// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_MARK_COMPACT_H_ #define V8_MARK_COMPACT_H_ #include "compiler-intrinsics.h" #include "spaces.h" namespace v8 { namespace internal { // Callback function, returns whether an object is alive. The heap size // of the object is returned in size. It optionally updates the offset // to the first live object in the page (only used for old and map objects). typedef bool (*IsAliveFunction)(HeapObject* obj, int* size, int* offset); // Forward declarations. class CodeFlusher; class GCTracer; class MarkingVisitor; class RootMarkingVisitor; class Marking { public: explicit Marking(Heap* heap) : heap_(heap) { } static inline MarkBit MarkBitFrom(Address addr); static inline MarkBit MarkBitFrom(HeapObject* obj) { return MarkBitFrom(reinterpret_cast<Address>(obj)); } // Impossible markbits: 01 static const char* kImpossibleBitPattern; static inline bool IsImpossible(MarkBit mark_bit) { return !mark_bit.Get() && mark_bit.Next().Get(); } // Black markbits: 10 - this is required by the sweeper. static const char* kBlackBitPattern; static inline bool IsBlack(MarkBit mark_bit) { return mark_bit.Get() && !mark_bit.Next().Get(); } // White markbits: 00 - this is required by the mark bit clearer. static const char* kWhiteBitPattern; static inline bool IsWhite(MarkBit mark_bit) { return !mark_bit.Get(); } // Grey markbits: 11 static const char* kGreyBitPattern; static inline bool IsGrey(MarkBit mark_bit) { return mark_bit.Get() && mark_bit.Next().Get(); } static inline void MarkBlack(MarkBit mark_bit) { mark_bit.Set(); mark_bit.Next().Clear(); } static inline void BlackToGrey(MarkBit markbit) { markbit.Next().Set(); } static inline void WhiteToGrey(MarkBit markbit) { markbit.Set(); markbit.Next().Set(); } static inline void GreyToBlack(MarkBit markbit) { markbit.Next().Clear(); } static inline void BlackToGrey(HeapObject* obj) { BlackToGrey(MarkBitFrom(obj)); } static inline void AnyToGrey(MarkBit markbit) { markbit.Set(); markbit.Next().Set(); } // Returns true if the the object whose mark is transferred is marked black. bool TransferMark(Address old_start, Address new_start); #ifdef DEBUG enum ObjectColor { BLACK_OBJECT, WHITE_OBJECT, GREY_OBJECT, IMPOSSIBLE_COLOR }; static const char* ColorName(ObjectColor color) { switch (color) { case BLACK_OBJECT: return "black"; case WHITE_OBJECT: return "white"; case GREY_OBJECT: return "grey"; case IMPOSSIBLE_COLOR: return "impossible"; } return "error"; } static ObjectColor Color(HeapObject* obj) { return Color(Marking::MarkBitFrom(obj)); } static ObjectColor Color(MarkBit mark_bit) { if (IsBlack(mark_bit)) return BLACK_OBJECT; if (IsWhite(mark_bit)) return WHITE_OBJECT; if (IsGrey(mark_bit)) return GREY_OBJECT; UNREACHABLE(); return IMPOSSIBLE_COLOR; } #endif // Returns true if the transferred color is black. INLINE(static bool TransferColor(HeapObject* from, HeapObject* to)) { MarkBit from_mark_bit = MarkBitFrom(from); MarkBit to_mark_bit = MarkBitFrom(to); bool is_black = false; if (from_mark_bit.Get()) { to_mark_bit.Set(); is_black = true; // Looks black so far. } if (from_mark_bit.Next().Get()) { to_mark_bit.Next().Set(); is_black = false; // Was actually gray. } return is_black; } private: Heap* heap_; }; // ---------------------------------------------------------------------------- // Marking deque for tracing live objects. class MarkingDeque { public: MarkingDeque() : array_(NULL), top_(0), bottom_(0), mask_(0), overflowed_(false) { } void Initialize(Address low, Address high) { HeapObject** obj_low = reinterpret_cast<HeapObject**>(low); HeapObject** obj_high = reinterpret_cast<HeapObject**>(high); array_ = obj_low; mask_ = RoundDownToPowerOf2(static_cast<int>(obj_high - obj_low)) - 1; top_ = bottom_ = 0; overflowed_ = false; } inline bool IsFull() { return ((top_ + 1) & mask_) == bottom_; } inline bool IsEmpty() { return top_ == bottom_; } bool overflowed() const { return overflowed_; } void ClearOverflowed() { overflowed_ = false; } void SetOverflowed() { overflowed_ = true; } // Push the (marked) object on the marking stack if there is room, // otherwise mark the object as overflowed and wait for a rescan of the // heap. inline void PushBlack(HeapObject* object) { ASSERT(object->IsHeapObject()); if (IsFull()) { Marking::BlackToGrey(object); MemoryChunk::IncrementLiveBytesFromGC(object->address(), -object->Size()); SetOverflowed(); } else { array_[top_] = object; top_ = ((top_ + 1) & mask_); } } inline void PushGrey(HeapObject* object) { ASSERT(object->IsHeapObject()); if (IsFull()) { SetOverflowed(); } else { array_[top_] = object; top_ = ((top_ + 1) & mask_); } } inline HeapObject* Pop() { ASSERT(!IsEmpty()); top_ = ((top_ - 1) & mask_); HeapObject* object = array_[top_]; ASSERT(object->IsHeapObject()); return object; } inline void UnshiftGrey(HeapObject* object) { ASSERT(object->IsHeapObject()); if (IsFull()) { SetOverflowed(); } else { bottom_ = ((bottom_ - 1) & mask_); array_[bottom_] = object; } } HeapObject** array() { return array_; } int bottom() { return bottom_; } int top() { return top_; } int mask() { return mask_; } void set_top(int top) { top_ = top; } private: HeapObject** array_; // array_[(top - 1) & mask_] is the top element in the deque. The Deque is // empty when top_ == bottom_. It is full when top_ + 1 == bottom // (mod mask + 1). int top_; int bottom_; int mask_; bool overflowed_; DISALLOW_COPY_AND_ASSIGN(MarkingDeque); }; class SlotsBufferAllocator { public: SlotsBuffer* AllocateBuffer(SlotsBuffer* next_buffer); void DeallocateBuffer(SlotsBuffer* buffer); void DeallocateChain(SlotsBuffer** buffer_address); }; // SlotsBuffer records a sequence of slots that has to be updated // after live objects were relocated from evacuation candidates. // All slots are either untyped or typed: // - Untyped slots are expected to contain a tagged object pointer. // They are recorded by an address. // - Typed slots are expected to contain an encoded pointer to a heap // object where the way of encoding depends on the type of the slot. // They are recorded as a pair (SlotType, slot address). // We assume that zero-page is never mapped this allows us to distinguish // untyped slots from typed slots during iteration by a simple comparison: // if element of slots buffer is less than NUMBER_OF_SLOT_TYPES then it // is the first element of typed slot's pair. class SlotsBuffer { public: typedef Object** ObjectSlot; explicit SlotsBuffer(SlotsBuffer* next_buffer) : idx_(0), chain_length_(1), next_(next_buffer) { if (next_ != NULL) { chain_length_ = next_->chain_length_ + 1; } } ~SlotsBuffer() { } void Add(ObjectSlot slot) { ASSERT(0 <= idx_ && idx_ < kNumberOfElements); slots_[idx_++] = slot; } enum SlotType { EMBEDDED_OBJECT_SLOT, RELOCATED_CODE_OBJECT, CODE_TARGET_SLOT, CODE_ENTRY_SLOT, DEBUG_TARGET_SLOT, JS_RETURN_SLOT, NUMBER_OF_SLOT_TYPES }; void UpdateSlots(Heap* heap); void UpdateSlotsWithFilter(Heap* heap); SlotsBuffer* next() { return next_; } static int SizeOfChain(SlotsBuffer* buffer) { if (buffer == NULL) return 0; return static_cast<int>(buffer->idx_ + (buffer->chain_length_ - 1) * kNumberOfElements); } inline bool IsFull() { return idx_ == kNumberOfElements; } inline bool HasSpaceForTypedSlot() { return idx_ < kNumberOfElements - 1; } static void UpdateSlotsRecordedIn(Heap* heap, SlotsBuffer* buffer, bool code_slots_filtering_required) { while (buffer != NULL) { if (code_slots_filtering_required) { buffer->UpdateSlotsWithFilter(heap); } else { buffer->UpdateSlots(heap); } buffer = buffer->next(); } } enum AdditionMode { FAIL_ON_OVERFLOW, IGNORE_OVERFLOW }; static bool ChainLengthThresholdReached(SlotsBuffer* buffer) { return buffer != NULL && buffer->chain_length_ >= kChainLengthThreshold; } static bool AddTo(SlotsBufferAllocator* allocator, SlotsBuffer** buffer_address, ObjectSlot slot, AdditionMode mode) { SlotsBuffer* buffer = *buffer_address; if (buffer == NULL || buffer->IsFull()) { if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) { allocator->DeallocateChain(buffer_address); return false; } buffer = allocator->AllocateBuffer(buffer); *buffer_address = buffer; } buffer->Add(slot); return true; } static bool IsTypedSlot(ObjectSlot slot); static bool AddTo(SlotsBufferAllocator* allocator, SlotsBuffer** buffer_address, SlotType type, Address addr, AdditionMode mode); static const int kNumberOfElements = 1021; private: static const int kChainLengthThreshold = 15; intptr_t idx_; intptr_t chain_length_; SlotsBuffer* next_; ObjectSlot slots_[kNumberOfElements]; }; // Defined in isolate.h. class ThreadLocalTop; // ------------------------------------------------------------------------- // Mark-Compact collector class MarkCompactCollector { public: // Type of functions to compute forwarding addresses of objects in // compacted spaces. Given an object and its size, return a (non-failure) // Object* that will be the object after forwarding. There is a separate // allocation function for each (compactable) space based on the location // of the object before compaction. typedef MaybeObject* (*AllocationFunction)(Heap* heap, HeapObject* object, int object_size); // Type of functions to encode the forwarding address for an object. // Given the object, its size, and the new (non-failure) object it will be // forwarded to, encode the forwarding address. For paged spaces, the // 'offset' input/output parameter contains the offset of the forwarded // object from the forwarding address of the previous live object in the // page as input, and is updated to contain the offset to be used for the // next live object in the same page. For spaces using a different // encoding (i.e., contiguous spaces), the offset parameter is ignored. typedef void (*EncodingFunction)(Heap* heap, HeapObject* old_object, int object_size, Object* new_object, int* offset); // Type of functions to process non-live objects. typedef void (*ProcessNonLiveFunction)(HeapObject* object, Isolate* isolate); // Pointer to member function, used in IterateLiveObjects. typedef int (MarkCompactCollector::*LiveObjectCallback)(HeapObject* obj); // Set the global flags, it must be called before Prepare to take effect. inline void SetFlags(int flags); static void Initialize(); void CollectEvacuationCandidates(PagedSpace* space); void AddEvacuationCandidate(Page* p); // Prepares for GC by resetting relocation info in old and map spaces and // choosing spaces to compact. void Prepare(GCTracer* tracer); // Performs a global garbage collection. void CollectGarbage(); enum CompactionMode { INCREMENTAL_COMPACTION, NON_INCREMENTAL_COMPACTION }; bool StartCompaction(CompactionMode mode); void AbortCompaction(); // During a full GC, there is a stack-allocated GCTracer that is used for // bookkeeping information. Return a pointer to that tracer. GCTracer* tracer() { return tracer_; } #ifdef DEBUG // Checks whether performing mark-compact collection. bool in_use() { return state_ > PREPARE_GC; } bool are_map_pointers_encoded() { return state_ == UPDATE_POINTERS; } #endif // Determine type of object and emit deletion log event. static void ReportDeleteIfNeeded(HeapObject* obj, Isolate* isolate); // Distinguishable invalid map encodings (for single word and multiple words) // that indicate free regions. static const uint32_t kSingleFreeEncoding = 0; static const uint32_t kMultiFreeEncoding = 1; static inline bool IsMarked(Object* obj); inline Heap* heap() const { return heap_; } CodeFlusher* code_flusher() { return code_flusher_; } inline bool is_code_flushing_enabled() const { return code_flusher_ != NULL; } void EnableCodeFlushing(bool enable); enum SweeperType { CONSERVATIVE, LAZY_CONSERVATIVE, PRECISE }; #ifdef DEBUG void VerifyMarkbitsAreClean(); static void VerifyMarkbitsAreClean(PagedSpace* space); static void VerifyMarkbitsAreClean(NewSpace* space); #endif // Sweep a single page from the given space conservatively. // Return a number of reclaimed bytes. static intptr_t SweepConservatively(PagedSpace* space, Page* p); INLINE(static bool ShouldSkipEvacuationSlotRecording(Object** anchor)) { return Page::FromAddress(reinterpret_cast<Address>(anchor))-> ShouldSkipEvacuationSlotRecording(); } INLINE(static bool ShouldSkipEvacuationSlotRecording(Object* host)) { return Page::FromAddress(reinterpret_cast<Address>(host))-> ShouldSkipEvacuationSlotRecording(); } INLINE(static bool IsOnEvacuationCandidate(Object* obj)) { return Page::FromAddress(reinterpret_cast<Address>(obj))-> IsEvacuationCandidate(); } void EvictEvacuationCandidate(Page* page) { if (FLAG_trace_fragmentation) { PrintF("Page %p is too popular. Disabling evacuation.\n", reinterpret_cast<void*>(page)); } // TODO(gc) If all evacuation candidates are too popular we // should stop slots recording entirely. page->ClearEvacuationCandidate(); // We were not collecting slots on this page that point // to other evacuation candidates thus we have to // rescan the page after evacuation to discover and update all // pointers to evacuated objects. if (page->owner()->identity() == OLD_DATA_SPACE) { evacuation_candidates_.RemoveElement(page); } else { page->SetFlag(Page::RESCAN_ON_EVACUATION); } } void RecordRelocSlot(RelocInfo* rinfo, Object* target); void RecordCodeEntrySlot(Address slot, Code* target); INLINE(void RecordSlot(Object** anchor_slot, Object** slot, Object* object)); void MigrateObject(Address dst, Address src, int size, AllocationSpace to_old_space); bool TryPromoteObject(HeapObject* object, int object_size); inline Object* encountered_weak_maps() { return encountered_weak_maps_; } inline void set_encountered_weak_maps(Object* weak_map) { encountered_weak_maps_ = weak_map; } void InvalidateCode(Code* code); void ClearMarkbits(); private: MarkCompactCollector(); ~MarkCompactCollector(); bool MarkInvalidatedCode(); void RemoveDeadInvalidatedCode(); void ProcessInvalidatedCode(ObjectVisitor* visitor); #ifdef DEBUG enum CollectorState { IDLE, PREPARE_GC, MARK_LIVE_OBJECTS, SWEEP_SPACES, ENCODE_FORWARDING_ADDRESSES, UPDATE_POINTERS, RELOCATE_OBJECTS }; // The current stage of the collector. CollectorState state_; #endif // Global flag that forces sweeping to be precise, so we can traverse the // heap. bool sweep_precisely_; bool reduce_memory_footprint_; bool abort_incremental_marking_; // True if we are collecting slots to perform evacuation from evacuation // candidates. bool compacting_; bool was_marked_incrementally_; bool collect_maps_; bool flush_monomorphic_ics_; // A pointer to the current stack-allocated GC tracer object during a full // collection (NULL before and after). GCTracer* tracer_; SlotsBufferAllocator slots_buffer_allocator_; SlotsBuffer* migration_slots_buffer_; // Finishes GC, performs heap verification if enabled. void Finish(); // ----------------------------------------------------------------------- // Phase 1: Marking live objects. // // Before: The heap has been prepared for garbage collection by // MarkCompactCollector::Prepare() and is otherwise in its // normal state. // // After: Live objects are marked and non-live objects are unmarked. friend class RootMarkingVisitor; friend class MarkingVisitor; friend class StaticMarkingVisitor; friend class CodeMarkingVisitor; friend class SharedFunctionInfoMarkingVisitor; // Mark non-optimize code for functions inlined into the given optimized // code. This will prevent it from being flushed. void MarkInlinedFunctionsCode(Code* code); // Mark code objects that are active on the stack to prevent them // from being flushed. void PrepareThreadForCodeFlushing(Isolate* isolate, ThreadLocalTop* top); void PrepareForCodeFlushing(); // Marking operations for objects reachable from roots. void MarkLiveObjects(); void AfterMarking(); // Marks the object black and pushes it on the marking stack. // This is for non-incremental marking. INLINE(void MarkObject(HeapObject* obj, MarkBit mark_bit)); INLINE(bool MarkObjectWithoutPush(HeapObject* object)); INLINE(void MarkObjectAndPush(HeapObject* value)); // Marks the object black. This is for non-incremental marking. INLINE(void SetMark(HeapObject* obj, MarkBit mark_bit)); void ProcessNewlyMarkedObject(HeapObject* obj); // Creates back pointers for all map transitions, stores them in // the prototype field. The original prototype pointers are restored // in ClearNonLiveTransitions(). All JSObject maps // connected by map transitions have the same prototype object, which // is why we can use this field temporarily for back pointers. void CreateBackPointers(); // Mark a Map and its DescriptorArray together, skipping transitions. void MarkMapContents(Map* map); void MarkAccessorPairSlot(HeapObject* accessors, int offset); void MarkDescriptorArray(DescriptorArray* descriptors); // Mark the heap roots and all objects reachable from them. void MarkRoots(RootMarkingVisitor* visitor); // Mark the symbol table specially. References to symbols from the // symbol table are weak. void MarkSymbolTable(); // Mark objects in object groups that have at least one object in the // group marked. void MarkObjectGroups(); // Mark objects in implicit references groups if their parent object // is marked. void MarkImplicitRefGroups(); // Mark all objects which are reachable due to host application // logic like object groups or implicit references' groups. void ProcessExternalMarking(); // Mark objects reachable (transitively) from objects in the marking stack // or overflowed in the heap. void ProcessMarkingDeque(); // Mark objects reachable (transitively) from objects in the marking // stack. This function empties the marking stack, but may leave // overflowed objects in the heap, in which case the marking stack's // overflow flag will be set. void EmptyMarkingDeque(); // Refill the marking stack with overflowed objects from the heap. This // function either leaves the marking stack full or clears the overflow // flag on the marking stack. void RefillMarkingDeque(); // After reachable maps have been marked process per context object // literal map caches removing unmarked entries. void ProcessMapCaches(); // Callback function for telling whether the object *p is an unmarked // heap object. static bool IsUnmarkedHeapObject(Object** p); // Map transitions from a live map to a dead map must be killed. // We replace them with a null descriptor, with the same key. void ClearNonLiveTransitions(); void ClearNonLivePrototypeTransitions(Map* map); void ClearNonLiveMapTransitions(Map* map, MarkBit map_mark); // Marking detaches initial maps from SharedFunctionInfo objects // to make this reference weak. We need to reattach initial maps // back after collection. This is either done during // ClearNonLiveTransitions pass or by calling this function. void ReattachInitialMaps(); // Mark all values associated with reachable keys in weak maps encountered // so far. This might push new object or even new weak maps onto the // marking stack. void ProcessWeakMaps(); // After all reachable objects have been marked those weak map entries // with an unreachable key are removed from all encountered weak maps. // The linked list of all encountered weak maps is destroyed. void ClearWeakMaps(); // ----------------------------------------------------------------------- // Phase 2: Sweeping to clear mark bits and free non-live objects for // a non-compacting collection. // // Before: Live objects are marked and non-live objects are unmarked. // // After: Live objects are unmarked, non-live regions have been added to // their space's free list. Active eden semispace is compacted by // evacuation. // // If we are not compacting the heap, we simply sweep the spaces except // for the large object space, clearing mark bits and adding unmarked // regions to each space's free list. void SweepSpaces(); void EvacuateNewSpace(); void EvacuateLiveObjectsFromPage(Page* p); void EvacuatePages(); void EvacuateNewSpaceAndCandidates(); void SweepSpace(PagedSpace* space, SweeperType sweeper); #ifdef DEBUG friend class MarkObjectVisitor; static void VisitObject(HeapObject* obj); friend class UnmarkObjectVisitor; static void UnmarkObject(HeapObject* obj); #endif Heap* heap_; MarkingDeque marking_deque_; CodeFlusher* code_flusher_; Object* encountered_weak_maps_; List<Page*> evacuation_candidates_; List<Code*> invalidated_code_; friend class Heap; }; const char* AllocationSpaceName(AllocationSpace space); } } // namespace v8::internal #endif // V8_MARK_COMPACT_H_