/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkTSet_DEFINED #define SkTSet_DEFINED #include "SkTSort.h" #include "SkTDArray.h" #include "SkTypes.h" /** \class SkTSet<T> The SkTSet template class defines a set. Elements are additionally guaranteed to be sorted by their insertion order. Main operations supported now are: add, merge, find and contains. TSet<T> is mutable. */ // TODO: Add remove, intersect and difference operations. // TODO: Add bench tests. template <typename T> class SkTSet { public: SkTSet() { fSetArray = SkNEW(SkTDArray<T>); fOrderedArray = SkNEW(SkTDArray<T>); } ~SkTSet() { SkASSERT(fSetArray); SkDELETE(fSetArray); SkASSERT(fOrderedArray); SkDELETE(fOrderedArray); } SkTSet(const SkTSet<T>& src) { this->fSetArray = SkNEW_ARGS(SkTDArray<T>, (*src.fSetArray)); this->fOrderedArray = SkNEW_ARGS(SkTDArray<T>, (*src.fOrderedArray)); #ifdef SK_DEBUG validate(); #endif } SkTSet<T>& operator=(const SkTSet<T>& src) { *this->fSetArray = *src.fSetArray; *this->fOrderedArray = *src.fOrderedArray; #ifdef SK_DEBUG validate(); #endif return *this; } /** Merges src elements into this, and returns the number of duplicates * found. Elements from src will retain their ordering and will be ordered * after the elements currently in this set. * * Implementation note: this uses a 2-stage merge to obtain O(n log n) time. * The first stage goes through src.fOrderedArray, checking if * this->contains() is false before adding to this.fOrderedArray. * The second stage does a standard sorted list merge on the fSetArrays. */ int mergeInto(const SkTSet<T>& src) { SkASSERT(fSetArray); SkASSERT(fOrderedArray); // Do fOrderedArray merge. for (int i = 0; i < src.count(); ++i) { if (!contains((*src.fOrderedArray)[i])) { fOrderedArray->push((*src.fOrderedArray)[i]); } } // Do fSetArray merge. int duplicates = 0; SkTDArray<T>* fArrayNew = new SkTDArray<T>(); fArrayNew->setReserve(fOrderedArray->count()); int i = 0; int j = 0; while (i < fSetArray->count() && j < src.count()) { if ((*fSetArray)[i] < (*src.fSetArray)[j]) { fArrayNew->push((*fSetArray)[i]); i++; } else if ((*fSetArray)[i] > (*src.fSetArray)[j]) { fArrayNew->push((*src.fSetArray)[j]); j++; } else { duplicates++; j++; // Skip one of the duplicates. } } while (i < fSetArray->count()) { fArrayNew->push((*fSetArray)[i]); i++; } while (j < src.count()) { fArrayNew->push((*src.fSetArray)[j]); j++; } SkDELETE(fSetArray); fSetArray = fArrayNew; fArrayNew = NULL; #ifdef SK_DEBUG validate(); #endif return duplicates; } /** Adds a new element into set and returns false if the element is already * in this set. */ bool add(const T& elem) { SkASSERT(fSetArray); SkASSERT(fOrderedArray); int pos = 0; int i = find(elem, &pos); if (i >= 0) { return false; } *fSetArray->insert(pos) = elem; fOrderedArray->push(elem); #ifdef SK_DEBUG validate(); #endif return true; } /** Returns true if this set is empty. */ bool isEmpty() const { SkASSERT(fOrderedArray); SkASSERT(fSetArray); SkASSERT(fSetArray->isEmpty() == fOrderedArray->isEmpty()); return fOrderedArray->isEmpty(); } /** Return the number of elements in the set. */ int count() const { SkASSERT(fOrderedArray); SkASSERT(fSetArray); SkASSERT(fSetArray->count() == fOrderedArray->count()); return fOrderedArray->count(); } /** Return the number of bytes in the set: count * sizeof(T). */ size_t bytes() const { SkASSERT(fOrderedArray); return fOrderedArray->bytes(); } /** Return the beginning of a set iterator. * Elements in the iterator will be sorted ascending. */ const T* begin() const { SkASSERT(fOrderedArray); return fOrderedArray->begin(); } /** Return the end of a set iterator. */ const T* end() const { SkASSERT(fOrderedArray); return fOrderedArray->end(); } const T& operator[](int index) const { SkASSERT(fOrderedArray); return (*fOrderedArray)[index]; } /** Resets the set (deletes memory and initiates an empty set). */ void reset() { SkASSERT(fSetArray); SkASSERT(fOrderedArray); fSetArray->reset(); fOrderedArray->reset(); } /** Rewinds the set (preserves memory and initiates an empty set). */ void rewind() { SkASSERT(fSetArray); SkASSERT(fOrderedArray); fSetArray->rewind(); fOrderedArray->rewind(); } /** Reserves memory for the set. */ void setReserve(int reserve) { SkASSERT(fSetArray); SkASSERT(fOrderedArray); fSetArray->setReserve(reserve); fOrderedArray->setReserve(reserve); } /** Returns true if the array contains this element. */ bool contains(const T& elem) const { SkASSERT(fSetArray); return (this->find(elem) >= 0); } /** Copies internal array to destination. */ void copy(T* dst) const { SkASSERT(fOrderedArray); fOrderedArray->copyRange(dst, 0, fOrderedArray->count()); } /** Returns a const reference to the internal vector. */ const SkTDArray<T>& toArray() { SkASSERT(fOrderedArray); return *fOrderedArray; } /** Unref all elements in the set. */ void unrefAll() { SkASSERT(fSetArray); SkASSERT(fOrderedArray); fOrderedArray->unrefAll(); // Also reset the other array, as SkTDArray::unrefAll does an // implcit reset fSetArray->reset(); } /** safeUnref all elements in the set. */ void safeUnrefAll() { SkASSERT(fSetArray); SkASSERT(fOrderedArray); fOrderedArray->safeUnrefAll(); // Also reset the other array, as SkTDArray::safeUnrefAll does an // implcit reset fSetArray->reset(); } #ifdef SK_DEBUG void validate() const { SkASSERT(fSetArray); SkASSERT(fOrderedArray); fSetArray->validate(); fOrderedArray->validate(); SkASSERT(isSorted() && !hasDuplicates() && arraysConsistent()); } bool hasDuplicates() const { for (int i = 0; i < fSetArray->count() - 1; ++i) { if ((*fSetArray)[i] == (*fSetArray)[i + 1]) { return true; } } return false; } bool isSorted() const { for (int i = 0; i < fSetArray->count() - 1; ++i) { // Use only < operator if (!((*fSetArray)[i] < (*fSetArray)[i + 1])) { return false; } } return true; } /** Checks if fSetArray is consistent with fOrderedArray */ bool arraysConsistent() const { if (fSetArray->count() != fOrderedArray->count()) { return false; } if (fOrderedArray->count() == 0) { return true; } // Copy and sort fOrderedArray, then compare to fSetArray. // A O(n log n) algorithm is necessary as O(n^2) will choke some GMs. SkAutoMalloc sortedArray(fOrderedArray->bytes()); T* sortedBase = reinterpret_cast<T*>(sortedArray.get()); int count = fOrderedArray->count(); fOrderedArray->copyRange(sortedBase, 0, count); SkTQSort<T>(sortedBase, sortedBase + count - 1); for (int i = 0; i < count; ++i) { if (sortedBase[i] != (*fSetArray)[i]) { return false; } } return true; } #endif private: SkTDArray<T>* fSetArray; // Sorted by pointer address for fast // lookup. SkTDArray<T>* fOrderedArray; // Sorted by insertion order for // deterministic output. /** Returns the index in fSetArray where an element was found. * Returns -1 if the element was not found, and it fills *posToInsertSorted * with the index of the place where elem should be inserted to preserve the * internal array sorted. * If element was found, *posToInsertSorted is undefined. */ int find(const T& elem, int* posToInsertSorted = NULL) const { SkASSERT(fSetArray); if (fSetArray->count() == 0) { if (posToInsertSorted) { *posToInsertSorted = 0; } return -1; } int iMin = 0; int iMax = fSetArray->count(); while (iMin < iMax - 1) { int iMid = (iMin + iMax) / 2; if (elem < (*fSetArray)[iMid]) { iMax = iMid; } else { iMin = iMid; } } if (elem == (*fSetArray)[iMin]) { return iMin; } if (posToInsertSorted) { if (elem < (*fSetArray)[iMin]) { *posToInsertSorted = iMin; } else { *posToInsertSorted = iMin + 1; } } return -1; } }; #endif