object> handle(this, heap->isolate()); return heap->isolate()->Throw( *FACTORY->NewTypeError("non_extensible_proto", HandleVector<Object>(&handle, 1))); } // Before we can set the prototype we need to be sure // prototype cycles are prevented. // It is sufficient to validate that the receiver is not in the new prototype // chain. for (Object* pt = value; pt != heap->null_value(); pt = pt->GetPrototype()) { if (JSReceiver::cast(pt) == this) { // Cycle detected. HandleScope scope(heap->isolate()); return heap->isolate()->Throw( *FACTORY->NewError("cyclic_proto", HandleVector<Object>(NULL, 0))); } } JSReceiver* real_receiver = this; if (skip_hidden_prototypes) { // Find the first object in the chain whose prototype object is not // hidden and set the new prototype on that object. Object* current_proto = real_receiver->GetPrototype(); while (current_proto->IsJSObject() && JSReceiver::cast(current_proto)->map()->is_hidden_prototype()) { real_receiver = JSReceiver::cast(current_proto); current_proto = current_proto->GetPrototype(); } } // Set the new prototype of the object. Map* map = real_receiver->map(); // Nothing to do if prototype is already set. if (map->prototype() == value) return value; Object* new_map = map->GetPrototypeTransition(value); if (new_map == NULL) { { MaybeObject* maybe_new_map = map->CopyDropTransitions(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } { MaybeObject* maybe_new_cache = map->PutPrototypeTransition(value, Map::cast(new_map)); if (maybe_new_cache->IsFailure()) return maybe_new_cache; } Map::cast(new_map)->set_prototype(value); } ASSERT(Map::cast(new_map)->prototype() == value); real_receiver->set_map(Map::cast(new_map)); heap->ClearInstanceofCache(); ASSERT(size == Size()); return value; } MaybeObject* JSObject::EnsureCanContainElements(Arguments* args, uint32_t first_arg, uint32_t arg_count, EnsureElementsMode mode) { // Elements in |Arguments| are ordered backwards (because they're on the // stack), but the method that's called here iterates over them in forward // direction. return EnsureCanContainElements( args->arguments() - first_arg - (arg_count - 1), arg_count, mode); } bool JSObject::HasElementWithInterceptor(JSReceiver* receiver, uint32_t index) { Isolate* isolate = GetIsolate(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc; HandleScope scope(isolate); Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); Handle<JSReceiver> receiver_handle(receiver); Handle<JSObject> holder_handle(this); CustomArguments args(isolate, interceptor->data(), receiver, this); v8::AccessorInfo info(args.end()); if (!interceptor->query()->IsUndefined()) { v8::IndexedPropertyQuery query = v8::ToCData<v8::IndexedPropertyQuery>(interceptor->query()); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-has", this, index)); v8::Handle<v8::Integer> result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = query(index, info); } if (!result.IsEmpty()) { ASSERT(result->IsInt32()); return true; // absence of property is signaled by empty handle. } } else if (!interceptor->getter()->IsUndefined()) { v8::IndexedPropertyGetter getter = v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter()); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-has-get", this, index)); v8::Handle<v8::Value> result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = getter(index, info); } if (!result.IsEmpty()) return true; } if (holder_handle->GetElementsAccessor()->HasElement( *receiver_handle, *holder_handle, index)) { return true; } if (holder_handle->IsStringObjectWithCharacterAt(index)) return true; Object* pt = holder_handle->GetPrototype(); if (pt->IsJSProxy()) { // We need to follow the spec and simulate a call to [[GetOwnProperty]]. return JSProxy::cast(pt)->GetElementAttributeWithHandler( receiver, index) != ABSENT; } if (pt->IsNull()) return false; return JSObject::cast(pt)->HasElementWithReceiver(*receiver_handle, index); } JSObject::LocalElementType JSObject::HasLocalElement(uint32_t index) { // Check access rights if needed. if (IsAccessCheckNeeded()) { Heap* heap = GetHeap(); if (!heap->isolate()->MayIndexedAccess(this, index, v8::ACCESS_HAS)) { heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); return UNDEFINED_ELEMENT; } } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return UNDEFINED_ELEMENT; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->HasLocalElement(index); } // Check for lookup interceptor if (HasIndexedInterceptor()) { return HasElementWithInterceptor(this, index) ? INTERCEPTED_ELEMENT : UNDEFINED_ELEMENT; } // Handle [] on String objects. if (this->IsStringObjectWithCharacterAt(index)) { return STRING_CHARACTER_ELEMENT; } switch (GetElementsKind()) { case FAST_SMI_ONLY_ELEMENTS: case FAST_ELEMENTS: { uint32_t length = IsJSArray() ? static_cast<uint32_t> (Smi::cast(JSArray::cast(this)->length())->value()) : static_cast<uint32_t>(FixedArray::cast(elements())->length()); if ((index < length) && !FixedArray::cast(elements())->get(index)->IsTheHole()) { return FAST_ELEMENT; } break; } case FAST_DOUBLE_ELEMENTS: { uint32_t length = IsJSArray() ? static_cast<uint32_t> (Smi::cast(JSArray::cast(this)->length())->value()) : static_cast<uint32_t>(FixedDoubleArray::cast(elements())->length()); if ((index < length) && !FixedDoubleArray::cast(elements())->is_the_hole(index)) { return FAST_ELEMENT; } break; } case EXTERNAL_PIXEL_ELEMENTS: { ExternalPixelArray* pixels = ExternalPixelArray::cast(elements()); if (index < static_cast<uint32_t>(pixels->length())) return FAST_ELEMENT; break; } case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: { ExternalArray* array = ExternalArray::cast(elements()); if (index < static_cast<uint32_t>(array->length())) return FAST_ELEMENT; break; } case DICTIONARY_ELEMENTS: { if (element_dictionary()->FindEntry(index) != SeededNumberDictionary::kNotFound) { return DICTIONARY_ELEMENT; } break; } case NON_STRICT_ARGUMENTS_ELEMENTS: { // Aliased parameters and non-aliased elements in a fast backing store // behave as FAST_ELEMENT. Non-aliased elements in a dictionary // backing store behave as DICTIONARY_ELEMENT. FixedArray* parameter_map = FixedArray::cast(elements()); uint32_t length = parameter_map->length(); Object* probe = index < (length - 2) ? parameter_map->get(index + 2) : NULL; if (probe != NULL && !probe->IsTheHole()) return FAST_ELEMENT; // If not aliased, check the arguments. FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); if (arguments->IsDictionary()) { SeededNumberDictionary* dictionary = SeededNumberDictionary::cast(arguments); if (dictionary->FindEntry(index) != SeededNumberDictionary::kNotFound) { return DICTIONARY_ELEMENT; } } else { length = arguments->length(); probe = (index < length) ? arguments->get(index) : NULL; if (probe != NULL && !probe->IsTheHole()) return FAST_ELEMENT; } break; } } return UNDEFINED_ELEMENT; } bool JSObject::HasElementWithReceiver(JSReceiver* receiver, uint32_t index) { // Check access rights if needed. if (IsAccessCheckNeeded()) { Heap* heap = GetHeap(); if (!heap->isolate()->MayIndexedAccess(this, index, v8::ACCESS_HAS)) { heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); return false; } } // Check for lookup interceptor if (HasIndexedInterceptor()) { return HasElementWithInterceptor(receiver, index); } ElementsAccessor* accessor = GetElementsAccessor(); if (accessor->HasElement(receiver, this, index)) { return true; } // Handle [] on String objects. if (this->IsStringObjectWithCharacterAt(index)) return true; Object* pt = GetPrototype(); if (pt->IsNull()) return false; if (pt->IsJSProxy()) { // We need to follow the spec and simulate a call to [[GetOwnProperty]]. return JSProxy::cast(pt)->GetElementAttributeWithHandler( receiver, index) != ABSENT; } return JSObject::cast(pt)->HasElementWithReceiver(receiver, index); } MaybeObject* JSObject::SetElementWithInterceptor(uint32_t index, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode, bool check_prototype, SetPropertyMode set_mode) { Isolate* isolate = GetIsolate(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc; HandleScope scope(isolate); Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); Handle<JSObject> this_handle(this); Handle<Object> value_handle(value, isolate); if (!interceptor->setter()->IsUndefined()) { v8::IndexedPropertySetter setter = v8::ToCData<v8::IndexedPropertySetter>(interceptor->setter()); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-set", this, index)); CustomArguments args(isolate, interceptor->data(), this, this); v8::AccessorInfo info(args.end()); v8::Handle<v8::Value> result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = setter(index, v8::Utils::ToLocal(value_handle), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!result.IsEmpty()) return *value_handle; } MaybeObject* raw_result = this_handle->SetElementWithoutInterceptor(index, *value_handle, attributes, strict_mode, check_prototype, set_mode); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return raw_result; } MaybeObject* JSObject::GetElementWithCallback(Object* receiver, Object* structure, uint32_t index, Object* holder) { Isolate* isolate = GetIsolate(); ASSERT(!structure->IsForeign()); // api style callbacks. if (structure->IsAccessorInfo()) { Handle<AccessorInfo> data(AccessorInfo::cast(structure)); Object* fun_obj = data->getter(); v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj); HandleScope scope(isolate); Handle<JSObject> self(JSObject::cast(receiver)); Handle<JSObject> holder_handle(JSObject::cast(holder)); Handle<Object> number = isolate->factory()->NewNumberFromUint(index); Handle<String> key = isolate->factory()->NumberToString(number); LOG(isolate, ApiNamedPropertyAccess("load", *self, *key)); CustomArguments args(isolate, data->data(), *self, *holder_handle); v8::AccessorInfo info(args.end()); v8::Handle<v8::Value> result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = call_fun(v8::Utils::ToLocal(key), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (result.IsEmpty()) return isolate->heap()->undefined_value(); return *v8::Utils::OpenHandle(*result); } // __defineGetter__ callback if (structure->IsAccessorPair()) { Object* getter = AccessorPair::cast(structure)->getter(); if (getter->IsSpecFunction()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return GetPropertyWithDefinedGetter(receiver, JSReceiver::cast(getter)); } // Getter is not a function. return isolate->heap()->undefined_value(); } UNREACHABLE(); return NULL; } MaybeObject* JSObject::SetElementWithCallback(Object* structure, uint32_t index, Object* value, JSObject* holder, StrictModeFlag strict_mode) { Isolate* isolate = GetIsolate(); HandleScope scope(isolate); // We should never get here to initialize a const with the hole // value since a const declaration would conflict with the setter. ASSERT(!value->IsTheHole()); Handle<Object> value_handle(value, isolate); // To accommodate both the old and the new api we switch on the // data structure used to store the callbacks. Eventually foreign // callbacks should be phased out. ASSERT(!structure->IsForeign()); if (structure->IsAccessorInfo()) { // api style callbacks Handle<JSObject> self(this); Handle<JSObject> holder_handle(JSObject::cast(holder)); Handle<AccessorInfo> data(AccessorInfo::cast(structure)); Object* call_obj = data->setter(); v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj); if (call_fun == NULL) return value; Handle<Object> number = isolate->factory()->NewNumberFromUint(index); Handle<String> key(isolate->factory()->NumberToString(number)); LOG(isolate, ApiNamedPropertyAccess("store", *self, *key)); CustomArguments args(isolate, data->data(), *self, *holder_handle); v8::AccessorInfo info(args.end()); { // Leaving JavaScript. VMState state(isolate, EXTERNAL); call_fun(v8::Utils::ToLocal(key), v8::Utils::ToLocal(value_handle), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); return *value_handle; } if (structure->IsAccessorPair()) { Handle<Object> setter(AccessorPair::cast(structure)->setter()); if (setter->IsSpecFunction()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return SetPropertyWithDefinedSetter(JSReceiver::cast(*setter), value); } else { if (strict_mode == kNonStrictMode) { return value; } Handle<Object> holder_handle(holder, isolate); Handle<Object> key(isolate->factory()->NewNumberFromUint(index)); Handle<Object> args[2] = { key, holder_handle }; return isolate->Throw( *isolate->factory()->NewTypeError("no_setter_in_callback", HandleVector(args, 2))); } } UNREACHABLE(); return NULL; } bool JSObject::HasFastArgumentsElements() { Heap* heap = GetHeap(); if (!elements()->IsFixedArray()) return false; FixedArray* elements = FixedArray::cast(this->elements()); if (elements->map() != heap->non_strict_arguments_elements_map()) { return false; } FixedArray* arguments = FixedArray::cast(elements->get(1)); return !arguments->IsDictionary(); } bool JSObject::HasDictionaryArgumentsElements() { Heap* heap = GetHeap(); if (!elements()->IsFixedArray()) return false; FixedArray* elements = FixedArray::cast(this->elements()); if (elements->map() != heap->non_strict_arguments_elements_map()) { return false; } FixedArray* arguments = FixedArray::cast(elements->get(1)); return arguments->IsDictionary(); } // Adding n elements in fast case is O(n*n). // Note: revisit design to have dual undefined values to capture absent // elements. MaybeObject* JSObject::SetFastElement(uint32_t index, Object* value, StrictModeFlag strict_mode, bool check_prototype) { ASSERT(HasFastTypeElements() || HasFastArgumentsElements()); FixedArray* backing_store = FixedArray::cast(elements()); if (backing_store->map() == GetHeap()->non_strict_arguments_elements_map()) { backing_store = FixedArray::cast(backing_store->get(1)); } else { MaybeObject* maybe = EnsureWritableFastElements(); if (!maybe->To(&backing_store)) return maybe; } uint32_t capacity = static_cast<uint32_t>(backing_store->length()); if (check_prototype && (index >= capacity || backing_store->get(index)->IsTheHole())) { bool found; MaybeObject* result = SetElementWithCallbackSetterInPrototypes(index, value, &found, strict_mode); if (found) return result; } uint32_t new_capacity = capacity; // Check if the length property of this object needs to be updated. uint32_t array_length = 0; bool must_update_array_length = false; if (IsJSArray()) { CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_length)); if (index >= array_length) { must_update_array_length = true; array_length = index + 1; } } // Check if the capacity of the backing store needs to be increased, or if // a transition to slow elements is necessary. if (index >= capacity) { bool convert_to_slow = true; if ((index - capacity) < kMaxGap) { new_capacity = NewElementsCapacity(index + 1); ASSERT(new_capacity > index); if (!ShouldConvertToSlowElements(new_capacity)) { convert_to_slow = false; } } if (convert_to_slow) { MaybeObject* result = NormalizeElements(); if (result->IsFailure()) return result; return SetDictionaryElement(index, value, NONE, strict_mode, check_prototype); } } // Convert to fast double elements if appropriate. if (HasFastSmiOnlyElements() && !value->IsSmi() && value->IsNumber()) { MaybeObject* maybe = SetFastDoubleElementsCapacityAndLength(new_capacity, array_length); if (maybe->IsFailure()) return maybe; FixedDoubleArray::cast(elements())->set(index, value->Number()); return value; } // Change elements kind from SMI_ONLY to generic FAST if necessary. if (HasFastSmiOnlyElements() && !value->IsSmi()) { Map* new_map; { MaybeObject* maybe_new_map = GetElementsTransitionMap(GetIsolate(), FAST_ELEMENTS); if (!maybe_new_map->To(&new_map)) return maybe_new_map; } set_map(new_map); if (FLAG_trace_elements_transitions) { PrintElementsTransition(stdout, FAST_SMI_ONLY_ELEMENTS, elements(), FAST_ELEMENTS, elements()); } } // Increase backing store capacity if that's been decided previously. if (new_capacity != capacity) { FixedArray* new_elements; SetFastElementsCapacityMode set_capacity_mode = value->IsSmi() && HasFastSmiOnlyElements() ? kAllowSmiOnlyElements : kDontAllowSmiOnlyElements; { MaybeObject* maybe = SetFastElementsCapacityAndLength(new_capacity, array_length, set_capacity_mode); if (!maybe->To(&new_elements)) return maybe; } new_elements->set(index, value); return value; } // Finally, set the new element and length. ASSERT(elements()->IsFixedArray()); backing_store->set(index, value); if (must_update_array_length) { JSArray::cast(this)->set_length(Smi::FromInt(array_length)); } return value; } MaybeObject* JSObject::SetDictionaryElement(uint32_t index, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode, bool check_prototype, SetPropertyMode set_mode) { ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements()); Isolate* isolate = GetIsolate(); Heap* heap = isolate->heap(); // Insert element in the dictionary. FixedArray* elements = FixedArray::cast(this->elements()); bool is_arguments = (elements->map() == heap->non_strict_arguments_elements_map()); SeededNumberDictionary* dictionary = NULL; if (is_arguments) { dictionary = SeededNumberDictionary::cast(elements->get(1)); } else { dictionary = SeededNumberDictionary::cast(elements); } int entry = dictionary->FindEntry(index); if (entry != SeededNumberDictionary::kNotFound) { Object* element = dictionary->ValueAt(entry); PropertyDetails details = dictionary->DetailsAt(entry); if (details.type() == CALLBACKS && set_mode == SET_PROPERTY) { return SetElementWithCallback(element, index, value, this, strict_mode); } else { dictionary->UpdateMaxNumberKey(index); // If a value has not been initialized we allow writing to it even if it // is read-only (a declared const that has not been initialized). If a // value is being defined we skip attribute checks completely. if (set_mode == DEFINE_PROPERTY) { details = PropertyDetails(attributes, NORMAL, details.index()); dictionary->DetailsAtPut(entry, details); } else if (details.IsReadOnly() && !element->IsTheHole()) { if (strict_mode == kNonStrictMode) { return isolate->heap()->undefined_value(); } else { Handle<Object> holder(this); Handle<Object> number = isolate->factory()->NewNumberFromUint(index); Handle<Object> args[2] = { number, holder }; Handle<Object> error = isolate->factory()->NewTypeError("strict_read_only_property", HandleVector(args, 2)); return isolate->Throw(*error); } } // Elements of the arguments object in slow mode might be slow aliases. if (is_arguments && element->IsAliasedArgumentsEntry()) { AliasedArgumentsEntry* entry = AliasedArgumentsEntry::cast(element); Context* context = Context::cast(elements->get(0)); int context_index = entry->aliased_context_slot(); ASSERT(!context->get(context_index)->IsTheHole()); context->set(context_index, value); // For elements that are still writable we keep slow aliasing. if (!details.IsReadOnly()) value = element; } dictionary->ValueAtPut(entry, value); } } else { // Index not already used. Look for an accessor in the prototype chain. if (check_prototype) { bool found; MaybeObject* result = SetElementWithCallbackSetterInPrototypes( index, value, &found, strict_mode); if (found) return result; } // When we set the is_extensible flag to false we always force the // element into dictionary mode (and force them to stay there). if (!map()->is_extensible()) { if (strict_mode == kNonStrictMode) { return isolate->heap()->undefined_value(); } else { Handle<Object> number = isolate->factory()->NewNumberFromUint(index); Handle<String> name = isolate->factory()->NumberToString(number); Handle<Object> args[1] = { name }; Handle<Object> error = isolate->factory()->NewTypeError("object_not_extensible", HandleVector(args, 1)); return isolate->Throw(*error); } } FixedArrayBase* new_dictionary; PropertyDetails details = PropertyDetails(attributes, NORMAL); MaybeObject* maybe = dictionary->AddNumberEntry(index, value, details); if (!maybe->To(&new_dictionary)) return maybe; if (dictionary != SeededNumberDictionary::cast(new_dictionary)) { if (is_arguments) { elements->set(1, new_dictionary); } else { set_elements(new_dictionary); } dictionary = SeededNumberDictionary::cast(new_dictionary); } } // Update the array length if this JSObject is an array. if (IsJSArray()) { MaybeObject* result = JSArray::cast(this)->JSArrayUpdateLengthFromIndex(index, value); if (result->IsFailure()) return result; } // Attempt to put this object back in fast case. if (ShouldConvertToFastElements()) { uint32_t new_length = 0; if (IsJSArray()) { CHECK(JSArray::cast(this)->length()->ToArrayIndex(&new_length)); } else { new_length = dictionary->max_number_key() + 1; } SetFastElementsCapacityMode set_capacity_mode = FLAG_smi_only_arrays ? kAllowSmiOnlyElements : kDontAllowSmiOnlyElements; bool has_smi_only_elements = false; bool should_convert_to_fast_double_elements = ShouldConvertToFastDoubleElements(&has_smi_only_elements); if (has_smi_only_elements) { set_capacity_mode = kForceSmiOnlyElements; } MaybeObject* result = should_convert_to_fast_double_elements ? SetFastDoubleElementsCapacityAndLength(new_length, new_length) : SetFastElementsCapacityAndLength(new_length, new_length, set_capacity_mode); if (result->IsFailure()) return result; #ifdef DEBUG if (FLAG_trace_normalization) { PrintF("Object elements are fast case again:\n"); Print(); } #endif } return value; } MUST_USE_RESULT MaybeObject* JSObject::SetFastDoubleElement( uint32_t index, Object* value, StrictModeFlag strict_mode, bool check_prototype) { ASSERT(HasFastDoubleElements()); FixedArrayBase* base_elms = FixedArrayBase::cast(elements()); uint32_t elms_length = static_cast<uint32_t>(base_elms->length()); // If storing to an element that isn't in the array, pass the store request // up the prototype chain before storing in the receiver's elements. if (check_prototype && (index >= elms_length || FixedDoubleArray::cast(base_elms)->is_the_hole(index))) { bool found; MaybeObject* result = SetElementWithCallbackSetterInPrototypes(index, value, &found, strict_mode); if (found) return result; } // If the value object is not a heap number, switch to fast elements and try // again. bool value_is_smi = value->IsSmi(); if (!value->IsNumber()) { Object* obj; uint32_t length = elms_length; if (IsJSArray()) { CHECK(JSArray::cast(this)->length()->ToArrayIndex(&length)); } MaybeObject* maybe_obj = SetFastElementsCapacityAndLength( elms_length, length, kDontAllowSmiOnlyElements); if (!maybe_obj->ToObject(&obj)) return maybe_obj; return SetFastElement(index, value, strict_mode, check_prototype); } double double_value = value_is_smi ? static_cast<double>(Smi::cast(value)->value()) : HeapNumber::cast(value)->value(); // Check whether there is extra space in the fixed array. if (index < elms_length) { FixedDoubleArray* elms = FixedDoubleArray::cast(elements()); elms->set(index, double_value); if (IsJSArray()) { // Update the length of the array if needed. uint32_t array_length = 0; CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_length)); if (index >= array_length) { JSArray::cast(this)->set_length(Smi::FromInt(index + 1)); } } return value; } // Allow gap in fast case. if ((index - elms_length) < kMaxGap) { // Try allocating extra space. int new_capacity = NewElementsCapacity(index+1); if (!ShouldConvertToSlowElements(new_capacity)) { ASSERT(static_cast<uint32_t>(new_capacity) > index); Object* obj; { MaybeObject* maybe_obj = SetFastDoubleElementsCapacityAndLength(new_capacity, index + 1); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } FixedDoubleArray::cast(elements())->set(index, double_value); return value; } } // Otherwise default to slow case. ASSERT(HasFastDoubleElements()); ASSERT(map()->has_fast_double_elements()); ASSERT(elements()->IsFixedDoubleArray()); Object* obj; { MaybeObject* maybe_obj = NormalizeElements(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } ASSERT(HasDictionaryElements()); return SetElement(index, value, NONE, strict_mode, check_prototype); } MaybeObject* JSReceiver::SetElement(uint32_t index, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode, bool check_proto) { if (IsJSProxy()) { return JSProxy::cast(this)->SetElementWithHandler( index, value, strict_mode); } else { return JSObject::cast(this)->SetElement( index, value, attributes, strict_mode, check_proto); } } Handle<Object> JSObject::SetOwnElement(Handle<JSObject> object, uint32_t index, Handle<Object> value, StrictModeFlag strict_mode) { ASSERT(!object->HasExternalArrayElements()); CALL_HEAP_FUNCTION( object->GetIsolate(), object->SetElement(index, *value, NONE, strict_mode, false), Object); } Handle<Object> JSObject::SetElement(Handle<JSObject> object, uint32_t index, Handle<Object> value, PropertyAttributes attr, StrictModeFlag strict_mode, SetPropertyMode set_mode) { if (object->HasExternalArrayElements()) { if (!value->IsSmi() && !value->IsHeapNumber() && !value->IsUndefined()) { bool has_exception; Handle<Object> number = Execution::ToNumber(value, &has_exception); if (has_exception) return Handle<Object>(); value = number; } } CALL_HEAP_FUNCTION( object->GetIsolate(), object->SetElement(index, *value, attr, strict_mode, true, set_mode), Object); } MaybeObject* JSObject::SetElement(uint32_t index, Object* value, PropertyAttributes attributes, StrictModeFlag strict_mode, bool check_prototype, SetPropertyMode set_mode) { // Check access rights if needed. if (IsAccessCheckNeeded()) { Heap* heap = GetHeap(); if (!heap->isolate()->MayIndexedAccess(this, index, v8::ACCESS_SET)) { HandleScope scope(heap->isolate()); Handle<Object> value_handle(value); heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_SET); return *value_handle; } } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return value; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->SetElement(index, value, attributes, strict_mode, check_prototype, set_mode); } // Don't allow element properties to be redefined for external arrays. if (HasExternalArrayElements() && set_mode == DEFINE_PROPERTY) { Isolate* isolate = GetHeap()->isolate(); Handle<Object> number = isolate->factory()->NewNumberFromUint(index); Handle<Object> args[] = { Handle<Object>(this), number }; Handle<Object> error = isolate->factory()->NewTypeError( "redef_external_array_element", HandleVector(args, ARRAY_SIZE(args))); return isolate->Throw(*error); } // Normalize the elements to enable attributes on the property. if ((attributes & (DONT_DELETE | DONT_ENUM | READ_ONLY)) != 0) { SeededNumberDictionary* dictionary; MaybeObject* maybe_object = NormalizeElements(); if (!maybe_object->To(&dictionary)) return maybe_object; // Make sure that we never go back to fast case. dictionary->set_requires_slow_elements(); } // Check for lookup interceptor if (HasIndexedInterceptor()) { return SetElementWithInterceptor(index, value, attributes, strict_mode, check_prototype, set_mode); } return SetElementWithoutInterceptor(index, value, attributes, strict_mode, check_prototype, set_mode); } MaybeObject* JSObject::SetElementWithoutInterceptor(uint32_t index, Object* value, PropertyAttributes attr, StrictModeFlag strict_mode, bool check_prototype, SetPropertyMode set_mode) { ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements() || (attr & (DONT_DELETE | DONT_ENUM | READ_ONLY)) == 0); Isolate* isolate = GetIsolate(); switch (GetElementsKind()) { case FAST_SMI_ONLY_ELEMENTS: case FAST_ELEMENTS: return SetFastElement(index, value, strict_mode, check_prototype); case FAST_DOUBLE_ELEMENTS: return SetFastDoubleElement(index, value, strict_mode, check_prototype); case EXTERNAL_PIXEL_ELEMENTS: { ExternalPixelArray* pixels = ExternalPixelArray::cast(elements()); return pixels->SetValue(index, value); } case EXTERNAL_BYTE_ELEMENTS: { ExternalByteArray* array = ExternalByteArray::cast(elements()); return array->SetValue(index, value); } case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: { ExternalUnsignedByteArray* array = ExternalUnsignedByteArray::cast(elements()); return array->SetValue(index, value); } case EXTERNAL_SHORT_ELEMENTS: { ExternalShortArray* array = ExternalShortArray::cast(elements()); return array->SetValue(index, value); } case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: { ExternalUnsignedShortArray* array = ExternalUnsignedShortArray::cast(elements()); return array->SetValue(index, value); } case EXTERNAL_INT_ELEMENTS: { ExternalIntArray* array = ExternalIntArray::cast(elements()); return array->SetValue(index, value); } case EXTERNAL_UNSIGNED_INT_ELEMENTS: { ExternalUnsignedIntArray* array = ExternalUnsignedIntArray::cast(elements()); return array->SetValue(index, value); } case EXTERNAL_FLOAT_ELEMENTS: { ExternalFloatArray* array = ExternalFloatArray::cast(elements()); return array->SetValue(index, value); } case EXTERNAL_DOUBLE_ELEMENTS: { ExternalDoubleArray* array = ExternalDoubleArray::cast(elements()); return array->SetValue(index, value); } case DICTIONARY_ELEMENTS: return SetDictionaryElement(index, value, attr, strict_mode, check_prototype, set_mode); case NON_STRICT_ARGUMENTS_ELEMENTS: { FixedArray* parameter_map = FixedArray::cast(elements()); uint32_t length = parameter_map->length(); Object* probe = (index < length - 2) ? parameter_map->get(index + 2) : NULL; if (probe != NULL && !probe->IsTheHole()) { Context* context = Context::cast(parameter_map->get(0)); int context_index = Smi::cast(probe)->value(); ASSERT(!context->get(context_index)->IsTheHole()); context->set(context_index, value); // Redefining attributes of an aliased element destroys fast aliasing. if (set_mode == SET_PROPERTY || attr == NONE) return value; parameter_map->set_the_hole(index + 2); // For elements that are still writable we re-establish slow aliasing. if ((attr & READ_ONLY) == 0) { MaybeObject* maybe_entry = isolate->heap()->AllocateAliasedArgumentsEntry(context_index); if (!maybe_entry->ToObject(&value)) return maybe_entry; } } FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); if (arguments->IsDictionary()) { return SetDictionaryElement(index, value, attr, strict_mode, check_prototype, set_mode); } else { return SetFastElement(index, value, strict_mode, check_prototype); } } } // All possible cases have been handled above. Add a return to avoid the // complaints from the compiler. UNREACHABLE(); return isolate->heap()->null_value(); } Handle<Object> JSObject::TransitionElementsKind(Handle<JSObject> object, ElementsKind to_kind) { CALL_HEAP_FUNCTION(object->GetIsolate(), object->TransitionElementsKind(to_kind), Object); } MaybeObject* JSObject::TransitionElementsKind(ElementsKind to_kind) { ElementsKind from_kind = map()->elements_kind(); Isolate* isolate = GetIsolate(); if ((from_kind == FAST_SMI_ONLY_ELEMENTS || elements() == isolate->heap()->empty_fixed_array()) && to_kind == FAST_ELEMENTS) { ASSERT(from_kind != FAST_ELEMENTS); MaybeObject* maybe_new_map = GetElementsTransitionMap(isolate, to_kind); Map* new_map; if (!maybe_new_map->To(&new_map)) return maybe_new_map; set_map(new_map); if (FLAG_trace_elements_transitions) { FixedArrayBase* elms = FixedArrayBase::cast(elements()); PrintElementsTransition(stdout, from_kind, elms, to_kind, elms); } return this; } FixedArrayBase* elms = FixedArrayBase::cast(elements()); uint32_t capacity = static_cast<uint32_t>(elms->length()); uint32_t length = capacity; if (IsJSArray()) { Object* raw_length = JSArray::cast(this)->length(); if (raw_length->IsUndefined()) { // If length is undefined, then JSArray is being initialized and has no // elements, assume a length of zero. length = 0; } else { CHECK(JSArray::cast(this)->length()->ToArrayIndex(&length)); } } if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_DOUBLE_ELEMENTS) { MaybeObject* maybe_result = SetFastDoubleElementsCapacityAndLength(capacity, length); if (maybe_result->IsFailure()) return maybe_result; return this; } if (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS) { MaybeObject* maybe_result = SetFastElementsCapacityAndLength( capacity, length, kDontAllowSmiOnlyElements); if (maybe_result->IsFailure()) return maybe_result; return this; } // This method should never be called for any other case than the ones // handled above. UNREACHABLE(); return GetIsolate()->heap()->null_value(); } // static bool Map::IsValidElementsTransition(ElementsKind from_kind, ElementsKind to_kind) { return (from_kind == FAST_SMI_ONLY_ELEMENTS && (to_kind == FAST_DOUBLE_ELEMENTS || to_kind == FAST_ELEMENTS)) || (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS); } MaybeObject* JSArray::JSArrayUpdateLengthFromIndex(uint32_t index, Object* value) { uint32_t old_len = 0; CHECK(length()->ToArrayIndex(&old_len)); // Check to see if we need to update the length. For now, we make // sure that the length stays within 32-bits (unsigned). if (index >= old_len && index != 0xffffffff) { Object* len; { MaybeObject* maybe_len = GetHeap()->NumberFromDouble(static_cast<double>(index) + 1); if (!maybe_len->ToObject(&len)) return maybe_len; } set_length(len); } return value; } MaybeObject* JSObject::GetElementWithInterceptor(Object* receiver, uint32_t index) { Isolate* isolate = GetIsolate(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc; HandleScope scope(isolate); Handle<InterceptorInfo> interceptor(GetIndexedInterceptor(), isolate); Handle<Object> this_handle(receiver, isolate); Handle<JSObject> holder_handle(this, isolate); if (!interceptor->getter()->IsUndefined()) { v8::IndexedPropertyGetter getter = v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter()); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-get", this, index)); CustomArguments args(isolate, interceptor->data(), receiver, this); v8::AccessorInfo info(args.end()); v8::Handle<v8::Value> result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = getter(index, info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result); } Heap* heap = holder_handle->GetHeap(); ElementsAccessor* handler = holder_handle->GetElementsAccessor(); MaybeObject* raw_result = handler->Get(*this_handle, *holder_handle, index); if (raw_result != heap->the_hole_value()) return raw_result; RETURN_IF_SCHEDULED_EXCEPTION(isolate); Object* pt = holder_handle->GetPrototype(); if (pt == heap->null_value()) return heap->undefined_value(); return pt->GetElementWithReceiver(*this_handle, index); } bool JSObject::HasDenseElements() { int capacity = 0; int used = 0; GetElementsCapacityAndUsage(&capacity, &used); return (capacity == 0) || (used > (capacity / 2)); } void JSObject::GetElementsCapacityAndUsage(int* capacity, int* used) { *capacity = 0; *used = 0; FixedArrayBase* backing_store_base = FixedArrayBase::cast(elements()); FixedArray* backing_store = NULL; switch (GetElementsKind()) { case NON_STRICT_ARGUMENTS_ELEMENTS: backing_store_base = FixedArray::cast(FixedArray::cast(backing_store_base)->get(1)); backing_store = FixedArray::cast(backing_store_base); if (backing_store->IsDictionary()) { SeededNumberDictionary* dictionary = SeededNumberDictionary::cast(backing_store); *capacity = dictionary->Capacity(); *used = dictionary->NumberOfElements(); break; } // Fall through. case FAST_SMI_ONLY_ELEMENTS: case FAST_ELEMENTS: backing_store = FixedArray::cast(backing_store_base); *capacity = backing_store->length(); for (int i = 0; i < *capacity; ++i) { if (!backing_store->get(i)->IsTheHole()) ++(*used); } break; case DICTIONARY_ELEMENTS: { SeededNumberDictionary* dictionary = SeededNumberDictionary::cast(FixedArray::cast(elements())); *capacity = dictionary->Capacity(); *used = dictionary->NumberOfElements(); break; } case FAST_DOUBLE_ELEMENTS: { FixedDoubleArray* elms = FixedDoubleArray::cast(elements()); *capacity = elms->length(); for (int i = 0; i < *capacity; i++) { if (!elms->is_the_hole(i)) ++(*used); } break; } case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case EXTERNAL_PIXEL_ELEMENTS: // External arrays are considered 100% used. ExternalArray* external_array = ExternalArray::cast(elements()); *capacity = external_array->length(); *used = external_array->length(); break; } } bool JSObject::ShouldConvertToSlowElements(int new_capacity) { STATIC_ASSERT(kMaxUncheckedOldFastElementsLength <= kMaxUncheckedFastElementsLength); if (new_capacity <= kMaxUncheckedOldFastElementsLength || (new_capacity <= kMaxUncheckedFastElementsLength && GetHeap()->InNewSpace(this))) { return false; } // If the fast-case backing storage takes up roughly three times as // much space (in machine words) as a dictionary backing storage // would, the object should have slow elements. int old_capacity = 0; int used_elements = 0; GetElementsCapacityAndUsage(&old_capacity, &used_elements); int dictionary_size = SeededNumberDictionary::ComputeCapacity(used_elements) * SeededNumberDictionary::kEntrySize; return 3 * dictionary_size <= new_capacity; } bool JSObject::ShouldConvertToFastElements() { ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements()); // If the elements are sparse, we should not go back to fast case. if (!HasDenseElements()) return false; // An object requiring access checks is never allowed to have fast // elements. If it had fast elements we would skip security checks. if (IsAccessCheckNeeded()) return false; FixedArray* elements = FixedArray::cast(this->elements()); SeededNumberDictionary* dictionary = NULL; if (elements->map() == GetHeap()->non_strict_arguments_elements_map()) { dictionary = SeededNumberDictionary::cast(elements->get(1)); } else { dictionary = SeededNumberDictionary::cast(elements); } // If an element has been added at a very high index in the elements // dictionary, we cannot go back to fast case. if (dictionary->requires_slow_elements()) return false; // If the dictionary backing storage takes up roughly half as much // space (in machine words) as a fast-case backing storage would, // the object should have fast elements. uint32_t array_size = 0; if (IsJSArray()) { CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_size)); } else { array_size = dictionary->max_number_key(); } uint32_t dictionary_size = static_cast<uint32_t>(dictionary->Capacity()) * SeededNumberDictionary::kEntrySize; return 2 * dictionary_size >= array_size; } bool JSObject::ShouldConvertToFastDoubleElements( bool* has_smi_only_elements) { *has_smi_only_elements = false; if (FLAG_unbox_double_arrays) { ASSERT(HasDictionaryElements()); SeededNumberDictionary* dictionary = SeededNumberDictionary::cast(elements()); bool found_double = false; for (int i = 0; i < dictionary->Capacity(); i++) { Object* key = dictionary->KeyAt(i); if (key->IsNumber()) { Object* value = dictionary->ValueAt(i); if (!value->IsNumber()) return false; if (!value->IsSmi()) { found_double = true; } } } *has_smi_only_elements = !found_double; return found_double; } else { return false; } } // Certain compilers request function template instantiation when they // see the definition of the other template functions in the // class. This requires us to have the template functions put // together, so even though this function belongs in objects-debug.cc, // we keep it here instead to satisfy certain compilers. #ifdef OBJECT_PRINT template<typename Shape, typename Key> void Dictionary<Shape, Key>::Print(FILE* out) { int capacity = HashTable<Shape, Key>::Capacity(); for (int i = 0; i < capacity; i++) { Object* k = HashTable<Shape, Key>::KeyAt(i); if (HashTable<Shape, Key>::IsKey(k)) { PrintF(out, " "); if (k->IsString()) { String::cast(k)->StringPrint(out); } else { k->ShortPrint(out); } PrintF(out, ": "); ValueAt(i)->ShortPrint(out); PrintF(out, "\n"); } } } #endif template<typename Shape, typename Key> void Dictionary<Shape, Key>::CopyValuesTo(FixedArray* elements) { int pos = 0; int capacity = HashTable<Shape, Key>::Capacity(); AssertNoAllocation no_gc; WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc); for (int i = 0; i < capacity; i++) { Object* k = Dictionary<Shape, Key>::KeyAt(i); if (Dictionary<Shape, Key>::IsKey(k)) { elements->set(pos++, ValueAt(i), mode); } } ASSERT(pos == elements->length()); } InterceptorInfo* JSObject::GetNamedInterceptor() { ASSERT(map()->has_named_interceptor()); JSFunction* constructor = JSFunction::cast(map()->constructor()); ASSERT(constructor->shared()->IsApiFunction()); Object* result = constructor->shared()->get_api_func_data()->named_property_handler(); return InterceptorInfo::cast(result); } InterceptorInfo* JSObject::GetIndexedInterceptor() { ASSERT(map()->has_indexed_interceptor()); JSFunction* constructor = JSFunction::cast(map()->constructor()); ASSERT(constructor->shared()->IsApiFunction()); Object* result = constructor->shared()->get_api_func_data()->indexed_property_handler(); return InterceptorInfo::cast(result); } MaybeObject* JSObject::GetPropertyPostInterceptor( JSReceiver* receiver, String* name, PropertyAttributes* attributes) { // Check local property in holder, ignore interceptor. LookupResult result(GetIsolate()); LocalLookupRealNamedProperty(name, &result); if (result.IsProperty()) { return GetProperty(receiver, &result, name, attributes); } // Continue searching via the prototype chain. Object* pt = GetPrototype(); *attributes = ABSENT; if (pt->IsNull()) return GetHeap()->undefined_value(); return pt->GetPropertyWithReceiver(receiver, name, attributes); } MaybeObject* JSObject::GetLocalPropertyPostInterceptor( JSReceiver* receiver, String* name, PropertyAttributes* attributes) { // Check local property in holder, ignore interceptor. LookupResult result(GetIsolate()); LocalLookupRealNamedProperty(name, &result); if (result.IsProperty()) { return GetProperty(receiver, &result, name, attributes); } return GetHeap()->undefined_value(); } MaybeObject* JSObject::GetPropertyWithInterceptor( JSReceiver* receiver, String* name, PropertyAttributes* attributes) { Isolate* isolate = GetIsolate(); InterceptorInfo* interceptor = GetNamedInterceptor(); HandleScope scope(isolate); Handle<JSReceiver> receiver_handle(receiver); Handle<JSObject> holder_handle(this); Handle<String> name_handle(name); if (!interceptor->getter()->IsUndefined()) { v8::NamedPropertyGetter getter = v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-get", *holder_handle, name)); CustomArguments args(isolate, interceptor->data(), receiver, this); v8::AccessorInfo info(args.end()); v8::Handle<v8::Value> result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); result = getter(v8::Utils::ToLocal(name_handle), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!result.IsEmpty()) { *attributes = NONE; return *v8::Utils::OpenHandle(*result); } } MaybeObject* result = holder_handle->GetPropertyPostInterceptor( *receiver_handle, *name_handle, attributes); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return result; } bool JSObject::HasRealNamedProperty(String* key) { // Check access rights if needed. Isolate* isolate = GetIsolate(); if (IsAccessCheckNeeded()) { if (!isolate->MayNamedAccess(this, key, v8::ACCESS_HAS)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_HAS); return false; } } LookupResult result(isolate); LocalLookupRealNamedProperty(key, &result); return result.IsProperty() && (result.type() != INTERCEPTOR); } bool JSObject::HasRealElementProperty(uint32_t index) { // Check access rights if needed. if (IsAccessCheckNeeded()) { Heap* heap = GetHeap(); if (!heap->isolate()->MayIndexedAccess(this, index, v8::ACCESS_HAS)) { heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); return false; } } if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return false; ASSERT(proto->IsJSGlobalObject()); return JSObject::cast(proto)->HasRealElementProperty(index); } // Handle [] on String objects. if (this->IsStringObjectWithCharacterAt(index)) return true; switch (GetElementsKind()) { case FAST_SMI_ONLY_ELEMENTS: case FAST_ELEMENTS: { uint32_t length = IsJSArray() ? static_cast<uint32_t>( Smi::cast(JSArray::cast(this)->length())->value()) : static_cast<uint32_t>(FixedArray::cast(elements())->length()); return (index < length) && !FixedArray::cast(elements())->get(index)->IsTheHole(); } case FAST_DOUBLE_ELEMENTS: { uint32_t length = IsJSArray() ? static_cast<uint32_t>( Smi::cast(JSArray::cast(this)->length())->value()) : static_cast<uint32_t>(FixedDoubleArray::cast(elements())->length()); return (index < length) && !FixedDoubleArray::cast(elements())->is_the_hole(index); break; } case EXTERNAL_PIXEL_ELEMENTS: { ExternalPixelArray* pixels = ExternalPixelArray::cast(elements()); return index < static_cast<uint32_t>(pixels->length()); } case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: { ExternalArray* array = ExternalArray::cast(elements()); return index < static_cast<uint32_t>(array->length()); } case DICTIONARY_ELEMENTS: { return element_dictionary()->FindEntry(index) != SeededNumberDictionary::kNotFound; } case NON_STRICT_ARGUMENTS_ELEMENTS: UNIMPLEMENTED(); break; } // All possibilities have been handled above already. UNREACHABLE(); return GetHeap()->null_value(); } bool JSObject::HasRealNamedCallbackProperty(String* key) { // Check access rights if needed. Isolate* isolate = GetIsolate(); if (IsAccessCheckNeeded()) { if (!isolate->MayNamedAccess(this, key, v8::ACCESS_HAS)) { isolate->ReportFailedAccessCheck(this, v8::ACCESS_HAS); return false; } } LookupResult result(isolate); LocalLookupRealNamedProperty(key, &result); return result.IsFound() && (result.type() == CALLBACKS); } int JSObject::NumberOfLocalProperties(PropertyAttributes filter) { return HasFastProperties() ? map()->NumberOfDescribedProperties(filter) : property_dictionary()->NumberOfElementsFilterAttributes(filter); } void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) { Object* temp = get(i); set(i, get(j)); set(j, temp); if (this != numbers) { temp = numbers->get(i); numbers->set(i, Smi::cast(numbers->get(j))); numbers->set(j, Smi::cast(temp)); } } static void InsertionSortPairs(FixedArray* content, FixedArray* numbers, int len) { for (int i = 1; i < len; i++) { int j = i; while (j > 0 && (NumberToUint32(numbers->get(j - 1)) > NumberToUint32(numbers->get(j)))) { content->SwapPairs(numbers, j - 1, j); j--; } } } void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) { // In-place heap sort. ASSERT(content->length() == numbers->length()); // Bottom-up max-heap construction. for (int i = 1; i < len; ++i) { int child_index = i; while (child_index > 0) { int parent_index = ((child_index + 1) >> 1) - 1; uint32_t parent_value = NumberToUint32(numbers->get(parent_index)); uint32_t child_value = NumberToUint32(numbers->get(child_index)); if (parent_value < child_value) { content->SwapPairs(numbers, parent_index, child_index); } else { break; } child_index = parent_index; } } // Extract elements and create sorted array. for (int i = len - 1; i > 0; --i) { // Put max element at the back of the array. content->SwapPairs(numbers, 0, i); // Sift down the new top element. int parent_index = 0; while (true) { int child_index = ((parent_index + 1) << 1) - 1; if (child_index >= i) break; uint32_t child1_value = NumberToUint32(numbers->get(child_index)); uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1)); uint32_t parent_value = NumberToUint32(numbers->get(parent_index)); if (child_index + 1 >= i || child1_value > child2_value) { if (parent_value > child1_value) break; content->SwapPairs(numbers, parent_index, child_index); parent_index = child_index; } else { if (parent_value > child2_value) break; content->SwapPairs(numbers, parent_index, child_index + 1); parent_index = child_index + 1; } } } } // Sort this array and the numbers as pairs wrt. the (distinct) numbers. void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) { ASSERT(this->length() == numbers->length()); // For small arrays, simply use insertion sort. if (len <= 10) { InsertionSortPairs(this, numbers, len); return; } // Check the range of indices. uint32_t min_index = NumberToUint32(numbers->get(0)); uint32_t max_index = min_index; uint32_t i; for (i = 1; i < len; i++) { if (NumberToUint32(numbers->get(i)) < min_index) { min_index = NumberToUint32(numbers->get(i)); } else if (NumberToUint32(numbers->get(i)) > max_index) { max_index = NumberToUint32(numbers->get(i)); } } if (max_index - min_index + 1 == len) { // Indices form a contiguous range, unless there are duplicates. // Do an in-place linear time sort assuming distinct numbers, but // avoid hanging in case they are not. for (i = 0; i < len; i++) { uint32_t p; uint32_t j = 0; // While the current element at i is not at its correct position p, // swap the elements at these two positions. while ((p = NumberToUint32(numbers->get(i)) - min_index) != i && j++ < len) { SwapPairs(numbers, i, p); } } } else { HeapSortPairs(this, numbers, len); return; } } // Fill in the names of local properties into the supplied storage. The main // purpose of this function is to provide reflection information for the object // mirrors. void JSObject::GetLocalPropertyNames(FixedArray* storage, int index) { ASSERT(storage->length() >= (NumberOfLocalProperties() - index)); if (HasFastProperties()) { DescriptorArray* descs = map()->instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (descs->IsProperty(i)) storage->set(index++, descs->GetKey(i)); } ASSERT(storage->length() >= index); } else { property_dictionary()->CopyKeysTo(storage, index, StringDictionary::UNSORTED); } } int JSObject::NumberOfLocalElements(PropertyAttributes filter) { return GetLocalElementKeys(NULL, filter); } int JSObject::NumberOfEnumElements() { // Fast case for objects with no elements. if (!IsJSValue() && HasFastElements()) { uint32_t length = IsJSArray() ? static_cast<uint32_t>( Smi::cast(JSArray::cast(this)->length())->value()) : static_cast<uint32_t>(FixedArray::cast(elements())->length()); if (length == 0) return 0; } // Compute the number of enumerable elements. return NumberOfLocalElements(static_cast<PropertyAttributes>(DONT_ENUM)); } int JSObject::GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter) { int counter = 0; switch (GetElementsKind()) { case FAST_SMI_ONLY_ELEMENTS: case FAST_ELEMENTS: { int length = IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : FixedArray::cast(elements())->length(); for (int i = 0; i < length; i++) { if (!FixedArray::cast(elements())->get(i)->IsTheHole()) { if (storage != NULL) { storage->set(counter, Smi::FromInt(i)); } counter++; } } ASSERT(!storage || storage->length() >= counter); break; } case FAST_DOUBLE_ELEMENTS: { int length = IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : FixedDoubleArray::cast(elements())->length(); for (int i = 0; i < length; i++) { if (!FixedDoubleArray::cast(elements())->is_the_hole(i)) { if (storage != NULL) { storage->set(counter, Smi::FromInt(i)); } counter++; } } ASSERT(!storage || storage->length() >= counter); break; } case EXTERNAL_PIXEL_ELEMENTS: { int length = ExternalPixelArray::cast(elements())->length(); while (counter < length) { if (storage != NULL) { storage->set(counter, Smi::FromInt(counter)); } counter++; } ASSERT(!storage || storage->length() >= counter); break; } case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: { int length = ExternalArray::cast(elements())->length(); while (counter < length) { if (storage != NULL) { storage->set(counter, Smi::FromInt(counter)); } counter++; } ASSERT(!storage || storage->length() >= counter); break; } case DICTIONARY_ELEMENTS: { if (storage != NULL) { element_dictionary()->CopyKeysTo(storage, filter, SeededNumberDictionary::SORTED); } counter += element_dictionary()->NumberOfElementsFilterAttributes(filter); break; } case NON_STRICT_ARGUMENTS_ELEMENTS: { FixedArray* parameter_map = FixedArray::cast(elements()); int mapped_length = parameter_map->length() - 2; FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); if (arguments->IsDictionary()) { // Copy the keys from arguments first, because Dictionary::CopyKeysTo // will insert in storage starting at index 0. SeededNumberDictionary* dictionary = SeededNumberDictionary::cast(arguments); if (storage != NULL) { dictionary->CopyKeysTo( storage, filter, SeededNumberDictionary::UNSORTED); } counter += dictionary->NumberOfElementsFilterAttributes(filter); for (int i = 0; i < mapped_length; ++i) { if (!parameter_map->get(i + 2)->IsTheHole()) { if (storage != NULL) storage->set(counter, Smi::FromInt(i)); ++counter; } } if (storage != NULL) storage->SortPairs(storage, counter); } else { int backing_length = arguments->length(); int i = 0; for (; i < mapped_length; ++i) { if (!parameter_map->get(i + 2)->IsTheHole()) { if (storage != NULL) storage->set(counter, Smi::FromInt(i)); ++counter; } else if (i < backing_length && !arguments->get(i)->IsTheHole()) { if (storage != NULL) storage->set(counter, Smi::FromInt(i)); ++counter; } } for (; i < backing_length; ++i) { if (storage != NULL) storage->set(counter, Smi::FromInt(i)); ++counter; } } break; } } if (this->IsJSValue()) { Object* val = JSValue::cast(this)->value(); if (val->IsString()) { String* str = String::cast(val); if (storage) { for (int i = 0; i < str->length(); i++) { storage->set(counter + i, Smi::FromInt(i)); } } counter += str->length(); } } ASSERT(!storage || storage->length() == counter); return counter; } int JSObject::GetEnumElementKeys(FixedArray* storage) { return GetLocalElementKeys(storage, static_cast<PropertyAttributes>(DONT_ENUM)); } // StringKey simply carries a string object as key. class StringKey : public HashTableKey { public: explicit StringKey(String* string) : string_(string), hash_(HashForObject(string)) { } bool IsMatch(Object* string) { // We know that all entries in a hash table had their hash keys created. // Use that knowledge to have fast failure. if (hash_ != HashForObject(string)) { return false; } return string_->Equals(String::cast(string)); } uint32_t Hash() { return hash_; } uint32_t HashForObject(Object* other) { return String::cast(other)->Hash(); } Object* AsObject() { return string_; } String* string_; uint32_t hash_; }; // StringSharedKeys are used as keys in the eval cache. class StringSharedKey : public HashTableKey { public: StringSharedKey(String* source, SharedFunctionInfo* shared, LanguageMode language_mode, int scope_position) : source_(source), shared_(shared), language_mode_(language_mode), scope_position_(scope_position) { } bool IsMatch(Object* other) { if (!other->IsFixedArray()) return false; FixedArray* other_array = FixedArray::cast(other); SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0)); if (shared != shared_) return false; int language_unchecked = Smi::cast(other_array->get(2))->value(); ASSERT(language_unchecked == CLASSIC_MODE || language_unchecked == STRICT_MODE || language_unchecked == EXTENDED_MODE); LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked); if (language_mode != language_mode_) return false; int scope_position = Smi::cast(other_array->get(3))->value(); if (scope_position != scope_position_) return false; String* source = String::cast(other_array->get(1)); return source->Equals(source_); } static uint32_t StringSharedHashHelper(String* source, SharedFunctionInfo* shared, LanguageMode language_mode, int scope_position) { uint32_t hash = source->Hash(); if (shared->HasSourceCode()) { // Instead of using the SharedFunctionInfo pointer in the hash // code computation, we use a combination of the hash of the // script source code and the start position of the calling scope. // We do this to ensure that the cache entries can survive garbage // collection. Script* script = Script::cast(shared->script()); hash ^= String::cast(script->source())->Hash(); if (language_mode == STRICT_MODE) hash ^= 0x8000; if (language_mode == EXTENDED_MODE) hash ^= 0x0080; hash += scope_position; } return hash; } uint32_t Hash() { return StringSharedHashHelper( source_, shared_, language_mode_, scope_position_); } uint32_t HashForObject(Object* obj) { FixedArray* other_array = FixedArray::cast(obj); SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0)); String* source = String::cast(other_array->get(1)); int language_unchecked = Smi::cast(other_array->get(2))->value(); ASSERT(language_unchecked == CLASSIC_MODE || language_unchecked == STRICT_MODE || language_unchecked == EXTENDED_MODE); LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked); int scope_position = Smi::cast(other_array->get(3))->value(); return StringSharedHashHelper( source, shared, language_mode, scope_position); } MUST_USE_RESULT MaybeObject* AsObject() { Object* obj; { MaybeObject* maybe_obj = source_->GetHeap()->AllocateFixedArray(4); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } FixedArray* other_array = FixedArray::cast(obj); other_array->set(0, shared_); other_array->set(1, source_); other_array->set(2, Smi::FromInt(language_mode_)); other_array->set(3, Smi::FromInt(scope_position_)); return other_array; } private: String* source_; SharedFunctionInfo* shared_; LanguageMode language_mode_; int scope_position_; }; // RegExpKey carries the source and flags of a regular expression as key. class RegExpKey : public HashTableKey { public: RegExpKey(String* string, JSRegExp::Flags flags) : string_(string), flags_(Smi::FromInt(flags.value())) { } // Rather than storing the key in the hash table, a pointer to the // stored value is stored where the key should be. IsMatch then // compares the search key to the found object, rather than comparing // a key to a key. bool IsMatch(Object* obj) { FixedArray* val = FixedArray::cast(obj); return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex))) && (flags_ == val->get(JSRegExp::kFlagsIndex)); } uint32_t Hash() { return RegExpHash(string_, flags_); } Object* AsObject() { // Plain hash maps, which is where regexp keys are used, don't // use this function. UNREACHABLE(); return NULL; } uint32_t HashForObject(Object* obj) { FixedArray* val = FixedArray::cast(obj); return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)), Smi::cast(val->get(JSRegExp::kFlagsIndex))); } static uint32_t RegExpHash(String* string, Smi* flags) { return string->Hash() + flags->value(); } String* string_; Smi* flags_; }; // Utf8SymbolKey carries a vector of chars as key. class Utf8SymbolKey : public HashTableKey { public: explicit Utf8SymbolKey(Vector<const char> string, uint32_t seed) : string_(string), hash_field_(0), seed_(seed) { } bool IsMatch(Object* string) { return String::cast(string)->IsEqualTo(string_); } uint32_t Hash() { if (hash_field_ != 0) return hash_field_ >> String::kHashShift; unibrow::Utf8InputBuffer<> buffer(string_.start(), static_cast<unsigned>(string_.length())); chars_ = buffer.Utf16Length(); hash_field_ = String::ComputeHashField(&buffer, chars_, seed_); uint32_t result = hash_field_ >> String::kHashShift; ASSERT(result != 0); // Ensure that the hash value of 0 is never computed. return result; } uint32_t HashForObject(Object* other) { return String::cast(other)->Hash(); } MaybeObject* AsObject() { if (hash_field_ == 0) Hash(); return Isolate::Current()->heap()->AllocateSymbol( string_, chars_, hash_field_); } Vector<const char> string_; uint32_t hash_field_; int chars_; // Caches the number of characters when computing the hash code. uint32_t seed_; }; template <typename Char> class SequentialSymbolKey : public HashTableKey { public: explicit SequentialSymbolKey(Vector<const Char> string, uint32_t seed) : string_(string), hash_field_(0), seed_(seed) { } uint32_t Hash() { StringHasher hasher(string_.length(), seed_); // Very long strings have a trivial hash that doesn't inspect the // string contents. if (hasher.has_trivial_hash()) { hash_field_ = hasher.GetHashField(); } else { int i = 0; // Do the iterative array index computation as long as there is a // chance this is an array index. while (i < string_.length() && hasher.is_array_index()) { hasher.AddCharacter(static_cast<uc32>(string_[i])); i++; } // Process the remaining characters without updating the array // index. while (i < string_.length()) { hasher.AddCharacterNoIndex(static_cast<uc32>(string_[i])); i++; } hash_field_ = hasher.GetHashField(); } uint32_t result = hash_field_ >> String::kHashShift; ASSERT(result != 0); // Ensure that the hash value of 0 is never computed. return result; } uint32_t HashForObject(Object* other) { return String::cast(other)->Hash(); } Vector<const Char> string_; uint32_t hash_field_; uint32_t seed_; }; class AsciiSymbolKey : public SequentialSymbolKey<char> { public: AsciiSymbolKey(Vector<const char> str, uint32_t seed) : SequentialSymbolKey<char>(str, seed) { } bool IsMatch(Object* string) { return String::cast(string)->IsAsciiEqualTo(string_); } MaybeObject* AsObject() { if (hash_field_ == 0) Hash(); return HEAP->AllocateAsciiSymbol(string_, hash_field_); } }; class SubStringAsciiSymbolKey : public HashTableKey { public: explicit SubStringAsciiSymbolKey(Handle<SeqAsciiString> string, int from, int length, uint32_t seed) : string_(string), from_(from), length_(length), seed_(seed) { } uint32_t Hash() { ASSERT(length_ >= 0); ASSERT(from_ + length_ <= string_->length()); StringHasher hasher(length_, string_->GetHeap()->HashSeed()); // Very long strings have a trivial hash that doesn't inspect the // string contents. if (hasher.has_trivial_hash()) { hash_field_ = hasher.GetHashField(); } else { int i = 0; // Do the iterative array index computation as long as there is a // chance this is an array index. while (i < length_ && hasher.is_array_index()) { hasher.AddCharacter(static_cast<uc32>( string_->SeqAsciiStringGet(i + from_))); i++; } // Process the remaining characters without updating the array // index. while (i < length_) { hasher.AddCharacterNoIndex(static_cast<uc32>( string_->SeqAsciiStringGet(i + from_))); i++; } hash_field_ = hasher.GetHashField(); } uint32_t result = hash_field_ >> String::kHashShift; ASSERT(result != 0); // Ensure that the hash value of 0 is never computed. return result; } uint32_t HashForObject(Object* other) { return String::cast(other)->Hash(); } bool IsMatch(Object* string) { Vector<const char> chars(string_->GetChars() + from_, length_); return String::cast(string)->IsAsciiEqualTo(chars); } MaybeObject* AsObject() { if (hash_field_ == 0) Hash(); Vector<const char> chars(string_->GetChars() + from_, length_); return HEAP->AllocateAsciiSymbol(chars, hash_field_); } private: Handle<SeqAsciiString> string_; int from_; int length_; uint32_t hash_field_; uint32_t seed_; }; class TwoByteSymbolKey : public SequentialSymbolKey<uc16> { public: explicit TwoByteSymbolKey(Vector<const uc16> str, uint32_t seed) : SequentialSymbolKey<uc16>(str, seed) { } bool IsMatch(Object* string) { return String::cast(string)->IsTwoByteEqualTo(string_); } MaybeObject* AsObject() { if (hash_field_ == 0) Hash(); return HEAP->AllocateTwoByteSymbol(string_, hash_field_); } }; // SymbolKey carries a string/symbol object as key. class SymbolKey : public HashTableKey { public: explicit SymbolKey(String* string) : string_(string) { } bool IsMatch(Object* string) { return String::cast(string)->Equals(string_); } uint32_t Hash() { return string_->Hash(); } uint32_t HashForObject(Object* other) { return String::cast(other)->Hash(); } MaybeObject* AsObject() { // Attempt to flatten the string, so that symbols will most often // be flat strings. string_ = string_->TryFlattenGetString(); Heap* heap = string_->GetHeap(); // Transform string to symbol if possible. Map* map = heap->SymbolMapForString(string_); if (map != NULL) { string_->set_map_no_write_barrier(map); ASSERT(string_->IsSymbol()); return string_; } // Otherwise allocate a new symbol. StringInputBuffer buffer(string_); return heap->AllocateInternalSymbol(&buffer, string_->length(), string_->hash_field()); } static uint32_t StringHash(Object* obj) { return String::cast(obj)->Hash(); } String* string_; }; template<typename Shape, typename Key> void HashTable<Shape, Key>::IteratePrefix(ObjectVisitor* v) { IteratePointers(v, 0, kElementsStartOffset); } template<typename Shape, typename Key> void HashTable<Shape, Key>::IterateElements(ObjectVisitor* v) { IteratePointers(v, kElementsStartOffset, kHeaderSize + length() * kPointerSize); } template<typename Shape, typename Key> MaybeObject* HashTable<Shape, Key>::Allocate(int at_least_space_for, PretenureFlag pretenure) { int capacity = ComputeCapacity(at_least_space_for); if (capacity > HashTable::kMaxCapacity) { return Failure::OutOfMemoryException(); } Object* obj; { MaybeObject* maybe_obj = Isolate::Current()->heap()-> AllocateHashTable(EntryToIndex(capacity), pretenure); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } HashTable::cast(obj)->SetNumberOfElements(0); HashTable::cast(obj)->SetNumberOfDeletedElements(0); HashTable::cast(obj)->SetCapacity(capacity); return obj; } // Find entry for key otherwise return kNotFound. int StringDictionary::FindEntry(String* key) { if (!key->IsSymbol()) { return HashTable<StringDictionaryShape, String*>::FindEntry(key); } // Optimized for symbol key. Knowledge of the key type allows: // 1. Move the check if the key is a symbol out of the loop. // 2. Avoid comparing hash codes in symbol to symbol comparison. // 3. Detect a case when a dictionary key is not a symbol but the key is. // In case of positive result the dictionary key may be replaced by // the symbol with minimal performance penalty. It gives a chance to // perform further lookups in code stubs (and significant performance boost // a certain style of code). // EnsureCapacity will guarantee the hash table is never full. uint32_t capacity = Capacity(); uint32_t entry = FirstProbe(key->Hash(), capacity); uint32_t count = 1; while (true) { int index = EntryToIndex(entry); Object* element = get(index); if (element->IsUndefined()) break; // Empty entry. if (key == element) return entry; if (!element->IsSymbol() && !element->IsTheHole() && String::cast(element)->Equals(key)) { // Replace a non-symbol key by the equivalent symbol for faster further // lookups. set(index, key); return entry; } ASSERT(element->IsTheHole() || !String::cast(element)->Equals(key)); entry = NextProbe(entry, count++, capacity); } return kNotFound; } bool StringDictionary::ContainsTransition(int entry) { switch (DetailsAt(entry).type()) { case MAP_TRANSITION: case CONSTANT_TRANSITION: case ELEMENTS_TRANSITION: return true; case CALLBACKS: { Object* value = ValueAt(entry); if (!value->IsAccessorPair()) return false; AccessorPair* accessors = AccessorPair::cast(value); return accessors->getter()->IsMap() || accessors->setter()->IsMap(); } case NORMAL: case FIELD: case CONSTANT_FUNCTION: case HANDLER: case INTERCEPTOR: case NULL_DESCRIPTOR: return false; } UNREACHABLE(); // Keep the compiler happy. return false; } template<typename Shape, typename Key> MaybeObject* HashTable<Shape, Key>::Rehash(HashTable* new_table, Key key) { ASSERT(NumberOfElements() < new_table->Capacity()); AssertNoAllocation no_gc; WriteBarrierMode mode = new_table->GetWriteBarrierMode(no_gc); // Copy prefix to new array. for (int i = kPrefixStartIndex; i < kPrefixStartIndex + Shape::kPrefixSize; i++) { new_table->set(i, get(i), mode); } // Rehash the elements. int capacity = Capacity(); for (int i = 0; i < capacity; i++) { uint32_t from_index = EntryToIndex(i); Object* k = get(from_index); if (IsKey(k)) { uint32_t hash = HashTable<Shape, Key>::HashForObject(key, k); uint32_t insertion_index = EntryToIndex(new_table->FindInsertionEntry(hash)); for (int j = 0; j < Shape::kEntrySize; j++) { new_table->set(insertion_index + j, get(from_index + j), mode); } } } new_table->SetNumberOfElements(NumberOfElements()); new_table->SetNumberOfDeletedElements(0); return new_table; } template<typename Shape, typename Key> MaybeObject* HashTable<Shape, Key>::EnsureCapacity(int n, Key key) { int capacity = Capacity(); int nof = NumberOfElements() + n; int nod = NumberOfDeletedElements(); // Return if: // 50% is still free after adding n elements and // at most 50% of the free elements are deleted elements. if (nod <= (capacity - nof) >> 1) { int needed_free = nof >> 1; if (nof + needed_free <= capacity) return this; } const int kMinCapacityForPretenure = 256; bool pretenure = (capacity > kMinCapacityForPretenure) && !GetHeap()->InNewSpace(this); Object* obj; { MaybeObject* maybe_obj = Allocate(nof * 2, pretenure ? TENURED : NOT_TENURED); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return Rehash(HashTable::cast(obj), key); } template<typename Shape, typename Key> MaybeObject* HashTable<Shape, Key>::Shrink(Key key) { int capacity = Capacity(); int nof = NumberOfElements(); // Shrink to fit the number of elements if only a quarter of the // capacity is filled with elements. if (nof > (capacity >> 2)) return this; // Allocate a new dictionary with room for at least the current // number of elements. The allocation method will make sure that // there is extra room in the dictionary for additions. Don't go // lower than room for 16 elements. int at_least_room_for = nof; if (at_least_room_for < 16) return this; const int kMinCapacityForPretenure = 256; bool pretenure = (at_least_room_for > kMinCapacityForPretenure) && !GetHeap()->InNewSpace(this); Object* obj; { MaybeObject* maybe_obj = Allocate(at_least_room_for, pretenure ? TENURED : NOT_TENURED); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return Rehash(HashTable::cast(obj), key); } template<typename Shape, typename Key> uint32_t HashTable<Shape, Key>::FindInsertionEntry(uint32_t hash) { uint32_t capacity = Capacity(); uint32_t entry = FirstProbe(hash, capacity); uint32_t count = 1; // EnsureCapacity will guarantee the hash table is never full. while (true) { Object* element = KeyAt(entry); if (element->IsUndefined() || element->IsTheHole()) break; entry = NextProbe(entry, count++, capacity); } return entry; } // Force instantiation of template instances class. // Please note this list is compiler dependent. template class HashTable<SymbolTableShape, HashTableKey*>; template class HashTable<CompilationCacheShape, HashTableKey*>; template class HashTable<MapCacheShape, HashTableKey*>; template class HashTable<ObjectHashTableShape<1>, Object*>; template class HashTable<ObjectHashTableShape<2>, Object*>; template class Dictionary<StringDictionaryShape, String*>; template class Dictionary<SeededNumberDictionaryShape, uint32_t>; template class Dictionary<UnseededNumberDictionaryShape, uint32_t>; template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>:: Allocate(int at_least_space_for); template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>:: Allocate(int at_least_space_for); template MaybeObject* Dictionary<StringDictionaryShape, String*>::Allocate( int); template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::AtPut( uint32_t, Object*); template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>:: AtPut(uint32_t, Object*); template Object* Dictionary<SeededNumberDictionaryShape, uint32_t>:: SlowReverseLookup(Object* value); template Object* Dictionary<UnseededNumberDictionaryShape, uint32_t>:: SlowReverseLookup(Object* value); template Object* Dictionary<StringDictionaryShape, String*>::SlowReverseLookup( Object*); template void Dictionary<SeededNumberDictionaryShape, uint32_t>::CopyKeysTo( FixedArray*, PropertyAttributes, Dictionary<SeededNumberDictionaryShape, uint32_t>::SortMode); template Object* Dictionary<StringDictionaryShape, String*>::DeleteProperty( int, JSObject::DeleteMode); template Object* Dictionary<SeededNumberDictionaryShape, uint32_t>:: DeleteProperty(int, JSObject::DeleteMode); template MaybeObject* Dictionary<StringDictionaryShape, String*>::Shrink( String*); template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::Shrink( uint32_t); template void Dictionary<StringDictionaryShape, String*>::CopyKeysTo( FixedArray*, int, Dictionary<StringDictionaryShape, String*>::SortMode); template int Dictionary<StringDictionaryShape, String*>::NumberOfElementsFilterAttributes( PropertyAttributes); template MaybeObject* Dictionary<StringDictionaryShape, String*>::Add( String*, Object*, PropertyDetails); template MaybeObject* Dictionary<StringDictionaryShape, String*>::GenerateNewEnumerationIndices(); template int Dictionary<SeededNumberDictionaryShape, uint32_t>:: NumberOfElementsFilterAttributes(PropertyAttributes); template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::Add( uint32_t, Object*, PropertyDetails); template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>::Add( uint32_t, Object*, PropertyDetails); template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>:: EnsureCapacity(int, uint32_t); template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>:: EnsureCapacity(int, uint32_t); template MaybeObject* Dictionary<StringDictionaryShape, String*>:: EnsureCapacity(int, String*); template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>:: AddEntry(uint32_t, Object*, PropertyDetails, uint32_t); template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>:: AddEntry(uint32_t, Object*, PropertyDetails, uint32_t); template MaybeObject* Dictionary<StringDictionaryShape, String*>::AddEntry( String*, Object*, PropertyDetails, uint32_t); template int Dictionary<SeededNumberDictionaryShape, uint32_t>::NumberOfEnumElements(); template int Dictionary<StringDictionaryShape, String*>::NumberOfEnumElements(); template int HashTable<SeededNumberDictionaryShape, uint32_t>::FindEntry(uint32_t); // Collates undefined and unexisting elements below limit from position // zero of the elements. The object stays in Dictionary mode. MaybeObject* JSObject::PrepareSlowElementsForSort(uint32_t limit) { ASSERT(HasDictionaryElements()); // Must stay in dictionary mode, either because of requires_slow_elements, // or because we are not going to sort (and therefore compact) all of the // elements. SeededNumberDictionary* dict = element_dictionary(); HeapNumber* result_double = NULL; if (limit > static_cast<uint32_t>(Smi::kMaxValue)) { // Allocate space for result before we start mutating the object. Object* new_double; { MaybeObject* maybe_new_double = GetHeap()->AllocateHeapNumber(0.0); if (!maybe_new_double->ToObject(&new_double)) return maybe_new_double; } result_double = HeapNumber::cast(new_double); } Object* obj; { MaybeObject* maybe_obj = SeededNumberDictionary::Allocate(dict->NumberOfElements()); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } SeededNumberDictionary* new_dict = SeededNumberDictionary::cast(obj); AssertNoAllocation no_alloc; uint32_t pos = 0; uint32_t undefs = 0; int capacity = dict->Capacity(); for (int i = 0; i < capacity; i++) { Object* k = dict->KeyAt(i); if (dict->IsKey(k)) { ASSERT(k->IsNumber()); ASSERT(!k->IsSmi() || Smi::cast(k)->value() >= 0); ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0); ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32); Object* value = dict->ValueAt(i); PropertyDetails details = dict->DetailsAt(i); if (details.type() == CALLBACKS) { // Bail out and do the sorting of undefineds and array holes in JS. return Smi::FromInt(-1); } uint32_t key = NumberToUint32(k); // In the following we assert that adding the entry to the new dictionary // does not cause GC. This is the case because we made sure to allocate // the dictionary big enough above, so it need not grow. if (key < limit) { if (value->IsUndefined()) { undefs++; } else { if (pos > static_cast<uint32_t>(Smi::kMaxValue)) { // Adding an entry with the key beyond smi-range requires // allocation. Bailout. return Smi::FromInt(-1); } new_dict->AddNumberEntry(pos, value, details)->ToObjectUnchecked(); pos++; } } else { if (key > static_cast<uint32_t>(Smi::kMaxValue)) { // Adding an entry with the key beyond smi-range requires // allocation. Bailout. return Smi::FromInt(-1); } new_dict->AddNumberEntry(key, value, details)->ToObjectUnchecked(); } } } uint32_t result = pos; PropertyDetails no_details = PropertyDetails(NONE, NORMAL); Heap* heap = GetHeap(); while (undefs > 0) { if (pos > static_cast<uint32_t>(Smi::kMaxValue)) { // Adding an entry with the key beyond smi-range requires // allocation. Bailout. return Smi::FromInt(-1); } new_dict->AddNumberEntry(pos, heap->undefined_value(), no_details)-> ToObjectUnchecked(); pos++; undefs--; } set_elements(new_dict); if (result <= static_cast<uint32_t>(Smi::kMaxValue)) { return Smi::FromInt(static_cast<int>(result)); } ASSERT_NE(NULL, result_double); result_double->set_value(static_cast<double>(result)); return result_double; } // Collects all defined (non-hole) and non-undefined (array) elements at // the start of the elements array. // If the object is in dictionary mode, it is converted to fast elements // mode. MaybeObject* JSObject::PrepareElementsForSort(uint32_t limit) { Heap* heap = GetHeap(); if (HasDictionaryElements()) { // Convert to fast elements containing only the existing properties. // Ordering is irrelevant, since we are going to sort anyway. SeededNumberDictionary* dict = element_dictionary(); if (IsJSArray() || dict->requires_slow_elements() || dict->max_number_key() >= limit) { return PrepareSlowElementsForSort(limit); } // Convert to fast elements. Object* obj; { MaybeObject* maybe_obj = GetElementsTransitionMap(GetIsolate(), FAST_ELEMENTS); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } Map* new_map = Map::cast(obj); PretenureFlag tenure = heap->InNewSpace(this) ? NOT_TENURED: TENURED; Object* new_array; { MaybeObject* maybe_new_array = heap->AllocateFixedArray(dict->NumberOfElements(), tenure); if (!maybe_new_array->ToObject(&new_array)) return maybe_new_array; } FixedArray* fast_elements = FixedArray::cast(new_array); dict->CopyValuesTo(fast_elements); set_map(new_map); set_elements(fast_elements); } else if (HasExternalArrayElements()) { // External arrays cannot have holes or undefined elements. return Smi::FromInt(ExternalArray::cast(elements())->length()); } else if (!HasFastDoubleElements()) { Object* obj; { MaybeObject* maybe_obj = EnsureWritableFastElements(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } } ASSERT(HasFastTypeElements() || HasFastDoubleElements()); // Collect holes at the end, undefined before that and the rest at the // start, and return the number of non-hole, non-undefined values. FixedArrayBase* elements_base = FixedArrayBase::cast(this->elements()); uint32_t elements_length = static_cast<uint32_t>(elements_base->length()); if (limit > elements_length) { limit = elements_length ; } if (limit == 0) { return Smi::FromInt(0); } HeapNumber* result_double = NULL; if (limit > static_cast<uint32_t>(Smi::kMaxValue)) { // Pessimistically allocate space for return value before // we start mutating the array. Object* new_double; { MaybeObject* maybe_new_double = heap->AllocateHeapNumber(0.0); if (!maybe_new_double->ToObject(&new_double)) return maybe_new_double; } result_double = HeapNumber::cast(new_double); } uint32_t result = 0; if (elements_base->map() == heap->fixed_double_array_map()) { FixedDoubleArray* elements = FixedDoubleArray::cast(elements_base); // Split elements into defined and the_hole, in that order. unsigned int holes = limit; // Assume most arrays contain no holes and undefined values, so minimize the // number of stores of non-undefined, non-the-hole values. for (unsigned int i = 0; i < holes; i++) { if (elements->is_the_hole(i)) { holes--; } else { continue; } // Position i needs to be filled. while (holes > i) { if (elements->is_the_hole(holes)) { holes--; } else { elements->set(i, elements->get_scalar(holes)); break; } } } result = holes; while (holes < limit) { elements->set_the_hole(holes); holes++; } } else { FixedArray* elements = FixedArray::cast(elements_base); AssertNoAllocation no_alloc; // Split elements into defined, undefined and the_hole, in that order. Only // count locations for undefined and the hole, and fill them afterwards. WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_alloc); unsigned int undefs = limit; unsigned int holes = limit; // Assume most arrays contain no holes and undefined values, so minimize the // number of stores of non-undefined, non-the-hole values. for (unsigned int i = 0; i < undefs; i++) { Object* current = elements->get(i); if (current->IsTheHole()) { holes--; undefs--; } else if (current->IsUndefined()) { undefs--; } else { continue; } // Position i needs to be filled. while (undefs > i) { current = elements->get(undefs); if (current->IsTheHole()) { holes--; undefs--; } else if (current->IsUndefined()) { undefs--; } else { elements->set(i, current, write_barrier); break; } } } result = undefs; while (undefs < holes) { elements->set_undefined(undefs); undefs++; } while (holes < limit) { elements->set_the_hole(holes); holes++; } } if (result <= static_cast<uint32_t>(Smi::kMaxValue)) { return Smi::FromInt(static_cast<int>(result)); } ASSERT_NE(NULL, result_double); result_double->set_value(static_cast<double>(result)); return result_double; } Object* ExternalPixelArray::SetValue(uint32_t index, Object* value) { uint8_t clamped_value = 0; if (index < static_cast<uint32_t>(length())) { if (value->IsSmi()) { int int_value = Smi::cast(value)->value(); if (int_value < 0) { clamped_value = 0; } else if (int_value > 255) { clamped_value = 255; } else { clamped_value = static_cast<uint8_t>(int_value); } } else if (value->IsHeapNumber()) { double double_value = HeapNumber::cast(value)->value(); if (!(double_value > 0)) { // NaN and less than zero clamp to zero. clamped_value = 0; } else if (double_value > 255) { // Greater than 255 clamp to 255. clamped_value = 255; } else { // Other doubles are rounded to the nearest integer. clamped_value = static_cast<uint8_t>(double_value + 0.5); } } else { // Clamp undefined to zero (default). All other types have been // converted to a number type further up in the call chain. ASSERT(value->IsUndefined()); } set(index, clamped_value); } return Smi::FromInt(clamped_value); } template<typename ExternalArrayClass, typename ValueType> static MaybeObject* ExternalArrayIntSetter(Heap* heap, ExternalArrayClass* receiver, uint32_t index, Object* value) { ValueType cast_value = 0; if (index < static_cast<uint32_t>(receiver->length())) { if (value->IsSmi()) { int int_value = Smi::cast(value)->value(); cast_value = static_cast<ValueType>(int_value); } else if (value->IsHeapNumber()) { double double_value = HeapNumber::cast(value)->value(); cast_value = static_cast<ValueType>(DoubleToInt32(double_value)); } else { // Clamp undefined to zero (default). All other types have been // converted to a number type further up in the call chain. ASSERT(value->IsUndefined()); } receiver->set(index, cast_value); } return heap->NumberFromInt32(cast_value); } MaybeObject* ExternalByteArray::SetValue(uint32_t index, Object* value) { return ExternalArrayIntSetter<ExternalByteArray, int8_t> (GetHeap(), this, index, value); } MaybeObject* ExternalUnsignedByteArray::SetValue(uint32_t index, Object* value) { return ExternalArrayIntSetter<ExternalUnsignedByteArray, uint8_t> (GetHeap(), this, index, value); } MaybeObject* ExternalShortArray::SetValue(uint32_t index, Object* value) { return ExternalArrayIntSetter<ExternalShortArray, int16_t> (GetHeap(), this, index, value); } MaybeObject* ExternalUnsignedShortArray::SetValue(uint32_t index, Object* value) { return ExternalArrayIntSetter<ExternalUnsignedShortArray, uint16_t> (GetHeap(), this, index, value); } MaybeObject* ExternalIntArray::SetValue(uint32_t index, Object* value) { return ExternalArrayIntSetter<ExternalIntArray, int32_t> (GetHeap(), this, index, value); } MaybeObject* ExternalUnsignedIntArray::SetValue(uint32_t index, Object* value) { uint32_t cast_value = 0; Heap* heap = GetHeap(); if (index < static_cast<uint32_t>(length())) { if (value->IsSmi()) { int int_value = Smi::cast(value)->value(); cast_value = static_cast<uint32_t>(int_value); } else if (value->IsHeapNumber()) { double double_value = HeapNumber::cast(value)->value(); cast_value = static_cast<uint32_t>(DoubleToUint32(double_value)); } else { // Clamp undefined to zero (default). All other types have been // converted to a number type further up in the call chain. ASSERT(value->IsUndefined()); } set(index, cast_value); } return heap->NumberFromUint32(cast_value); } MaybeObject* ExternalFloatArray::SetValue(uint32_t index, Object* value) { float cast_value = static_cast<float>(OS::nan_value()); Heap* heap = GetHeap(); if (index < static_cast<uint32_t>(length())) { if (value->IsSmi()) { int int_value = Smi::cast(value)->value(); cast_value = static_cast<float>(int_value); } else if (value->IsHeapNumber()) { double double_value = HeapNumber::cast(value)->value(); cast_value = static_cast<float>(double_value); } else { // Clamp undefined to NaN (default). All other types have been // converted to a number type further up in the call chain. ASSERT(value->IsUndefined()); } set(index, cast_value); } return heap->AllocateHeapNumber(cast_value); } MaybeObject* ExternalDoubleArray::SetValue(uint32_t index, Object* value) { double double_value = OS::nan_value(); Heap* heap = GetHeap(); if (index < static_cast<uint32_t>(length())) { if (value->IsSmi()) { int int_value = Smi::cast(value)->value(); double_value = static_cast<double>(int_value); } else if (value->IsHeapNumber()) { double_value = HeapNumber::cast(value)->value(); } else { // Clamp undefined to NaN (default). All other types have been // converted to a number type further up in the call chain. ASSERT(value->IsUndefined()); } set(index, double_value); } return heap->AllocateHeapNumber(double_value); } JSGlobalPropertyCell* GlobalObject::GetPropertyCell(LookupResult* result) { ASSERT(!HasFastProperties()); Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry()); return JSGlobalPropertyCell::cast(value); } Handle<JSGlobalPropertyCell> GlobalObject::EnsurePropertyCell( Handle<GlobalObject> global, Handle<String> name) { Isolate* isolate = global->GetIsolate(); CALL_HEAP_FUNCTION(isolate, global->EnsurePropertyCell(*name), JSGlobalPropertyCell); } MaybeObject* GlobalObject::EnsurePropertyCell(String* name) { ASSERT(!HasFastProperties()); int entry = property_dictionary()->FindEntry(name); if (entry == StringDictionary::kNotFound) { Heap* heap = GetHeap(); Object* cell; { MaybeObject* maybe_cell = heap->AllocateJSGlobalPropertyCell(heap->the_hole_value()); if (!maybe_cell->ToObject(&cell)) return maybe_cell; } PropertyDetails details(NONE, NORMAL); details = details.AsDeleted(); Object* dictionary; { MaybeObject* maybe_dictionary = property_dictionary()->Add(name, cell, details); if (!maybe_dictionary->ToObject(&dictionary)) return maybe_dictionary; } set_properties(StringDictionary::cast(dictionary)); return cell; } else { Object* value = property_dictionary()->ValueAt(entry); ASSERT(value->IsJSGlobalPropertyCell()); return value; } } MaybeObject* SymbolTable::LookupString(String* string, Object** s) { SymbolKey key(string); return LookupKey(&key, s); } // This class is used for looking up two character strings in the symbol table. // If we don't have a hit we don't want to waste much time so we unroll the // string hash calculation loop here for speed. Doesn't work if the two // characters form a decimal integer, since such strings have a different hash // algorithm. class TwoCharHashTableKey : public HashTableKey { public: TwoCharHashTableKey(uint32_t c1, uint32_t c2, uint32_t seed) : c1_(c1), c2_(c2) { // Char 1. uint32_t hash = seed; hash += c1; hash += hash << 10; hash ^= hash >> 6; // Char 2. hash += c2; hash += hash << 10; hash ^= hash >> 6; // GetHash. hash += hash << 3; hash ^= hash >> 11; hash += hash << 15; if ((hash & String::kHashBitMask) == 0) hash = String::kZeroHash; #ifdef DEBUG StringHasher hasher(2, seed); hasher.AddCharacter(c1); hasher.AddCharacter(c2); // If this assert fails then we failed to reproduce the two-character // version of the string hashing algorithm above. One reason could be // that we were passed two digits as characters, since the hash // algorithm is different in that case. ASSERT_EQ(static_cast<int>(hasher.GetHash()), static_cast<int>(hash)); #endif hash_ = hash; } bool IsMatch(Object* o) { if (!o->IsString()) return false; String* other = String::cast(o); if (other->length() != 2) return false; if (other->Get(0) != c1_) return false; return other->Get(1) == c2_; } uint32_t Hash() { return hash_; } uint32_t HashForObject(Object* key) { if (!key->IsString()) return 0; return String::cast(key)->Hash(); } Object* AsObject() { // The TwoCharHashTableKey is only used for looking in the symbol // table, not for adding to it. UNREACHABLE(); return NULL; } private: uint32_t c1_; uint32_t c2_; uint32_t hash_; }; bool SymbolTable::LookupSymbolIfExists(String* string, String** symbol) { SymbolKey key(string); int entry = FindEntry(&key); if (entry == kNotFound) { return false; } else { String* result = String::cast(KeyAt(entry)); ASSERT(StringShape(result).IsSymbol()); *symbol = result; return true; } } bool SymbolTable::LookupTwoCharsSymbolIfExists(uint32_t c1, uint32_t c2, String** symbol) { TwoCharHashTableKey key(c1, c2, GetHeap()->HashSeed()); int entry = FindEntry(&key); if (entry == kNotFound) { return false; } else { String* result = String::cast(KeyAt(entry)); ASSERT(StringShape(result).IsSymbol()); *symbol = result; return true; } } MaybeObject* SymbolTable::LookupSymbol(Vector<const char> str, Object** s) { Utf8SymbolKey key(str, GetHeap()->HashSeed()); return LookupKey(&key, s); } MaybeObject* SymbolTable::LookupAsciiSymbol(Vector<const char> str, Object** s) { AsciiSymbolKey key(str, GetHeap()->HashSeed()); return LookupKey(&key, s); } MaybeObject* SymbolTable::LookupSubStringAsciiSymbol(Handle<SeqAsciiString> str, int from, int length, Object** s) { SubStringAsciiSymbolKey key(str, from, length, GetHeap()->HashSeed()); return LookupKey(&key, s); } MaybeObject* SymbolTable::LookupTwoByteSymbol(Vector<const uc16> str, Object** s) { TwoByteSymbolKey key(str, GetHeap()->HashSeed()); return LookupKey(&key, s); } MaybeObject* SymbolTable::LookupKey(HashTableKey* key, Object** s) { int entry = FindEntry(key); // Symbol already in table. if (entry != kNotFound) { *s = KeyAt(entry); return this; } // Adding new symbol. Grow table if needed. Object* obj; { MaybeObject* maybe_obj = EnsureCapacity(1, key); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } // Create symbol object. Object* symbol; { MaybeObject* maybe_symbol = key->AsObject(); if (!maybe_symbol->ToObject(&symbol)) return maybe_symbol; } // If the symbol table grew as part of EnsureCapacity, obj is not // the current symbol table and therefore we cannot use // SymbolTable::cast here. SymbolTable* table = reinterpret_cast<SymbolTable*>(obj); // Add the new symbol and return it along with the symbol table. entry = table->FindInsertionEntry(key->Hash()); table->set(EntryToIndex(entry), symbol); table->ElementAdded(); *s = symbol; return table; } Object* CompilationCacheTable::Lookup(String* src) { StringKey key(src); int entry = FindEntry(&key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } Object* CompilationCacheTable::LookupEval(String* src, Context* context, LanguageMode language_mode, int scope_position) { StringSharedKey key(src, context->closure()->shared(), language_mode, scope_position); int entry = FindEntry(&key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } Object* CompilationCacheTable::LookupRegExp(String* src, JSRegExp::Flags flags) { RegExpKey key(src, flags); int entry = FindEntry(&key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } MaybeObject* CompilationCacheTable::Put(String* src, Object* value) { StringKey key(src); Object* obj; { MaybeObject* maybe_obj = EnsureCapacity(1, &key); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } CompilationCacheTable* cache = reinterpret_cast<CompilationCacheTable*>(obj); int entry = cache->FindInsertionEntry(key.Hash()); cache->set(EntryToIndex(entry), src); cache->set(EntryToIndex(entry) + 1, value); cache->ElementAdded(); return cache; } MaybeObject* CompilationCacheTable::PutEval(String* src, Context* context, SharedFunctionInfo* value, int scope_position) { StringSharedKey key(src, context->closure()->shared(), value->language_mode(), scope_position); Object* obj; { MaybeObject* maybe_obj = EnsureCapacity(1, &key); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } CompilationCacheTable* cache = reinterpret_cast<CompilationCacheTable*>(obj); int entry = cache->FindInsertionEntry(key.Hash()); Object* k; { MaybeObject* maybe_k = key.AsObject(); if (!maybe_k->ToObject(&k)) return maybe_k; } cache->set(EntryToIndex(entry), k); cache->set(EntryToIndex(entry) + 1, value); cache->ElementAdded(); return cache; } MaybeObject* CompilationCacheTable::PutRegExp(String* src, JSRegExp::Flags flags, FixedArray* value) { RegExpKey key(src, flags); Object* obj; { MaybeObject* maybe_obj = EnsureCapacity(1, &key); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } CompilationCacheTable* cache = reinterpret_cast<CompilationCacheTable*>(obj); int entry = cache->FindInsertionEntry(key.Hash()); // We store the value in the key slot, and compare the search key // to the stored value with a custon IsMatch function during lookups. cache->set(EntryToIndex(entry), value); cache->set(EntryToIndex(entry) + 1, value); cache->ElementAdded(); return cache; } void CompilationCacheTable::Remove(Object* value) { Object* the_hole_value = GetHeap()->the_hole_value(); for (int entry = 0, size = Capacity(); entry < size; entry++) { int entry_index = EntryToIndex(entry); int value_index = entry_index + 1; if (get(value_index) == value) { NoWriteBarrierSet(this, entry_index, the_hole_value); NoWriteBarrierSet(this, value_index, the_hole_value); ElementRemoved(); } } return; } // SymbolsKey used for HashTable where key is array of symbols. class SymbolsKey : public HashTableKey { public: explicit SymbolsKey(FixedArray* symbols) : symbols_(symbols) { } bool IsMatch(Object* symbols) { FixedArray* o = FixedArray::cast(symbols); int len = symbols_->length(); if (o->length() != len) return false; for (int i = 0; i < len; i++) { if (o->get(i) != symbols_->get(i)) return false; } return true; } uint32_t Hash() { return HashForObject(symbols_); } uint32_t HashForObject(Object* obj) { FixedArray* symbols = FixedArray::cast(obj); int len = symbols->length(); uint32_t hash = 0; for (int i = 0; i < len; i++) { hash ^= String::cast(symbols->get(i))->Hash(); } return hash; } Object* AsObject() { return symbols_; } private: FixedArray* symbols_; }; Object* MapCache::Lookup(FixedArray* array) { SymbolsKey key(array); int entry = FindEntry(&key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } MaybeObject* MapCache::Put(FixedArray* array, Map* value) { SymbolsKey key(array); Object* obj; { MaybeObject* maybe_obj = EnsureCapacity(1, &key); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } MapCache* cache = reinterpret_cast<MapCache*>(obj); int entry = cache->FindInsertionEntry(key.Hash()); cache->set(EntryToIndex(entry), array); cache->set(EntryToIndex(entry) + 1, value); cache->ElementAdded(); return cache; } template<typename Shape, typename Key> MaybeObject* Dictionary<Shape, Key>::Allocate(int at_least_space_for) { Object* obj; { MaybeObject* maybe_obj = HashTable<Shape, Key>::Allocate(at_least_space_for); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } // Initialize the next enumeration index. Dictionary<Shape, Key>::cast(obj)-> SetNextEnumerationIndex(PropertyDetails::kInitialIndex); return obj; } template<typename Shape, typename Key> MaybeObject* Dictionary<Shape, Key>::GenerateNewEnumerationIndices() { Heap* heap = Dictionary<Shape, Key>::GetHeap(); int length = HashTable<Shape, Key>::NumberOfElements(); // Allocate and initialize iteration order array. Object* obj; { MaybeObject* maybe_obj = heap->AllocateFixedArray(length); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } FixedArray* iteration_order = FixedArray::cast(obj); for (int i = 0; i < length; i++) { iteration_order->set(i, Smi::FromInt(i)); } // Allocate array with enumeration order. { MaybeObject* maybe_obj = heap->AllocateFixedArray(length); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } FixedArray* enumeration_order = FixedArray::cast(obj); // Fill the enumeration order array with property details. int capacity = HashTable<Shape, Key>::Capacity(); int pos = 0; for (int i = 0; i < capacity; i++) { if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) { enumeration_order->set(pos++, Smi::FromInt(DetailsAt(i).index())); } } // Sort the arrays wrt. enumeration order. iteration_order->SortPairs(enumeration_order, enumeration_order->length()); // Overwrite the enumeration_order with the enumeration indices. for (int i = 0; i < length; i++) { int index = Smi::cast(iteration_order->get(i))->value(); int enum_index = PropertyDetails::kInitialIndex + i; enumeration_order->set(index, Smi::FromInt(enum_index)); } // Update the dictionary with new indices. capacity = HashTable<Shape, Key>::Capacity(); pos = 0; for (int i = 0; i < capacity; i++) { if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) { int enum_index = Smi::cast(enumeration_order->get(pos++))->value(); PropertyDetails details = DetailsAt(i); PropertyDetails new_details = PropertyDetails(details.attributes(), details.type(), enum_index); DetailsAtPut(i, new_details); } } // Set the next enumeration index. SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length); return this; } template<typename Shape, typename Key> MaybeObject* Dictionary<Shape, Key>::EnsureCapacity(int n, Key key) { // Check whether there are enough enumeration indices to add n elements. if (Shape::kIsEnumerable && !PropertyDetails::IsValidIndex(NextEnumerationIndex() + n)) { // If not, we generate new indices for the properties. Object* result; { MaybeObject* maybe_result = GenerateNewEnumerationIndices(); if (!maybe_result->ToObject(&result)) return maybe_result; } } return HashTable<Shape, Key>::EnsureCapacity(n, key); } template<typename Shape, typename Key> Object* Dictionary<Shape, Key>::DeleteProperty(int entry, JSReceiver::DeleteMode mode) { Heap* heap = Dictionary<Shape, Key>::GetHeap(); PropertyDetails details = DetailsAt(entry); // Ignore attributes if forcing a deletion. if (details.IsDontDelete() && mode != JSReceiver::FORCE_DELETION) { return heap->false_value(); } SetEntry(entry, heap->the_hole_value(), heap->the_hole_value()); HashTable<Shape, Key>::ElementRemoved(); return heap->true_value(); } template<typename Shape, typename Key> MaybeObject* Dictionary<Shape, Key>::Shrink(Key key) { return HashTable<Shape, Key>::Shrink(key); } template<typename Shape, typename Key> MaybeObject* Dictionary<Shape, Key>::AtPut(Key key, Object* value) { int entry = this->FindEntry(key); // If the entry is present set the value; if (entry != Dictionary<Shape, Key>::kNotFound) { ValueAtPut(entry, value); return this; } // Check whether the dictionary should be extended. Object* obj; { MaybeObject* maybe_obj = EnsureCapacity(1, key); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } Object* k; { MaybeObject* maybe_k = Shape::AsObject(key); if (!maybe_k->ToObject(&k)) return maybe_k; } PropertyDetails details = PropertyDetails(NONE, NORMAL); return Dictionary<Shape, Key>::cast(obj)->AddEntry(key, value, details, Dictionary<Shape, Key>::Hash(key)); } template<typename Shape, typename Key> MaybeObject* Dictionary<Shape, Key>::Add(Key key, Object* value, PropertyDetails details) { // Valdate key is absent. SLOW_ASSERT((this->FindEntry(key) == Dictionary<Shape, Key>::kNotFound)); // Check whether the dictionary should be extended. Object* obj; { MaybeObject* maybe_obj = EnsureCapacity(1, key); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } return Dictionary<Shape, Key>::cast(obj)->AddEntry(key, value, details, Dictionary<Shape, Key>::Hash(key)); } // Add a key, value pair to the dictionary. template<typename Shape, typename Key> MaybeObject* Dictionary<Shape, Key>::AddEntry(Key key, Object* value, PropertyDetails details, uint32_t hash) { // Compute the key object. Object* k; { MaybeObject* maybe_k = Shape::AsObject(key); if (!maybe_k->ToObject(&k)) return maybe_k; } uint32_t entry = Dictionary<Shape, Key>::FindInsertionEntry(hash); // Insert element at empty or deleted entry if (!details.IsDeleted() && details.index() == 0 && Shape::kIsEnumerable) { // Assign an enumeration index to the property and update // SetNextEnumerationIndex. int index = NextEnumerationIndex(); details = PropertyDetails(details.attributes(), details.type(), index); SetNextEnumerationIndex(index + 1); } SetEntry(entry, k, value, details); ASSERT((Dictionary<Shape, Key>::KeyAt(entry)->IsNumber() || Dictionary<Shape, Key>::KeyAt(entry)->IsString())); HashTable<Shape, Key>::ElementAdded(); return this; } void SeededNumberDictionary::UpdateMaxNumberKey(uint32_t key) { // If the dictionary requires slow elements an element has already // been added at a high index. if (requires_slow_elements()) return; // Check if this index is high enough that we should require slow // elements. if (key > kRequiresSlowElementsLimit) { set_requires_slow_elements(); return; } // Update max key value. Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi() || max_number_key() < key) { FixedArray::set(kMaxNumberKeyIndex, Smi::FromInt(key << kRequiresSlowElementsTagSize)); } } MaybeObject* SeededNumberDictionary::AddNumberEntry(uint32_t key, Object* value, PropertyDetails details) { UpdateMaxNumberKey(key); SLOW_ASSERT(this->FindEntry(key) == kNotFound); return Add(key, value, details); } MaybeObject* UnseededNumberDictionary::AddNumberEntry(uint32_t key, Object* value) { SLOW_ASSERT(this->FindEntry(key) == kNotFound); return Add(key, value, PropertyDetails(NONE, NORMAL)); } MaybeObject* SeededNumberDictionary::AtNumberPut(uint32_t key, Object* value) { UpdateMaxNumberKey(key); return AtPut(key, value); } MaybeObject* UnseededNumberDictionary::AtNumberPut(uint32_t key, Object* value) { return AtPut(key, value); } Handle<SeededNumberDictionary> SeededNumberDictionary::Set( Handle<SeededNumberDictionary> dictionary, uint32_t index, Handle<Object> value, PropertyDetails details) { CALL_HEAP_FUNCTION(dictionary->GetIsolate(), dictionary->Set(index, *value, details), SeededNumberDictionary); } Handle<UnseededNumberDictionary> UnseededNumberDictionary::Set( Handle<UnseededNumberDictionary> dictionary, uint32_t index, Handle<Object> value) { CALL_HEAP_FUNCTION(dictionary->GetIsolate(), dictionary->Set(index, *value), UnseededNumberDictionary); } MaybeObject* SeededNumberDictionary::Set(uint32_t key, Object* value, PropertyDetails details) { int entry = FindEntry(key); if (entry == kNotFound) return AddNumberEntry(key, value, details); // Preserve enumeration index. details = PropertyDetails(details.attributes(), details.type(), DetailsAt(entry).index()); MaybeObject* maybe_object_key = SeededNumberDictionaryShape::AsObject(key); Object* object_key; if (!maybe_object_key->ToObject(&object_key)) return maybe_object_key; SetEntry(entry, object_key, value, details); return this; } MaybeObject* UnseededNumberDictionary::Set(uint32_t key, Object* value) { int entry = FindEntry(key); if (entry == kNotFound) return AddNumberEntry(key, value); MaybeObject* maybe_object_key = UnseededNumberDictionaryShape::AsObject(key); Object* object_key; if (!maybe_object_key->ToObject(&object_key)) return maybe_object_key; SetEntry(entry, object_key, value); return this; } template<typename Shape, typename Key> int Dictionary<Shape, Key>::NumberOfElementsFilterAttributes( PropertyAttributes filter) { int capacity = HashTable<Shape, Key>::Capacity(); int result = 0; for (int i = 0; i < capacity; i++) { Object* k = HashTable<Shape, Key>::KeyAt(i); if (HashTable<Shape, Key>::IsKey(k)) { PropertyDetails details = DetailsAt(i); if (details.IsDeleted()) continue; PropertyAttributes attr = details.attributes(); if ((attr & filter) == 0) result++; } } return result; } template<typename Shape, typename Key> int Dictionary<Shape, Key>::NumberOfEnumElements() { return NumberOfElementsFilterAttributes( static_cast<PropertyAttributes>(DONT_ENUM)); } template<typename Shape, typename Key> void Dictionary<Shape, Key>::CopyKeysTo( FixedArray* storage, PropertyAttributes filter, typename Dictionary<Shape, Key>::SortMode sort_mode) { ASSERT(storage->length() >= NumberOfEnumElements()); int capacity = HashTable<Shape, Key>::Capacity(); int index = 0; for (int i = 0; i < capacity; i++) { Object* k = HashTable<Shape, Key>::KeyAt(i); if (HashTable<Shape, Key>::IsKey(k)) { PropertyDetails details = DetailsAt(i); if (details.IsDeleted()) continue; PropertyAttributes attr = details.attributes(); if ((attr & filter) == 0) storage->set(index++, k); } } if (sort_mode == Dictionary<Shape, Key>::SORTED) { storage->SortPairs(storage, index); } ASSERT(storage->length() >= index); } void StringDictionary::CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array) { ASSERT(storage->length() >= NumberOfEnumElements()); int capacity = Capacity(); int index = 0; for (int i = 0; i < capacity; i++) { Object* k = KeyAt(i); if (IsKey(k)) { PropertyDetails details = DetailsAt(i); if (details.IsDeleted() || details.IsDontEnum()) continue; storage->set(index, k); sort_array->set(index, Smi::FromInt(details.index())); index++; } } storage->SortPairs(sort_array, sort_array->length()); ASSERT(storage->length() >= index); } template<typename Shape, typename Key> void Dictionary<Shape, Key>::CopyKeysTo( FixedArray* storage, int index, typename Dictionary<Shape, Key>::SortMode sort_mode) { ASSERT(storage->length() >= NumberOfElementsFilterAttributes( static_cast<PropertyAttributes>(NONE))); int capacity = HashTable<Shape, Key>::Capacity(); for (int i = 0; i < capacity; i++) { Object* k = HashTable<Shape, Key>::KeyAt(i); if (HashTable<Shape, Key>::IsKey(k)) { PropertyDetails details = DetailsAt(i); if (details.IsDeleted()) continue; storage->set(index++, k); } } if (sort_mode == Dictionary<Shape, Key>::SORTED) { storage->SortPairs(storage, index); } ASSERT(storage->length() >= index); } // Backwards lookup (slow). template<typename Shape, typename Key> Object* Dictionary<Shape, Key>::SlowReverseLookup(Object* value) { int capacity = HashTable<Shape, Key>::Capacity(); for (int i = 0; i < capacity; i++) { Object* k = HashTable<Shape, Key>::KeyAt(i); if (Dictionary<Shape, Key>::IsKey(k)) { Object* e = ValueAt(i); if (e->IsJSGlobalPropertyCell()) { e = JSGlobalPropertyCell::cast(e)->value(); } if (e == value) return k; } } Heap* heap = Dictionary<Shape, Key>::GetHeap(); return heap->undefined_value(); } MaybeObject* StringDictionary::TransformPropertiesToFastFor( JSObject* obj, int unused_property_fields) { // Make sure we preserve dictionary representation if there are too many // descriptors. if (NumberOfElements() > DescriptorArray::kMaxNumberOfDescriptors) return obj; // Figure out if it is necessary to generate new enumeration indices. int max_enumeration_index = NextEnumerationIndex() + (DescriptorArray::kMaxNumberOfDescriptors - NumberOfElements()); if (!PropertyDetails::IsValidIndex(max_enumeration_index)) { Object* result; { MaybeObject* maybe_result = GenerateNewEnumerationIndices(); if (!maybe_result->ToObject(&result)) return maybe_result; } } int instance_descriptor_length = 0; int number_of_fields = 0; Heap* heap = GetHeap(); // Compute the length of the instance descriptor. int capacity = Capacity(); for (int i = 0; i < capacity; i++) { Object* k = KeyAt(i); if (IsKey(k)) { Object* value = ValueAt(i); PropertyType type = DetailsAt(i).type(); ASSERT(type != FIELD); instance_descriptor_length++; if (type == NORMAL && (!value->IsJSFunction() || heap->InNewSpace(value))) { number_of_fields += 1; } } } // Allocate the instance descriptor. DescriptorArray* descriptors; { MaybeObject* maybe_descriptors = DescriptorArray::Allocate(instance_descriptor_length); if (!maybe_descriptors->To<DescriptorArray>(&descriptors)) { return maybe_descriptors; } } DescriptorArray::WhitenessWitness witness(descriptors); int inobject_props = obj->map()->inobject_properties(); int number_of_allocated_fields = number_of_fields + unused_property_fields - inobject_props; if (number_of_allocated_fields < 0) { // There is enough inobject space for all fields (including unused). number_of_allocated_fields = 0; unused_property_fields = inobject_props - number_of_fields; } // Allocate the fixed array for the fields. Object* fields; { MaybeObject* maybe_fields = heap->AllocateFixedArray(number_of_allocated_fields); if (!maybe_fields->ToObject(&fields)) return maybe_fields; } // Fill in the instance descriptor and the fields. int next_descriptor = 0; int current_offset = 0; for (int i = 0; i < capacity; i++) { Object* k = KeyAt(i); if (IsKey(k)) { Object* value = ValueAt(i); // Ensure the key is a symbol before writing into the instance descriptor. Object* key; { MaybeObject* maybe_key = heap->LookupSymbol(String::cast(k)); if (!maybe_key->ToObject(&key)) return maybe_key; } PropertyDetails details = DetailsAt(i); PropertyType type = details.type(); if (value->IsJSFunction() && !heap->InNewSpace(value)) { ConstantFunctionDescriptor d(String::cast(key), JSFunction::cast(value), details.attributes(), details.index()); descriptors->Set(next_descriptor++, &d, witness); } else if (type == NORMAL) { if (current_offset < inobject_props) { obj->InObjectPropertyAtPut(current_offset, value, UPDATE_WRITE_BARRIER); } else { int offset = current_offset - inobject_props; FixedArray::cast(fields)->set(offset, value); } FieldDescriptor d(String::cast(key), current_offset++, details.attributes(), details.index()); descriptors->Set(next_descriptor++, &d, witness); } else if (type == CALLBACKS) { if (value->IsAccessorPair()) { MaybeObject* maybe_copy = AccessorPair::cast(value)->CopyWithoutTransitions(); if (!maybe_copy->To(&value)) return maybe_copy; } CallbacksDescriptor d(String::cast(key), value, details.attributes(), details.index()); descriptors->Set(next_descriptor++, &d, witness); } else { UNREACHABLE(); } } } ASSERT(current_offset == number_of_fields); descriptors->Sort(witness); // Allocate new map. Object* new_map; { MaybeObject* maybe_new_map = obj->map()->CopyDropDescriptors(); if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; } // Transform the object. obj->set_map(Map::cast(new_map)); obj->map()->set_instance_descriptors(descriptors); obj->map()->set_unused_property_fields(unused_property_fields); obj->set_properties(FixedArray::cast(fields)); ASSERT(obj->IsJSObject()); descriptors->SetNextEnumerationIndex(NextEnumerationIndex()); // Check that it really works. ASSERT(obj->HasFastProperties()); return obj; } bool ObjectHashSet::Contains(Object* key) { ASSERT(IsKey(key)); // If the object does not have an identity hash, it was never used as a key. { MaybeObject* maybe_hash = key->GetHash(OMIT_CREATION); if (maybe_hash->ToObjectUnchecked()->IsUndefined()) return false; } return (FindEntry(key) != kNotFound); } MaybeObject* ObjectHashSet::Add(Object* key) { ASSERT(IsKey(key)); // Make sure the key object has an identity hash code. int hash; { MaybeObject* maybe_hash = key->GetHash(ALLOW_CREATION); if (maybe_hash->IsFailure()) return maybe_hash; hash = Smi::cast(maybe_hash->ToObjectUnchecked())->value(); } int entry = FindEntry(key); // Check whether key is already present. if (entry != kNotFound) return this; // Check whether the hash set should be extended and add entry. Object* obj; { MaybeObject* maybe_obj = EnsureCapacity(1, key); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } ObjectHashSet* table = ObjectHashSet::cast(obj); entry = table->FindInsertionEntry(hash); table->set(EntryToIndex(entry), key); table->ElementAdded(); return table; } MaybeObject* ObjectHashSet::Remove(Object* key) { ASSERT(IsKey(key)); // If the object does not have an identity hash, it was never used as a key. { MaybeObject* maybe_hash = key->GetHash(OMIT_CREATION); if (maybe_hash->ToObjectUnchecked()->IsUndefined()) return this; } int entry = FindEntry(key); // Check whether key is actually present. if (entry == kNotFound) return this; // Remove entry and try to shrink this hash set. set_the_hole(EntryToIndex(entry)); ElementRemoved(); return Shrink(key); } Object* ObjectHashTable::Lookup(Object* key) { ASSERT(IsKey(key)); // If the object does not have an identity hash, it was never used as a key. { MaybeObject* maybe_hash = key->GetHash(OMIT_CREATION); if (maybe_hash->ToObjectUnchecked()->IsUndefined()) { return GetHeap()->undefined_value(); } } int entry = FindEntry(key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } MaybeObject* ObjectHashTable::Put(Object* key, Object* value) { ASSERT(IsKey(key)); // Make sure the key object has an identity hash code. int hash; { MaybeObject* maybe_hash = key->GetHash(ALLOW_CREATION); if (maybe_hash->IsFailure()) return maybe_hash; hash = Smi::cast(maybe_hash->ToObjectUnchecked())->value(); } int entry = FindEntry(key); // Check whether to perform removal operation. if (value->IsUndefined()) { if (entry == kNotFound) return this; RemoveEntry(entry); return Shrink(key); } // Key is already in table, just overwrite value. if (entry != kNotFound) { set(EntryToIndex(entry) + 1, value); return this; } // Check whether the hash table should be extended. Object* obj; { MaybeObject* maybe_obj = EnsureCapacity(1, key); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } ObjectHashTable* table = ObjectHashTable::cast(obj); table->AddEntry(table->FindInsertionEntry(hash), key, value); return table; } void ObjectHashTable::AddEntry(int entry, Object* key, Object* value) { set(EntryToIndex(entry), key); set(EntryToIndex(entry) + 1, value); ElementAdded(); } void ObjectHashTable::RemoveEntry(int entry) { set_the_hole(EntryToIndex(entry)); set_the_hole(EntryToIndex(entry) + 1); ElementRemoved(); } #ifdef ENABLE_DEBUGGER_SUPPORT // Check if there is a break point at this code position. bool DebugInfo::HasBreakPoint(int code_position) { // Get the break point info object for this code position. Object* break_point_info = GetBreakPointInfo(code_position); // If there is no break point info object or no break points in the break // point info object there is no break point at this code position. if (break_point_info->IsUndefined()) return false; return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0; } // Get the break point info object for this code position. Object* DebugInfo::GetBreakPointInfo(int code_position) { // Find the index of the break point info object for this code position. int index = GetBreakPointInfoIndex(code_position); // Return the break point info object if any. if (index == kNoBreakPointInfo) return GetHeap()->undefined_value(); return BreakPointInfo::cast(break_points()->get(index)); } // Clear a break point at the specified code position. void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info, int code_position, Handle<Object> break_point_object) { Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position)); if (break_point_info->IsUndefined()) return; BreakPointInfo::ClearBreakPoint( Handle<BreakPointInfo>::cast(break_point_info), break_point_object); } void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info, int code_position, int source_position, int statement_position, Handle<Object> break_point_object) { Isolate* isolate = Isolate::Current(); Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position)); if (!break_point_info->IsUndefined()) { BreakPointInfo::SetBreakPoint( Handle<BreakPointInfo>::cast(break_point_info), break_point_object); return; } // Adding a new break point for a code position which did not have any // break points before. Try to find a free slot. int index = kNoBreakPointInfo; for (int i = 0; i < debug_info->break_points()->length(); i++) { if (debug_info->break_points()->get(i)->IsUndefined()) { index = i; break; } } if (index == kNoBreakPointInfo) { // No free slot - extend break point info array. Handle<FixedArray> old_break_points = Handle<FixedArray>(FixedArray::cast(debug_info->break_points())); Handle<FixedArray> new_break_points = isolate->factory()->NewFixedArray( old_break_points->length() + Debug::kEstimatedNofBreakPointsInFunction); debug_info->set_break_points(*new_break_points); for (int i = 0; i < old_break_points->length(); i++) { new_break_points->set(i, old_break_points->get(i)); } index = old_break_points->length(); } ASSERT(index != kNoBreakPointInfo); // Allocate new BreakPointInfo object and set the break point. Handle<BreakPointInfo> new_break_point_info = Handle<BreakPointInfo>::cast( isolate->factory()->NewStruct(BREAK_POINT_INFO_TYPE)); new_break_point_info->set_code_position(Smi::FromInt(code_position)); new_break_point_info->set_source_position(Smi::FromInt(source_position)); new_break_point_info-> set_statement_position(Smi::FromInt(statement_position)); new_break_point_info->set_break_point_objects( isolate->heap()->undefined_value()); BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object); debug_info->break_points()->set(index, *new_break_point_info); } // Get the break point objects for a code position. Object* DebugInfo::GetBreakPointObjects(int code_position) { Object* break_point_info = GetBreakPointInfo(code_position); if (break_point_info->IsUndefined()) { return GetHeap()->undefined_value(); } return BreakPointInfo::cast(break_point_info)->break_point_objects(); } // Get the total number of break points. int DebugInfo::GetBreakPointCount() { if (break_points()->IsUndefined()) return 0; int count = 0; for (int i = 0; i < break_points()->length(); i++) { if (!break_points()->get(i)->IsUndefined()) { BreakPointInfo* break_point_info = BreakPointInfo::cast(break_points()->get(i)); count += break_point_info->GetBreakPointCount(); } } return count; } Object* DebugInfo::FindBreakPointInfo(Handle<DebugInfo> debug_info, Handle<Object> break_point_object) { Heap* heap = debug_info->GetHeap(); if (debug_info->break_points()->IsUndefined()) return heap->undefined_value(); for (int i = 0; i < debug_info->break_points()->length(); i++) { if (!debug_info->break_points()->get(i)->IsUndefined()) { Handle<BreakPointInfo> break_point_info = Handle<BreakPointInfo>(BreakPointInfo::cast( debug_info->break_points()->get(i))); if (BreakPointInfo::HasBreakPointObject(break_point_info, break_point_object)) { return *break_point_info; } } } return heap->undefined_value(); } // Find the index of the break point info object for the specified code // position. int DebugInfo::GetBreakPointInfoIndex(int code_position) { if (break_points()->IsUndefined()) return kNoBreakPointInfo; for (int i = 0; i < break_points()->length(); i++) { if (!break_points()->get(i)->IsUndefined()) { BreakPointInfo* break_point_info = BreakPointInfo::cast(break_points()->get(i)); if (break_point_info->code_position()->value() == code_position) { return i; } } } return kNoBreakPointInfo; } // Remove the specified break point object. void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info, Handle<Object> break_point_object) { Isolate* isolate = Isolate::Current(); // If there are no break points just ignore. if (break_point_info->break_point_objects()->IsUndefined()) return; // If there is a single break point clear it if it is the same. if (!break_point_info->break_point_objects()->IsFixedArray()) { if (break_point_info->break_point_objects() == *break_point_object) { break_point_info->set_break_point_objects( isolate->heap()->undefined_value()); } return; } // If there are multiple break points shrink the array ASSERT(break_point_info->break_point_objects()->IsFixedArray()); Handle<FixedArray> old_array = Handle<FixedArray>( FixedArray::cast(break_point_info->break_point_objects())); Handle<FixedArray> new_array = isolate->factory()->NewFixedArray(old_array->length() - 1); int found_count = 0; for (int i = 0; i < old_array->length(); i++) { if (old_array->get(i) == *break_point_object) { ASSERT(found_count == 0); found_count++; } else { new_array->set(i - found_count, old_array->get(i)); } } // If the break point was found in the list change it. if (found_count > 0) break_point_info->set_break_point_objects(*new_array); } // Add the specified break point object. void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info, Handle<Object> break_point_object) { // If there was no break point objects before just set it. if (break_point_info->break_point_objects()->IsUndefined()) { break_point_info->set_break_point_objects(*break_point_object); return; } // If the break point object is the same as before just ignore. if (break_point_info->break_point_objects() == *break_point_object) return; // If there was one break point object before replace with array. if (!break_point_info->break_point_objects()->IsFixedArray()) { Handle<FixedArray> array = FACTORY->NewFixedArray(2); array->set(0, break_point_info->break_point_objects()); array->set(1, *break_point_object); break_point_info->set_break_point_objects(*array); return; } // If there was more than one break point before extend array. Handle<FixedArray> old_array = Handle<FixedArray>( FixedArray::cast(break_point_info->break_point_objects())); Handle<FixedArray> new_array = FACTORY->NewFixedArray(old_array->length() + 1); for (int i = 0; i < old_array->length(); i++) { // If the break point was there before just ignore. if (old_array->get(i) == *break_point_object) return; new_array->set(i, old_array->get(i)); } // Add the new break point. new_array->set(old_array->length(), *break_point_object); break_point_info->set_break_point_objects(*new_array); } bool BreakPointInfo::HasBreakPointObject( Handle<BreakPointInfo> break_point_info, Handle<Object> break_point_object) { // No break point. if (break_point_info->break_point_objects()->IsUndefined()) return false; // Single break point. if (!break_point_info->break_point_objects()->IsFixedArray()) { return break_point_info->break_point_objects() == *break_point_object; } // Multiple break points. FixedArray* array = FixedArray::cast(break_point_info->break_point_objects()); for (int i = 0; i < array->length(); i++) { if (array->get(i) == *break_point_object) { return true; } } return false; } // Get the number of break points. int BreakPointInfo::GetBreakPointCount() { // No break point. if (break_point_objects()->IsUndefined()) return 0; // Single break point. if (!break_point_objects()->IsFixedArray()) return 1; // Multiple break points. return FixedArray::cast(break_point_objects())->length(); } #endif // ENABLE_DEBUGGER_SUPPORT MaybeObject* JSDate::GetField(Object* object, Smi* index) { return JSDate::cast(object)->DoGetField( static_cast<FieldIndex>(index->value())); } Object* JSDate::DoGetField(FieldIndex index) { ASSERT(index != kDateValue); DateCache* date_cache = GetIsolate()->date_cache(); if (index < kFirstUncachedField) { Object* stamp = cache_stamp(); if (stamp != date_cache->stamp() && stamp->IsSmi()) { // Since the stamp is not NaN, the value is also not NaN. int64_t local_time_ms = date_cache->ToLocal(static_cast<int64_t>(value()->Number())); SetLocalFields(local_time_ms, date_cache); } switch (index) { case kYear: return year(); case kMonth: return month(); case kDay: return day(); case kWeekday: return weekday(); case kHour: return hour(); case kMinute: return min(); case kSecond: return sec(); default: UNREACHABLE(); } } if (index >= kFirstUTCField) { return GetUTCField(index, value()->Number(), date_cache); } double time = value()->Number(); if (isnan(time)) return GetIsolate()->heap()->nan_value(); int64_t local_time_ms = date_cache->ToLocal(static_cast<int64_t>(time)); int days = DateCache::DaysFromTime(local_time_ms); if (index == kDays) return Smi::FromInt(days); int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days); if (index == kMillisecond) return Smi::FromInt(time_in_day_ms % 1000); ASSERT(index == kTimeInDay); return Smi::FromInt(time_in_day_ms); } Object* JSDate::GetUTCField(FieldIndex index, double value, DateCache* date_cache) { ASSERT(index >= kFirstUTCField); if (isnan(value)) return GetIsolate()->heap()->nan_value(); int64_t time_ms = static_cast<int64_t>(value); if (index == kTimezoneOffset) { return Smi::FromInt(date_cache->TimezoneOffset(time_ms)); } int days = DateCache::DaysFromTime(time_ms); if (index == kWeekdayUTC) return Smi::FromInt(date_cache->Weekday(days)); if (index <= kDayUTC) { int year, month, day; date_cache->YearMonthDayFromDays(days, &year, &month, &day); if (index == kYearUTC) return Smi::FromInt(year); if (index == kMonthUTC) return Smi::FromInt(month); ASSERT(index == kDayUTC); return Smi::FromInt(day); } int time_in_day_ms = DateCache::TimeInDay(time_ms, days); switch (index) { case kHourUTC: return Smi::FromInt(time_in_day_ms / (60 * 60 * 1000)); case kMinuteUTC: return Smi::FromInt((time_in_day_ms / (60 * 1000)) % 60); case kSecondUTC: return Smi::FromInt((time_in_day_ms / 1000) % 60); case kMillisecondUTC: return Smi::FromInt(time_in_day_ms % 1000); case kDaysUTC: return Smi::FromInt(days); case kTimeInDayUTC: return Smi::FromInt(time_in_day_ms); default: UNREACHABLE(); } UNREACHABLE(); return NULL; } void JSDate::SetValue(Object* value, bool is_value_nan) { set_value(value); if (is_value_nan) { HeapNumber* nan = GetIsolate()->heap()->nan_value(); set_cache_stamp(nan, SKIP_WRITE_BARRIER); set_year(nan, SKIP_WRITE_BARRIER); set_month(nan, SKIP_WRITE_BARRIER); set_day(nan, SKIP_WRITE_BARRIER); set_hour(nan, SKIP_WRITE_BARRIER); set_min(nan, SKIP_WRITE_BARRIER); set_sec(nan, SKIP_WRITE_BARRIER); set_weekday(nan, SKIP_WRITE_BARRIER); } else { set_cache_stamp(Smi::FromInt(DateCache::kInvalidStamp), SKIP_WRITE_BARRIER); } } void JSDate::SetLocalFields(int64_t local_time_ms, DateCache* date_cache) { int days = DateCache::DaysFromTime(local_time_ms); int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days); int year, month, day; date_cache->YearMonthDayFromDays(days, &year, &month, &day); int weekday = date_cache->Weekday(days); int hour = time_in_day_ms / (60 * 60 * 1000); int min = (time_in_day_ms / (60 * 1000)) % 60; int sec = (time_in_day_ms / 1000) % 60; set_cache_stamp(date_cache->stamp()); set_year(Smi::FromInt(year), SKIP_WRITE_BARRIER); set_month(Smi::FromInt(month), SKIP_WRITE_BARRIER); set_day(Smi::FromInt(day), SKIP_WRITE_BARRIER); set_weekday(Smi::FromInt(weekday), SKIP_WRITE_BARRIER); set_hour(Smi::FromInt(hour), SKIP_WRITE_BARRIER); set_min(Smi::FromInt(min), SKIP_WRITE_BARRIER); set_sec(Smi::FromInt(sec), SKIP_WRITE_BARRIER); } } } // namespace v8::internal