// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #include "v8.h" #include "api.h" #include "bootstrapper.h" #include "codegen.h" #include "debug.h" #include "isolate-inl.h" #include "runtime-profiler.h" #include "simulator.h" #include "v8threads.h" #include "vm-state-inl.h" namespace v8 { namespace internal { StackGuard::StackGuard() : isolate_(NULL) { } void StackGuard::set_interrupt_limits(const ExecutionAccess& lock) { ASSERT(isolate_ != NULL); // Ignore attempts to interrupt when interrupts are postponed. if (should_postpone_interrupts(lock)) return; thread_local_.jslimit_ = kInterruptLimit; thread_local_.climit_ = kInterruptLimit; isolate_->heap()->SetStackLimits(); } void StackGuard::reset_limits(const ExecutionAccess& lock) { ASSERT(isolate_ != NULL); thread_local_.jslimit_ = thread_local_.real_jslimit_; thread_local_.climit_ = thread_local_.real_climit_; isolate_->heap()->SetStackLimits(); } static Handle<Object> Invoke(bool is_construct, Handle<JSFunction> function, Handle<Object> receiver, int argc, Handle<Object> args[], bool* has_pending_exception) { Isolate* isolate = function->GetIsolate(); // Entering JavaScript. VMState state(isolate, JS); // Placeholder for return value. MaybeObject* value = reinterpret_cast<Object*>(kZapValue); typedef Object* (*JSEntryFunction)(byte* entry, Object* function, Object* receiver, int argc, Object*** args); Handle<Code> code = is_construct ? isolate->factory()->js_construct_entry_code() : isolate->factory()->js_entry_code(); // Convert calls on global objects to be calls on the global // receiver instead to avoid having a 'this' pointer which refers // directly to a global object. if (receiver->IsGlobalObject()) { Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver); receiver = Handle<JSObject>(global->global_receiver()); } // Make sure that the global object of the context we're about to // make the current one is indeed a global object. ASSERT(function->context()->global()->IsGlobalObject()); { // Save and restore context around invocation and block the // allocation of handles without explicit handle scopes. SaveContext save(isolate); NoHandleAllocation na; JSEntryFunction stub_entry = FUNCTION_CAST<JSEntryFunction>(code->entry()); // Call the function through the right JS entry stub. byte* function_entry = function->code()->entry(); JSFunction* func = *function; Object* recv = *receiver; Object*** argv = reinterpret_cast<Object***>(args); value = CALL_GENERATED_CODE(stub_entry, function_entry, func, recv, argc, argv); } #ifdef DEBUG value->Verify(); #endif // Update the pending exception flag and return the value. *has_pending_exception = value->IsException(); ASSERT(*has_pending_exception == Isolate::Current()->has_pending_exception()); if (*has_pending_exception) { isolate->ReportPendingMessages(); if (isolate->pending_exception() == Failure::OutOfMemoryException()) { if (!isolate->ignore_out_of_memory()) { V8::FatalProcessOutOfMemory("JS", true); } } return Handle<Object>(); } else { isolate->clear_pending_message(); } return Handle<Object>(value->ToObjectUnchecked(), isolate); } Handle<Object> Execution::Call(Handle<Object> callable, Handle<Object> receiver, int argc, Handle<Object> argv[], bool* pending_exception, bool convert_receiver) { *pending_exception = false; if (!callable->IsJSFunction()) { callable = TryGetFunctionDelegate(callable, pending_exception); if (*pending_exception) return callable; } Handle<JSFunction> func = Handle<JSFunction>::cast(callable); // In non-strict mode, convert receiver. if (convert_receiver && !receiver->IsJSReceiver() && !func->shared()->native() && func->shared()->is_classic_mode()) { if (receiver->IsUndefined() || receiver->IsNull()) { Object* global = func->context()->global()->global_receiver(); // Under some circumstances, 'global' can be the JSBuiltinsObject // In that case, don't rewrite. // (FWIW, the same holds for GetIsolate()->global()->global_receiver().) if (!global->IsJSBuiltinsObject()) receiver = Handle<Object>(global); } else { receiver = ToObject(receiver, pending_exception); } if (*pending_exception) return callable; } return Invoke(false, func, receiver, argc, argv, pending_exception); } Handle<Object> Execution::New(Handle<JSFunction> func, int argc, Handle<Object> argv[], bool* pending_exception) { return Invoke(true, func, Isolate::Current()->global(), argc, argv, pending_exception); } Handle<Object> Execution::TryCall(Handle<JSFunction> func, Handle<Object> receiver, int argc, Handle<Object> args[], bool* caught_exception) { // Enter a try-block while executing the JavaScript code. To avoid // duplicate error printing it must be non-verbose. Also, to avoid // creating message objects during stack overflow we shouldn't // capture messages. v8::TryCatch catcher; catcher.SetVerbose(false); catcher.SetCaptureMessage(false); *caught_exception = false; Handle<Object> result = Invoke(false, func, receiver, argc, args, caught_exception); if (*caught_exception) { ASSERT(catcher.HasCaught()); Isolate* isolate = Isolate::Current(); ASSERT(isolate->has_pending_exception()); ASSERT(isolate->external_caught_exception()); if (isolate->pending_exception() == isolate->heap()->termination_exception()) { result = isolate->factory()->termination_exception(); } else { result = v8::Utils::OpenHandle(*catcher.Exception()); } isolate->OptionalRescheduleException(true); } ASSERT(!Isolate::Current()->has_pending_exception()); ASSERT(!Isolate::Current()->external_caught_exception()); return result; } Handle<Object> Execution::GetFunctionDelegate(Handle<Object> object) { ASSERT(!object->IsJSFunction()); Isolate* isolate = Isolate::Current(); Factory* factory = isolate->factory(); // If you return a function from here, it will be called when an // attempt is made to call the given object as a function. // If object is a function proxy, get its handler. Iterate if necessary. Object* fun = *object; while (fun->IsJSFunctionProxy()) { fun = JSFunctionProxy::cast(fun)->call_trap(); } if (fun->IsJSFunction()) return Handle<Object>(fun); // Objects created through the API can have an instance-call handler // that should be used when calling the object as a function. if (fun->IsHeapObject() && HeapObject::cast(fun)->map()->has_instance_call_handler()) { return Handle<JSFunction>( isolate->global_context()->call_as_function_delegate()); } return factory->undefined_value(); } Handle<Object> Execution::TryGetFunctionDelegate(Handle<Object> object, bool* has_pending_exception) { ASSERT(!object->IsJSFunction()); Isolate* isolate = Isolate::Current(); // If object is a function proxy, get its handler. Iterate if necessary. Object* fun = *object; while (fun->IsJSFunctionProxy()) { fun = JSFunctionProxy::cast(fun)->call_trap(); } if (fun->IsJSFunction()) return Handle<Object>(fun); // Objects created through the API can have an instance-call handler // that should be used when calling the object as a function. if (fun->IsHeapObject() && HeapObject::cast(fun)->map()->has_instance_call_handler()) { return Handle<JSFunction>( isolate->global_context()->call_as_function_delegate()); } // If the Object doesn't have an instance-call handler we should // throw a non-callable exception. i::Handle<i::Object> error_obj = isolate->factory()->NewTypeError( "called_non_callable", i::HandleVector<i::Object>(&object, 1)); isolate->Throw(*error_obj); *has_pending_exception = true; return isolate->factory()->undefined_value(); } Handle<Object> Execution::GetConstructorDelegate(Handle<Object> object) { ASSERT(!object->IsJSFunction()); Isolate* isolate = Isolate::Current(); // If you return a function from here, it will be called when an // attempt is made to call the given object as a constructor. // If object is a function proxies, get its handler. Iterate if necessary. Object* fun = *object; while (fun->IsJSFunctionProxy()) { fun = JSFunctionProxy::cast(fun)->call_trap(); } if (fun->IsJSFunction()) return Handle<Object>(fun); // Objects created through the API can have an instance-call handler // that should be used when calling the object as a function. if (fun->IsHeapObject() && HeapObject::cast(fun)->map()->has_instance_call_handler()) { return Handle<JSFunction>( isolate->global_context()->call_as_constructor_delegate()); } return isolate->factory()->undefined_value(); } Handle<Object> Execution::TryGetConstructorDelegate( Handle<Object> object, bool* has_pending_exception) { ASSERT(!object->IsJSFunction()); Isolate* isolate = Isolate::Current(); // If you return a function from here, it will be called when an // attempt is made to call the given object as a constructor. // If object is a function proxies, get its handler. Iterate if necessary. Object* fun = *object; while (fun->IsJSFunctionProxy()) { fun = JSFunctionProxy::cast(fun)->call_trap(); } if (fun->IsJSFunction()) return Handle<Object>(fun); // Objects created through the API can have an instance-call handler // that should be used when calling the object as a function. if (fun->IsHeapObject() && HeapObject::cast(fun)->map()->has_instance_call_handler()) { return Handle<JSFunction>( isolate->global_context()->call_as_constructor_delegate()); } // If the Object doesn't have an instance-call handler we should // throw a non-callable exception. i::Handle<i::Object> error_obj = isolate->factory()->NewTypeError( "called_non_callable", i::HandleVector<i::Object>(&object, 1)); isolate->Throw(*error_obj); *has_pending_exception = true; return isolate->factory()->undefined_value(); } bool StackGuard::IsStackOverflow() { ExecutionAccess access(isolate_); return (thread_local_.jslimit_ != kInterruptLimit && thread_local_.climit_ != kInterruptLimit); } void StackGuard::EnableInterrupts() { ExecutionAccess access(isolate_); if (has_pending_interrupts(access)) { set_interrupt_limits(access); } } void StackGuard::SetStackLimit(uintptr_t limit) { ExecutionAccess access(isolate_); // If the current limits are special (e.g. due to a pending interrupt) then // leave them alone. uintptr_t jslimit = SimulatorStack::JsLimitFromCLimit(isolate_, limit); if (thread_local_.jslimit_ == thread_local_.real_jslimit_) { thread_local_.jslimit_ = jslimit; } if (thread_local_.climit_ == thread_local_.real_climit_) { thread_local_.climit_ = limit; } thread_local_.real_climit_ = limit; thread_local_.real_jslimit_ = jslimit; } void StackGuard::DisableInterrupts() { ExecutionAccess access(isolate_); reset_limits(access); } bool StackGuard::ShouldPostponeInterrupts() { ExecutionAccess access(isolate_); return should_postpone_interrupts(access); } bool StackGuard::IsInterrupted() { ExecutionAccess access(isolate_); return (thread_local_.interrupt_flags_ & INTERRUPT) != 0; } void StackGuard::Interrupt() { ExecutionAccess access(isolate_); thread_local_.interrupt_flags_ |= INTERRUPT; set_interrupt_limits(access); } bool StackGuard::IsPreempted() { ExecutionAccess access(isolate_); return thread_local_.interrupt_flags_ & PREEMPT; } void StackGuard::Preempt() { ExecutionAccess access(isolate_); thread_local_.interrupt_flags_ |= PREEMPT; set_interrupt_limits(access); } bool StackGuard::IsTerminateExecution() { ExecutionAccess access(isolate_); return (thread_local_.interrupt_flags_ & TERMINATE) != 0; } void StackGuard::TerminateExecution() { ExecutionAccess access(isolate_); thread_local_.interrupt_flags_ |= TERMINATE; set_interrupt_limits(access); } bool StackGuard::IsRuntimeProfilerTick() { ExecutionAccess access(isolate_); return (thread_local_.interrupt_flags_ & RUNTIME_PROFILER_TICK) != 0; } void StackGuard::RequestRuntimeProfilerTick() { // Ignore calls if we're not optimizing or if we can't get the lock. if (FLAG_opt && ExecutionAccess::TryLock(isolate_)) { thread_local_.interrupt_flags_ |= RUNTIME_PROFILER_TICK; if (thread_local_.postpone_interrupts_nesting_ == 0) { thread_local_.jslimit_ = thread_local_.climit_ = kInterruptLimit; isolate_->heap()->SetStackLimits(); } ExecutionAccess::Unlock(isolate_); } } bool StackGuard::IsGCRequest() { ExecutionAccess access(isolate_); return (thread_local_.interrupt_flags_ & GC_REQUEST) != 0; } void StackGuard::RequestGC() { ExecutionAccess access(isolate_); thread_local_.interrupt_flags_ |= GC_REQUEST; if (thread_local_.postpone_interrupts_nesting_ == 0) { thread_local_.jslimit_ = thread_local_.climit_ = kInterruptLimit; isolate_->heap()->SetStackLimits(); } } #ifdef ENABLE_DEBUGGER_SUPPORT bool StackGuard::IsDebugBreak() { ExecutionAccess access(isolate_); return thread_local_.interrupt_flags_ & DEBUGBREAK; } void StackGuard::DebugBreak() { ExecutionAccess access(isolate_); thread_local_.interrupt_flags_ |= DEBUGBREAK; set_interrupt_limits(access); } bool StackGuard::IsDebugCommand() { ExecutionAccess access(isolate_); return thread_local_.interrupt_flags_ & DEBUGCOMMAND; } void StackGuard::DebugCommand() { if (FLAG_debugger_auto_break) { ExecutionAccess access(isolate_); thread_local_.interrupt_flags_ |= DEBUGCOMMAND; set_interrupt_limits(access); } } #endif void StackGuard::Continue(InterruptFlag after_what) { ExecutionAccess access(isolate_); thread_local_.interrupt_flags_ &= ~static_cast<int>(after_what); if (!should_postpone_interrupts(access) && !has_pending_interrupts(access)) { reset_limits(access); } } char* StackGuard::ArchiveStackGuard(char* to) { ExecutionAccess access(isolate_); memcpy(to, reinterpret_cast<char*>(&thread_local_), sizeof(ThreadLocal)); ThreadLocal blank; // Set the stack limits using the old thread_local_. // TODO(isolates): This was the old semantics of constructing a ThreadLocal // (as the ctor called SetStackLimits, which looked at the // current thread_local_ from StackGuard)-- but is this // really what was intended? isolate_->heap()->SetStackLimits(); thread_local_ = blank; return to + sizeof(ThreadLocal); } char* StackGuard::RestoreStackGuard(char* from) { ExecutionAccess access(isolate_); memcpy(reinterpret_cast<char*>(&thread_local_), from, sizeof(ThreadLocal)); isolate_->heap()->SetStackLimits(); return from + sizeof(ThreadLocal); } void StackGuard::FreeThreadResources() { Isolate::PerIsolateThreadData* per_thread = isolate_->FindOrAllocatePerThreadDataForThisThread(); per_thread->set_stack_limit(thread_local_.real_climit_); } void StackGuard::ThreadLocal::Clear() { real_jslimit_ = kIllegalLimit; jslimit_ = kIllegalLimit; real_climit_ = kIllegalLimit; climit_ = kIllegalLimit; nesting_ = 0; postpone_interrupts_nesting_ = 0; interrupt_flags_ = 0; } bool StackGuard::ThreadLocal::Initialize(Isolate* isolate) { bool should_set_stack_limits = false; if (real_climit_ == kIllegalLimit) { // Takes the address of the limit variable in order to find out where // the top of stack is right now. const uintptr_t kLimitSize = FLAG_stack_size * KB; uintptr_t limit = reinterpret_cast<uintptr_t>(&limit) - kLimitSize; ASSERT(reinterpret_cast<uintptr_t>(&limit) > kLimitSize); real_jslimit_ = SimulatorStack::JsLimitFromCLimit(isolate, limit); jslimit_ = SimulatorStack::JsLimitFromCLimit(isolate, limit); real_climit_ = limit; climit_ = limit; should_set_stack_limits = true; } nesting_ = 0; postpone_interrupts_nesting_ = 0; interrupt_flags_ = 0; return should_set_stack_limits; } void StackGuard::ClearThread(const ExecutionAccess& lock) { thread_local_.Clear(); isolate_->heap()->SetStackLimits(); } void StackGuard::InitThread(const ExecutionAccess& lock) { if (thread_local_.Initialize(isolate_)) isolate_->heap()->SetStackLimits(); Isolate::PerIsolateThreadData* per_thread = isolate_->FindOrAllocatePerThreadDataForThisThread(); uintptr_t stored_limit = per_thread->stack_limit(); // You should hold the ExecutionAccess lock when you call this. if (stored_limit != 0) { SetStackLimit(stored_limit); } } // --- C a l l s t o n a t i v e s --- #define RETURN_NATIVE_CALL(name, args, has_pending_exception) \ do { \ Isolate* isolate = Isolate::Current(); \ Handle<Object> argv[] = args; \ ASSERT(has_pending_exception != NULL); \ return Call(isolate->name##_fun(), \ isolate->js_builtins_object(), \ ARRAY_SIZE(argv), argv, \ has_pending_exception); \ } while (false) Handle<Object> Execution::ToBoolean(Handle<Object> obj) { // See the similar code in runtime.js:ToBoolean. if (obj->IsBoolean()) return obj; bool result = true; if (obj->IsString()) { result = Handle<String>::cast(obj)->length() != 0; } else if (obj->IsNull() || obj->IsUndefined()) { result = false; } else if (obj->IsNumber()) { double value = obj->Number(); result = !((value == 0) || isnan(value)); } return Handle<Object>(HEAP->ToBoolean(result)); } Handle<Object> Execution::ToNumber(Handle<Object> obj, bool* exc) { RETURN_NATIVE_CALL(to_number, { obj }, exc); } Handle<Object> Execution::ToString(Handle<Object> obj, bool* exc) { RETURN_NATIVE_CALL(to_string, { obj }, exc); } Handle<Object> Execution::ToDetailString(Handle<Object> obj, bool* exc) { RETURN_NATIVE_CALL(to_detail_string, { obj }, exc); } Handle<Object> Execution::ToObject(Handle<Object> obj, bool* exc) { if (obj->IsSpecObject()) return obj; RETURN_NATIVE_CALL(to_object, { obj }, exc); } Handle<Object> Execution::ToInteger(Handle<Object> obj, bool* exc) { RETURN_NATIVE_CALL(to_integer, { obj }, exc); } Handle<Object> Execution::ToUint32(Handle<Object> obj, bool* exc) { RETURN_NATIVE_CALL(to_uint32, { obj }, exc); } Handle<Object> Execution::ToInt32(Handle<Object> obj, bool* exc) { RETURN_NATIVE_CALL(to_int32, { obj }, exc); } Handle<Object> Execution::NewDate(double time, bool* exc) { Handle<Object> time_obj = FACTORY->NewNumber(time); RETURN_NATIVE_CALL(create_date, { time_obj }, exc); } #undef RETURN_NATIVE_CALL Handle<JSRegExp> Execution::NewJSRegExp(Handle<String> pattern, Handle<String> flags, bool* exc) { Handle<JSFunction> function = Handle<JSFunction>( pattern->GetIsolate()->global_context()->regexp_function()); Handle<Object> re_obj = RegExpImpl::CreateRegExpLiteral( function, pattern, flags, exc); if (*exc) return Handle<JSRegExp>(); return Handle<JSRegExp>::cast(re_obj); } Handle<Object> Execution::CharAt(Handle<String> string, uint32_t index) { Isolate* isolate = string->GetIsolate(); Factory* factory = isolate->factory(); int int_index = static_cast<int>(index); if (int_index < 0 || int_index >= string->length()) { return factory->undefined_value(); } Handle<Object> char_at = GetProperty(isolate->js_builtins_object(), factory->char_at_symbol()); if (!char_at->IsJSFunction()) { return factory->undefined_value(); } bool caught_exception; Handle<Object> index_object = factory->NewNumberFromInt(int_index); Handle<Object> index_arg[] = { index_object }; Handle<Object> result = TryCall(Handle<JSFunction>::cast(char_at), string, ARRAY_SIZE(index_arg), index_arg, &caught_exception); if (caught_exception) { return factory->undefined_value(); } return result; } Handle<JSFunction> Execution::InstantiateFunction( Handle<FunctionTemplateInfo> data, bool* exc) { Isolate* isolate = data->GetIsolate(); // Fast case: see if the function has already been instantiated int serial_number = Smi::cast(data->serial_number())->value(); Object* elm = isolate->global_context()->function_cache()-> GetElementNoExceptionThrown(serial_number); if (elm->IsJSFunction()) return Handle<JSFunction>(JSFunction::cast(elm)); // The function has not yet been instantiated in this context; do it. Handle<Object> args[] = { data }; Handle<Object> result = Call(isolate->instantiate_fun(), isolate->js_builtins_object(), ARRAY_SIZE(args), args, exc); if (*exc) return Handle<JSFunction>::null(); return Handle<JSFunction>::cast(result); } Handle<JSObject> Execution::InstantiateObject(Handle<ObjectTemplateInfo> data, bool* exc) { Isolate* isolate = data->GetIsolate(); if (data->property_list()->IsUndefined() && !data->constructor()->IsUndefined()) { // Initialization to make gcc happy. Object* result = NULL; { HandleScope scope(isolate); Handle<FunctionTemplateInfo> cons_template = Handle<FunctionTemplateInfo>( FunctionTemplateInfo::cast(data->constructor())); Handle<JSFunction> cons = InstantiateFunction(cons_template, exc); if (*exc) return Handle<JSObject>::null(); Handle<Object> value = New(cons, 0, NULL, exc); if (*exc) return Handle<JSObject>::null(); result = *value; } ASSERT(!*exc); return Handle<JSObject>(JSObject::cast(result)); } else { Handle<Object> args[] = { data }; Handle<Object> result = Call(isolate->instantiate_fun(), isolate->js_builtins_object(), ARRAY_SIZE(args), args, exc); if (*exc) return Handle<JSObject>::null(); return Handle<JSObject>::cast(result); } } void Execution::ConfigureInstance(Handle<Object> instance, Handle<Object> instance_template, bool* exc) { Isolate* isolate = Isolate::Current(); Handle<Object> args[] = { instance, instance_template }; Execution::Call(isolate->configure_instance_fun(), isolate->js_builtins_object(), ARRAY_SIZE(args), args, exc); } Handle<String> Execution::GetStackTraceLine(Handle<Object> recv, Handle<JSFunction> fun, Handle<Object> pos, Handle<Object> is_global) { Isolate* isolate = fun->GetIsolate(); Handle<Object> args[] = { recv, fun, pos, is_global }; bool caught_exception; Handle<Object> result = TryCall(isolate->get_stack_trace_line_fun(), isolate->js_builtins_object(), ARRAY_SIZE(args), args, &caught_exception); if (caught_exception || !result->IsString()) { return isolate->factory()->empty_symbol(); } return Handle<String>::cast(result); } static Object* RuntimePreempt() { Isolate* isolate = Isolate::Current(); // Clear the preempt request flag. isolate->stack_guard()->Continue(PREEMPT); ContextSwitcher::PreemptionReceived(); #ifdef ENABLE_DEBUGGER_SUPPORT if (isolate->debug()->InDebugger()) { // If currently in the debugger don't do any actual preemption but record // that preemption occoured while in the debugger. isolate->debug()->PreemptionWhileInDebugger(); } else { // Perform preemption. v8::Unlocker unlocker(reinterpret_cast<v8::Isolate*>(isolate)); Thread::YieldCPU(); } #else { // NOLINT // Perform preemption. v8::Unlocker unlocker(reinterpret_cast<v8::Isolate*>(isolate)); Thread::YieldCPU(); } #endif return isolate->heap()->undefined_value(); } #ifdef ENABLE_DEBUGGER_SUPPORT Object* Execution::DebugBreakHelper() { Isolate* isolate = Isolate::Current(); // Just continue if breaks are disabled. if (isolate->debug()->disable_break()) { return isolate->heap()->undefined_value(); } // Ignore debug break during bootstrapping. if (isolate->bootstrapper()->IsActive()) { return isolate->heap()->undefined_value(); } StackLimitCheck check(isolate); if (check.HasOverflowed()) { return isolate->heap()->undefined_value(); } { JavaScriptFrameIterator it(isolate); ASSERT(!it.done()); Object* fun = it.frame()->function(); if (fun && fun->IsJSFunction()) { // Don't stop in builtin functions. if (JSFunction::cast(fun)->IsBuiltin()) { return isolate->heap()->undefined_value(); } GlobalObject* global = JSFunction::cast(fun)->context()->global(); // Don't stop in debugger functions. if (isolate->debug()->IsDebugGlobal(global)) { return isolate->heap()->undefined_value(); } } } // Collect the break state before clearing the flags. bool debug_command_only = isolate->stack_guard()->IsDebugCommand() && !isolate->stack_guard()->IsDebugBreak(); // Clear the debug break request flag. isolate->stack_guard()->Continue(DEBUGBREAK); ProcessDebugMessages(debug_command_only); // Return to continue execution. return isolate->heap()->undefined_value(); } void Execution::ProcessDebugMessages(bool debug_command_only) { Isolate* isolate = Isolate::Current(); // Clear the debug command request flag. isolate->stack_guard()->Continue(DEBUGCOMMAND); StackLimitCheck check(isolate); if (check.HasOverflowed()) { return; } HandleScope scope(isolate); // Enter the debugger. Just continue if we fail to enter the debugger. EnterDebugger debugger; if (debugger.FailedToEnter()) { return; } // Notify the debug event listeners. Indicate auto continue if the break was // a debug command break. isolate->debugger()->OnDebugBreak(isolate->factory()->undefined_value(), debug_command_only); } #endif MaybeObject* Execution::HandleStackGuardInterrupt(Isolate* isolate) { StackGuard* stack_guard = isolate->stack_guard(); if (stack_guard->ShouldPostponeInterrupts()) { return isolate->heap()->undefined_value(); } if (stack_guard->IsGCRequest()) { isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags, "StackGuard GC request"); stack_guard->Continue(GC_REQUEST); } isolate->counters()->stack_interrupts()->Increment(); // If FLAG_count_based_interrupts, every interrupt is a profiler interrupt. if (FLAG_count_based_interrupts || stack_guard->IsRuntimeProfilerTick()) { isolate->counters()->runtime_profiler_ticks()->Increment(); stack_guard->Continue(RUNTIME_PROFILER_TICK); isolate->runtime_profiler()->OptimizeNow(); } #ifdef ENABLE_DEBUGGER_SUPPORT if (stack_guard->IsDebugBreak() || stack_guard->IsDebugCommand()) { DebugBreakHelper(); } #endif if (stack_guard->IsPreempted()) RuntimePreempt(); if (stack_guard->IsTerminateExecution()) { stack_guard->Continue(TERMINATE); return isolate->TerminateExecution(); } if (stack_guard->IsInterrupted()) { stack_guard->Continue(INTERRUPT); return isolate->StackOverflow(); } return isolate->heap()->undefined_value(); } } } // namespace v8::internal