/* * Copyright 2010 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrDrawTarget.h" #include "GrContext.h" #include "GrDrawTargetCaps.h" #include "GrPath.h" #include "GrRenderTarget.h" #include "GrTexture.h" #include "GrVertexBuffer.h" #include "SkStrokeRec.h" //////////////////////////////////////////////////////////////////////////////// GrDrawTarget::DrawInfo& GrDrawTarget::DrawInfo::operator =(const DrawInfo& di) { fPrimitiveType = di.fPrimitiveType; fStartVertex = di.fStartVertex; fStartIndex = di.fStartIndex; fVertexCount = di.fVertexCount; fIndexCount = di.fIndexCount; fInstanceCount = di.fInstanceCount; fVerticesPerInstance = di.fVerticesPerInstance; fIndicesPerInstance = di.fIndicesPerInstance; if (NULL != di.fDevBounds) { SkASSERT(di.fDevBounds == &di.fDevBoundsStorage); fDevBoundsStorage = di.fDevBoundsStorage; fDevBounds = &fDevBoundsStorage; } else { fDevBounds = NULL; } fDstCopy = di.fDstCopy; return *this; } #ifdef SK_DEBUG bool GrDrawTarget::DrawInfo::isInstanced() const { if (fInstanceCount > 0) { SkASSERT(0 == fIndexCount % fIndicesPerInstance); SkASSERT(0 == fVertexCount % fVerticesPerInstance); SkASSERT(fIndexCount / fIndicesPerInstance == fInstanceCount); SkASSERT(fVertexCount / fVerticesPerInstance == fInstanceCount); // there is no way to specify a non-zero start index to drawIndexedInstances(). SkASSERT(0 == fStartIndex); return true; } else { SkASSERT(!fVerticesPerInstance); SkASSERT(!fIndicesPerInstance); return false; } } #endif void GrDrawTarget::DrawInfo::adjustInstanceCount(int instanceOffset) { SkASSERT(this->isInstanced()); SkASSERT(instanceOffset + fInstanceCount >= 0); fInstanceCount += instanceOffset; fVertexCount = fVerticesPerInstance * fInstanceCount; fIndexCount = fIndicesPerInstance * fInstanceCount; } void GrDrawTarget::DrawInfo::adjustStartVertex(int vertexOffset) { fStartVertex += vertexOffset; SkASSERT(fStartVertex >= 0); } void GrDrawTarget::DrawInfo::adjustStartIndex(int indexOffset) { SkASSERT(this->isIndexed()); fStartIndex += indexOffset; SkASSERT(fStartIndex >= 0); } //////////////////////////////////////////////////////////////////////////////// #define DEBUG_INVAL_BUFFER 0xdeadcafe #define DEBUG_INVAL_START_IDX -1 GrDrawTarget::GrDrawTarget(GrContext* context) : fClip(NULL) , fContext(context) { SkASSERT(NULL != context); fDrawState = &fDefaultDrawState; // We assume that fDrawState always owns a ref to the object it points at. fDefaultDrawState.ref(); GeometrySrcState& geoSrc = fGeoSrcStateStack.push_back(); #ifdef SK_DEBUG geoSrc.fVertexCount = DEBUG_INVAL_START_IDX; geoSrc.fVertexBuffer = (GrVertexBuffer*)DEBUG_INVAL_BUFFER; geoSrc.fIndexCount = DEBUG_INVAL_START_IDX; geoSrc.fIndexBuffer = (GrIndexBuffer*)DEBUG_INVAL_BUFFER; #endif geoSrc.fVertexSrc = kNone_GeometrySrcType; geoSrc.fIndexSrc = kNone_GeometrySrcType; } GrDrawTarget::~GrDrawTarget() { SkASSERT(1 == fGeoSrcStateStack.count()); SkDEBUGCODE(GeometrySrcState& geoSrc = fGeoSrcStateStack.back()); SkASSERT(kNone_GeometrySrcType == geoSrc.fIndexSrc); SkASSERT(kNone_GeometrySrcType == geoSrc.fVertexSrc); fDrawState->unref(); } void GrDrawTarget::releaseGeometry() { int popCnt = fGeoSrcStateStack.count() - 1; while (popCnt) { this->popGeometrySource(); --popCnt; } this->resetVertexSource(); this->resetIndexSource(); } void GrDrawTarget::setClip(const GrClipData* clip) { clipWillBeSet(clip); fClip = clip; } const GrClipData* GrDrawTarget::getClip() const { return fClip; } void GrDrawTarget::setDrawState(GrDrawState* drawState) { SkASSERT(NULL != fDrawState); if (NULL == drawState) { drawState = &fDefaultDrawState; } if (fDrawState != drawState) { fDrawState->unref(); drawState->ref(); fDrawState = drawState; } } bool GrDrawTarget::reserveVertexSpace(size_t vertexSize, int vertexCount, void** vertices) { GeometrySrcState& geoSrc = fGeoSrcStateStack.back(); bool acquired = false; if (vertexCount > 0) { SkASSERT(NULL != vertices); this->releasePreviousVertexSource(); geoSrc.fVertexSrc = kNone_GeometrySrcType; acquired = this->onReserveVertexSpace(vertexSize, vertexCount, vertices); } if (acquired) { geoSrc.fVertexSrc = kReserved_GeometrySrcType; geoSrc.fVertexCount = vertexCount; geoSrc.fVertexSize = vertexSize; } else if (NULL != vertices) { *vertices = NULL; } return acquired; } bool GrDrawTarget::reserveIndexSpace(int indexCount, void** indices) { GeometrySrcState& geoSrc = fGeoSrcStateStack.back(); bool acquired = false; if (indexCount > 0) { SkASSERT(NULL != indices); this->releasePreviousIndexSource(); geoSrc.fIndexSrc = kNone_GeometrySrcType; acquired = this->onReserveIndexSpace(indexCount, indices); } if (acquired) { geoSrc.fIndexSrc = kReserved_GeometrySrcType; geoSrc.fIndexCount = indexCount; } else if (NULL != indices) { *indices = NULL; } return acquired; } bool GrDrawTarget::reserveVertexAndIndexSpace(int vertexCount, int indexCount, void** vertices, void** indices) { size_t vertexSize = this->drawState()->getVertexSize(); this->willReserveVertexAndIndexSpace(vertexCount, indexCount); if (vertexCount) { if (!this->reserveVertexSpace(vertexSize, vertexCount, vertices)) { if (indexCount) { this->resetIndexSource(); } return false; } } if (indexCount) { if (!this->reserveIndexSpace(indexCount, indices)) { if (vertexCount) { this->resetVertexSource(); } return false; } } return true; } bool GrDrawTarget::geometryHints(int32_t* vertexCount, int32_t* indexCount) const { if (NULL != vertexCount) { *vertexCount = -1; } if (NULL != indexCount) { *indexCount = -1; } return false; } void GrDrawTarget::releasePreviousVertexSource() { GeometrySrcState& geoSrc = fGeoSrcStateStack.back(); switch (geoSrc.fVertexSrc) { case kNone_GeometrySrcType: break; case kArray_GeometrySrcType: this->releaseVertexArray(); break; case kReserved_GeometrySrcType: this->releaseReservedVertexSpace(); break; case kBuffer_GeometrySrcType: geoSrc.fVertexBuffer->unref(); #ifdef SK_DEBUG geoSrc.fVertexBuffer = (GrVertexBuffer*)DEBUG_INVAL_BUFFER; #endif break; default: GrCrash("Unknown Vertex Source Type."); break; } } void GrDrawTarget::releasePreviousIndexSource() { GeometrySrcState& geoSrc = fGeoSrcStateStack.back(); switch (geoSrc.fIndexSrc) { case kNone_GeometrySrcType: // these two don't require break; case kArray_GeometrySrcType: this->releaseIndexArray(); break; case kReserved_GeometrySrcType: this->releaseReservedIndexSpace(); break; case kBuffer_GeometrySrcType: geoSrc.fIndexBuffer->unref(); #ifdef SK_DEBUG geoSrc.fIndexBuffer = (GrIndexBuffer*)DEBUG_INVAL_BUFFER; #endif break; default: GrCrash("Unknown Index Source Type."); break; } } void GrDrawTarget::setVertexSourceToArray(const void* vertexArray, int vertexCount) { this->releasePreviousVertexSource(); GeometrySrcState& geoSrc = fGeoSrcStateStack.back(); geoSrc.fVertexSrc = kArray_GeometrySrcType; geoSrc.fVertexSize = this->drawState()->getVertexSize(); geoSrc.fVertexCount = vertexCount; this->onSetVertexSourceToArray(vertexArray, vertexCount); } void GrDrawTarget::setIndexSourceToArray(const void* indexArray, int indexCount) { this->releasePreviousIndexSource(); GeometrySrcState& geoSrc = fGeoSrcStateStack.back(); geoSrc.fIndexSrc = kArray_GeometrySrcType; geoSrc.fIndexCount = indexCount; this->onSetIndexSourceToArray(indexArray, indexCount); } void GrDrawTarget::setVertexSourceToBuffer(const GrVertexBuffer* buffer) { this->releasePreviousVertexSource(); GeometrySrcState& geoSrc = fGeoSrcStateStack.back(); geoSrc.fVertexSrc = kBuffer_GeometrySrcType; geoSrc.fVertexBuffer = buffer; buffer->ref(); geoSrc.fVertexSize = this->drawState()->getVertexSize(); } void GrDrawTarget::setIndexSourceToBuffer(const GrIndexBuffer* buffer) { this->releasePreviousIndexSource(); GeometrySrcState& geoSrc = fGeoSrcStateStack.back(); geoSrc.fIndexSrc = kBuffer_GeometrySrcType; geoSrc.fIndexBuffer = buffer; buffer->ref(); } void GrDrawTarget::resetVertexSource() { this->releasePreviousVertexSource(); GeometrySrcState& geoSrc = fGeoSrcStateStack.back(); geoSrc.fVertexSrc = kNone_GeometrySrcType; } void GrDrawTarget::resetIndexSource() { this->releasePreviousIndexSource(); GeometrySrcState& geoSrc = fGeoSrcStateStack.back(); geoSrc.fIndexSrc = kNone_GeometrySrcType; } void GrDrawTarget::pushGeometrySource() { this->geometrySourceWillPush(); GeometrySrcState& newState = fGeoSrcStateStack.push_back(); newState.fIndexSrc = kNone_GeometrySrcType; newState.fVertexSrc = kNone_GeometrySrcType; #ifdef SK_DEBUG newState.fVertexCount = ~0; newState.fVertexBuffer = (GrVertexBuffer*)~0; newState.fIndexCount = ~0; newState.fIndexBuffer = (GrIndexBuffer*)~0; #endif } void GrDrawTarget::popGeometrySource() { // if popping last element then pops are unbalanced with pushes SkASSERT(fGeoSrcStateStack.count() > 1); this->geometrySourceWillPop(fGeoSrcStateStack.fromBack(1)); this->releasePreviousVertexSource(); this->releasePreviousIndexSource(); fGeoSrcStateStack.pop_back(); } //////////////////////////////////////////////////////////////////////////////// bool GrDrawTarget::checkDraw(GrPrimitiveType type, int startVertex, int startIndex, int vertexCount, int indexCount) const { const GrDrawState& drawState = this->getDrawState(); #ifdef SK_DEBUG const GeometrySrcState& geoSrc = fGeoSrcStateStack.back(); int maxVertex = startVertex + vertexCount; int maxValidVertex; switch (geoSrc.fVertexSrc) { case kNone_GeometrySrcType: GrCrash("Attempting to draw without vertex src."); case kReserved_GeometrySrcType: // fallthrough case kArray_GeometrySrcType: maxValidVertex = geoSrc.fVertexCount; break; case kBuffer_GeometrySrcType: maxValidVertex = static_cast<int>(geoSrc.fVertexBuffer->sizeInBytes() / geoSrc.fVertexSize); break; } if (maxVertex > maxValidVertex) { GrCrash("Drawing outside valid vertex range."); } if (indexCount > 0) { int maxIndex = startIndex + indexCount; int maxValidIndex; switch (geoSrc.fIndexSrc) { case kNone_GeometrySrcType: GrCrash("Attempting to draw indexed geom without index src."); case kReserved_GeometrySrcType: // fallthrough case kArray_GeometrySrcType: maxValidIndex = geoSrc.fIndexCount; break; case kBuffer_GeometrySrcType: maxValidIndex = static_cast<int>(geoSrc.fIndexBuffer->sizeInBytes() / sizeof(uint16_t)); break; } if (maxIndex > maxValidIndex) { GrCrash("Index reads outside valid index range."); } } SkASSERT(NULL != drawState.getRenderTarget()); for (int s = 0; s < drawState.numColorStages(); ++s) { const GrEffectRef& effect = *drawState.getColorStage(s).getEffect(); int numTextures = effect->numTextures(); for (int t = 0; t < numTextures; ++t) { GrTexture* texture = effect->texture(t); SkASSERT(texture->asRenderTarget() != drawState.getRenderTarget()); } } for (int s = 0; s < drawState.numCoverageStages(); ++s) { const GrEffectRef& effect = *drawState.getCoverageStage(s).getEffect(); int numTextures = effect->numTextures(); for (int t = 0; t < numTextures; ++t) { GrTexture* texture = effect->texture(t); SkASSERT(texture->asRenderTarget() != drawState.getRenderTarget()); } } SkASSERT(drawState.validateVertexAttribs()); #endif if (NULL == drawState.getRenderTarget()) { return false; } return true; } bool GrDrawTarget::setupDstReadIfNecessary(GrDeviceCoordTexture* dstCopy, const SkRect* drawBounds) { if (this->caps()->dstReadInShaderSupport() || !this->getDrawState().willEffectReadDstColor()) { return true; } GrRenderTarget* rt = this->drawState()->getRenderTarget(); SkIRect copyRect; const GrClipData* clip = this->getClip(); clip->getConservativeBounds(rt, ©Rect); if (NULL != drawBounds) { SkIRect drawIBounds; drawBounds->roundOut(&drawIBounds); if (!copyRect.intersect(drawIBounds)) { #ifdef SK_DEBUG GrPrintf("Missed an early reject. Bailing on draw from setupDstReadIfNecessary.\n"); #endif return false; } } else { #ifdef SK_DEBUG //GrPrintf("No dev bounds when dst copy is made.\n"); #endif } // MSAA consideration: When there is support for reading MSAA samples in the shader we could // have per-sample dst values by making the copy multisampled. GrTextureDesc desc; this->initCopySurfaceDstDesc(rt, &desc); desc.fWidth = copyRect.width(); desc.fHeight = copyRect.height(); GrAutoScratchTexture ast(fContext, desc, GrContext::kApprox_ScratchTexMatch); if (NULL == ast.texture()) { GrPrintf("Failed to create temporary copy of destination texture.\n"); return false; } SkIPoint dstPoint = {0, 0}; if (this->copySurface(ast.texture(), rt, copyRect, dstPoint)) { dstCopy->setTexture(ast.texture()); dstCopy->setOffset(copyRect.fLeft, copyRect.fTop); return true; } else { return false; } } void GrDrawTarget::drawIndexed(GrPrimitiveType type, int startVertex, int startIndex, int vertexCount, int indexCount, const SkRect* devBounds) { if (indexCount > 0 && this->checkDraw(type, startVertex, startIndex, vertexCount, indexCount)) { DrawInfo info; info.fPrimitiveType = type; info.fStartVertex = startVertex; info.fStartIndex = startIndex; info.fVertexCount = vertexCount; info.fIndexCount = indexCount; info.fInstanceCount = 0; info.fVerticesPerInstance = 0; info.fIndicesPerInstance = 0; if (NULL != devBounds) { info.setDevBounds(*devBounds); } // TODO: We should continue with incorrect blending. if (!this->setupDstReadIfNecessary(&info)) { return; } this->onDraw(info); } } void GrDrawTarget::drawNonIndexed(GrPrimitiveType type, int startVertex, int vertexCount, const SkRect* devBounds) { if (vertexCount > 0 && this->checkDraw(type, startVertex, -1, vertexCount, -1)) { DrawInfo info; info.fPrimitiveType = type; info.fStartVertex = startVertex; info.fStartIndex = 0; info.fVertexCount = vertexCount; info.fIndexCount = 0; info.fInstanceCount = 0; info.fVerticesPerInstance = 0; info.fIndicesPerInstance = 0; if (NULL != devBounds) { info.setDevBounds(*devBounds); } // TODO: We should continue with incorrect blending. if (!this->setupDstReadIfNecessary(&info)) { return; } this->onDraw(info); } } void GrDrawTarget::stencilPath(const GrPath* path, SkPath::FillType fill) { // TODO: extract portions of checkDraw that are relevant to path stenciling. SkASSERT(NULL != path); SkASSERT(this->caps()->pathRenderingSupport()); SkASSERT(!SkPath::IsInverseFillType(fill)); this->onStencilPath(path, fill); } void GrDrawTarget::drawPath(const GrPath* path, SkPath::FillType fill) { // TODO: extract portions of checkDraw that are relevant to path rendering. SkASSERT(NULL != path); SkASSERT(this->caps()->pathRenderingSupport()); const GrDrawState* drawState = &getDrawState(); SkRect devBounds; if (SkPath::IsInverseFillType(fill)) { devBounds = SkRect::MakeWH(SkIntToScalar(drawState->getRenderTarget()->width()), SkIntToScalar(drawState->getRenderTarget()->height())); } else { devBounds = path->getBounds(); } SkMatrix viewM = drawState->getViewMatrix(); viewM.mapRect(&devBounds); GrDeviceCoordTexture dstCopy; if (!this->setupDstReadIfNecessary(&dstCopy, &devBounds)) { return; } this->onDrawPath(path, fill, dstCopy.texture() ? &dstCopy : NULL); } //////////////////////////////////////////////////////////////////////////////// bool GrDrawTarget::willUseHWAALines() const { // There is a conflict between using smooth lines and our use of premultiplied alpha. Smooth // lines tweak the incoming alpha value but not in a premul-alpha way. So we only use them when // our alpha is 0xff and tweaking the color for partial coverage is OK if (!this->caps()->hwAALineSupport() || !this->getDrawState().isHWAntialiasState()) { return false; } GrDrawState::BlendOptFlags opts = this->getDrawState().getBlendOpts(); return (GrDrawState::kDisableBlend_BlendOptFlag & opts) && (GrDrawState::kCoverageAsAlpha_BlendOptFlag & opts); } bool GrDrawTarget::canApplyCoverage() const { // we can correctly apply coverage if a) we have dual source blending // or b) one of our blend optimizations applies. return this->caps()->dualSourceBlendingSupport() || GrDrawState::kNone_BlendOpt != this->getDrawState().getBlendOpts(true); } //////////////////////////////////////////////////////////////////////////////// void GrDrawTarget::drawIndexedInstances(GrPrimitiveType type, int instanceCount, int verticesPerInstance, int indicesPerInstance, const SkRect* devBounds) { if (!verticesPerInstance || !indicesPerInstance) { return; } int maxInstancesPerDraw = this->indexCountInCurrentSource() / indicesPerInstance; if (!maxInstancesPerDraw) { return; } DrawInfo info; info.fPrimitiveType = type; info.fStartIndex = 0; info.fStartVertex = 0; info.fIndicesPerInstance = indicesPerInstance; info.fVerticesPerInstance = verticesPerInstance; // Set the same bounds for all the draws. if (NULL != devBounds) { info.setDevBounds(*devBounds); } // TODO: We should continue with incorrect blending. if (!this->setupDstReadIfNecessary(&info)) { return; } while (instanceCount) { info.fInstanceCount = GrMin(instanceCount, maxInstancesPerDraw); info.fVertexCount = info.fInstanceCount * verticesPerInstance; info.fIndexCount = info.fInstanceCount * indicesPerInstance; if (this->checkDraw(type, info.fStartVertex, info.fStartIndex, info.fVertexCount, info.fIndexCount)) { this->onDraw(info); } info.fStartVertex += info.fVertexCount; instanceCount -= info.fInstanceCount; } } //////////////////////////////////////////////////////////////////////////////// namespace { // position + (optional) texture coord extern const GrVertexAttrib gBWRectPosUVAttribs[] = { {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, {kVec2f_GrVertexAttribType, sizeof(GrPoint), kLocalCoord_GrVertexAttribBinding} }; void set_vertex_attributes(GrDrawState* drawState, bool hasUVs) { if (hasUVs) { drawState->setVertexAttribs<gBWRectPosUVAttribs>(2); } else { drawState->setVertexAttribs<gBWRectPosUVAttribs>(1); } } }; void GrDrawTarget::onDrawRect(const SkRect& rect, const SkMatrix* matrix, const SkRect* localRect, const SkMatrix* localMatrix) { GrDrawState::AutoViewMatrixRestore avmr; if (NULL != matrix) { avmr.set(this->drawState(), *matrix); } set_vertex_attributes(this->drawState(), NULL != localRect); AutoReleaseGeometry geo(this, 4, 0); if (!geo.succeeded()) { GrPrintf("Failed to get space for vertices!\n"); return; } size_t vsize = this->drawState()->getVertexSize(); geo.positions()->setRectFan(rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, vsize); if (NULL != localRect) { GrPoint* coords = GrTCast<GrPoint*>(GrTCast<intptr_t>(geo.vertices()) + sizeof(GrPoint)); coords->setRectFan(localRect->fLeft, localRect->fTop, localRect->fRight, localRect->fBottom, vsize); if (NULL != localMatrix) { localMatrix->mapPointsWithStride(coords, vsize, 4); } } SkTLazy<SkRect> bounds; if (this->getDrawState().willEffectReadDstColor()) { bounds.init(); this->getDrawState().getViewMatrix().mapRect(bounds.get(), rect); } this->drawNonIndexed(kTriangleFan_GrPrimitiveType, 0, 4, bounds.getMaybeNull()); } void GrDrawTarget::clipWillBeSet(const GrClipData* clipData) { } //////////////////////////////////////////////////////////////////////////////// GrDrawTarget::AutoStateRestore::AutoStateRestore() { fDrawTarget = NULL; } GrDrawTarget::AutoStateRestore::AutoStateRestore(GrDrawTarget* target, ASRInit init, const SkMatrix* vm) { fDrawTarget = NULL; this->set(target, init, vm); } GrDrawTarget::AutoStateRestore::~AutoStateRestore() { if (NULL != fDrawTarget) { fDrawTarget->setDrawState(fSavedState); fSavedState->unref(); } } void GrDrawTarget::AutoStateRestore::set(GrDrawTarget* target, ASRInit init, const SkMatrix* vm) { SkASSERT(NULL == fDrawTarget); fDrawTarget = target; fSavedState = target->drawState(); SkASSERT(fSavedState); fSavedState->ref(); if (kReset_ASRInit == init) { if (NULL == vm) { // calls the default cons fTempState.init(); } else { SkNEW_IN_TLAZY(&fTempState, GrDrawState, (*vm)); } } else { SkASSERT(kPreserve_ASRInit == init); if (NULL == vm) { fTempState.set(*fSavedState); } else { SkNEW_IN_TLAZY(&fTempState, GrDrawState, (*fSavedState, *vm)); } } target->setDrawState(fTempState.get()); } bool GrDrawTarget::AutoStateRestore::setIdentity(GrDrawTarget* target, ASRInit init) { SkASSERT(NULL == fDrawTarget); fDrawTarget = target; fSavedState = target->drawState(); SkASSERT(fSavedState); fSavedState->ref(); if (kReset_ASRInit == init) { // calls the default cons fTempState.init(); } else { SkASSERT(kPreserve_ASRInit == init); // calls the copy cons fTempState.set(*fSavedState); if (!fTempState.get()->setIdentityViewMatrix()) { // let go of any resources held by the temp fTempState.get()->reset(); fDrawTarget = NULL; fSavedState->unref(); fSavedState = NULL; return false; } } target->setDrawState(fTempState.get()); return true; } //////////////////////////////////////////////////////////////////////////////// GrDrawTarget::AutoReleaseGeometry::AutoReleaseGeometry( GrDrawTarget* target, int vertexCount, int indexCount) { fTarget = NULL; this->set(target, vertexCount, indexCount); } GrDrawTarget::AutoReleaseGeometry::AutoReleaseGeometry() { fTarget = NULL; } GrDrawTarget::AutoReleaseGeometry::~AutoReleaseGeometry() { this->reset(); } bool GrDrawTarget::AutoReleaseGeometry::set(GrDrawTarget* target, int vertexCount, int indexCount) { this->reset(); fTarget = target; bool success = true; if (NULL != fTarget) { fTarget = target; success = target->reserveVertexAndIndexSpace(vertexCount, indexCount, &fVertices, &fIndices); if (!success) { fTarget = NULL; this->reset(); } } SkASSERT(success == (NULL != fTarget)); return success; } void GrDrawTarget::AutoReleaseGeometry::reset() { if (NULL != fTarget) { if (NULL != fVertices) { fTarget->resetVertexSource(); } if (NULL != fIndices) { fTarget->resetIndexSource(); } fTarget = NULL; } fVertices = NULL; fIndices = NULL; } GrDrawTarget::AutoClipRestore::AutoClipRestore(GrDrawTarget* target, const SkIRect& newClip) { fTarget = target; fClip = fTarget->getClip(); fStack.init(); fStack.get()->clipDevRect(newClip, SkRegion::kReplace_Op); fReplacementClip.fClipStack = fStack.get(); target->setClip(&fReplacementClip); } namespace { // returns true if the read/written rect intersects the src/dst and false if not. bool clip_srcrect_and_dstpoint(const GrSurface* dst, const GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint, SkIRect* clippedSrcRect, SkIPoint* clippedDstPoint) { *clippedSrcRect = srcRect; *clippedDstPoint = dstPoint; // clip the left edge to src and dst bounds, adjusting dstPoint if necessary if (clippedSrcRect->fLeft < 0) { clippedDstPoint->fX -= clippedSrcRect->fLeft; clippedSrcRect->fLeft = 0; } if (clippedDstPoint->fX < 0) { clippedSrcRect->fLeft -= clippedDstPoint->fX; clippedDstPoint->fX = 0; } // clip the top edge to src and dst bounds, adjusting dstPoint if necessary if (clippedSrcRect->fTop < 0) { clippedDstPoint->fY -= clippedSrcRect->fTop; clippedSrcRect->fTop = 0; } if (clippedDstPoint->fY < 0) { clippedSrcRect->fTop -= clippedDstPoint->fY; clippedDstPoint->fY = 0; } // clip the right edge to the src and dst bounds. if (clippedSrcRect->fRight > src->width()) { clippedSrcRect->fRight = src->width(); } if (clippedDstPoint->fX + clippedSrcRect->width() > dst->width()) { clippedSrcRect->fRight = clippedSrcRect->fLeft + dst->width() - clippedDstPoint->fX; } // clip the bottom edge to the src and dst bounds. if (clippedSrcRect->fBottom > src->height()) { clippedSrcRect->fBottom = src->height(); } if (clippedDstPoint->fY + clippedSrcRect->height() > dst->height()) { clippedSrcRect->fBottom = clippedSrcRect->fTop + dst->height() - clippedDstPoint->fY; } // The above clipping steps may have inverted the rect if it didn't intersect either the src or // dst bounds. return !clippedSrcRect->isEmpty(); } } bool GrDrawTarget::copySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { SkASSERT(NULL != dst); SkASSERT(NULL != src); SkIRect clippedSrcRect; SkIPoint clippedDstPoint; // If the rect is outside the src or dst then we've already succeeded. if (!clip_srcrect_and_dstpoint(dst, src, srcRect, dstPoint, &clippedSrcRect, &clippedDstPoint)) { SkASSERT(this->canCopySurface(dst, src, srcRect, dstPoint)); return true; } bool result = this->onCopySurface(dst, src, clippedSrcRect, clippedDstPoint); SkASSERT(result == this->canCopySurface(dst, src, clippedSrcRect, clippedDstPoint)); return result; } bool GrDrawTarget::canCopySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { SkASSERT(NULL != dst); SkASSERT(NULL != src); SkIRect clippedSrcRect; SkIPoint clippedDstPoint; // If the rect is outside the src or dst then we're guaranteed success if (!clip_srcrect_and_dstpoint(dst, src, srcRect, dstPoint, &clippedSrcRect, &clippedDstPoint)) { return true; } return this->onCanCopySurface(dst, src, clippedSrcRect, clippedDstPoint); } bool GrDrawTarget::onCanCopySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { // Check that the read/write rects are contained within the src/dst bounds. SkASSERT(!srcRect.isEmpty()); SkASSERT(SkIRect::MakeWH(src->width(), src->height()).contains(srcRect)); SkASSERT(dstPoint.fX >= 0 && dstPoint.fY >= 0); SkASSERT(dstPoint.fX + srcRect.width() <= dst->width() && dstPoint.fY + srcRect.height() <= dst->height()); return !dst->isSameAs(src) && NULL != dst->asRenderTarget() && NULL != src->asTexture(); } bool GrDrawTarget::onCopySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { if (!GrDrawTarget::onCanCopySurface(dst, src, srcRect, dstPoint)) { return false; } GrRenderTarget* rt = dst->asRenderTarget(); GrTexture* tex = src->asTexture(); GrDrawTarget::AutoStateRestore asr(this, kReset_ASRInit); this->drawState()->setRenderTarget(rt); SkMatrix matrix; matrix.setTranslate(SkIntToScalar(srcRect.fLeft - dstPoint.fX), SkIntToScalar(srcRect.fTop - dstPoint.fY)); matrix.postIDiv(tex->width(), tex->height()); this->drawState()->addColorTextureEffect(tex, matrix); SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height()); this->drawSimpleRect(dstRect); return true; } void GrDrawTarget::initCopySurfaceDstDesc(const GrSurface* src, GrTextureDesc* desc) { // Make the dst of the copy be a render target because the default copySurface draws to the dst. desc->fOrigin = kDefault_GrSurfaceOrigin; desc->fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; desc->fConfig = src->config(); } /////////////////////////////////////////////////////////////////////////////// void GrDrawTargetCaps::reset() { f8BitPaletteSupport = false; fNPOTTextureTileSupport = false; fTwoSidedStencilSupport = false; fStencilWrapOpsSupport = false; fHWAALineSupport = false; fShaderDerivativeSupport = false; fGeometryShaderSupport = false; fDualSourceBlendingSupport = false; fBufferLockSupport = false; fPathRenderingSupport = false; fDstReadInShaderSupport = false; fReuseScratchTextures = true; fMaxRenderTargetSize = 0; fMaxTextureSize = 0; fMaxSampleCount = 0; memset(fConfigRenderSupport, 0, sizeof(fConfigRenderSupport)); } GrDrawTargetCaps& GrDrawTargetCaps::operator=(const GrDrawTargetCaps& other) { f8BitPaletteSupport = other.f8BitPaletteSupport; fNPOTTextureTileSupport = other.fNPOTTextureTileSupport; fTwoSidedStencilSupport = other.fTwoSidedStencilSupport; fStencilWrapOpsSupport = other.fStencilWrapOpsSupport; fHWAALineSupport = other.fHWAALineSupport; fShaderDerivativeSupport = other.fShaderDerivativeSupport; fGeometryShaderSupport = other.fGeometryShaderSupport; fDualSourceBlendingSupport = other.fDualSourceBlendingSupport; fBufferLockSupport = other.fBufferLockSupport; fPathRenderingSupport = other.fPathRenderingSupport; fDstReadInShaderSupport = other.fDstReadInShaderSupport; fReuseScratchTextures = other.fReuseScratchTextures; fMaxRenderTargetSize = other.fMaxRenderTargetSize; fMaxTextureSize = other.fMaxTextureSize; fMaxSampleCount = other.fMaxSampleCount; memcpy(fConfigRenderSupport, other.fConfigRenderSupport, sizeof(fConfigRenderSupport)); return *this; } SkString GrDrawTargetCaps::dump() const { SkString r; static const char* gNY[] = {"NO", "YES"}; r.appendf("8 Bit Palette Support : %s\n", gNY[f8BitPaletteSupport]); r.appendf("NPOT Texture Tile Support : %s\n", gNY[fNPOTTextureTileSupport]); r.appendf("Two Sided Stencil Support : %s\n", gNY[fTwoSidedStencilSupport]); r.appendf("Stencil Wrap Ops Support : %s\n", gNY[fStencilWrapOpsSupport]); r.appendf("HW AA Lines Support : %s\n", gNY[fHWAALineSupport]); r.appendf("Shader Derivative Support : %s\n", gNY[fShaderDerivativeSupport]); r.appendf("Geometry Shader Support : %s\n", gNY[fGeometryShaderSupport]); r.appendf("Dual Source Blending Support: %s\n", gNY[fDualSourceBlendingSupport]); r.appendf("Buffer Lock Support : %s\n", gNY[fBufferLockSupport]); r.appendf("Path Rendering Support : %s\n", gNY[fPathRenderingSupport]); r.appendf("Dst Read In Shader Support : %s\n", gNY[fDstReadInShaderSupport]); r.appendf("Reuse Scratch Textures : %s\n", gNY[fReuseScratchTextures]); r.appendf("Max Texture Size : %d\n", fMaxTextureSize); r.appendf("Max Render Target Size : %d\n", fMaxRenderTargetSize); r.appendf("Max Sample Count : %d\n", fMaxSampleCount); static const char* kConfigNames[] = { "Unknown", // kUnknown_GrPixelConfig "Alpha8", // kAlpha_8_GrPixelConfig, "Index8", // kIndex_8_GrPixelConfig, "RGB565", // kRGB_565_GrPixelConfig, "RGBA444", // kRGBA_4444_GrPixelConfig, "RGBA8888", // kRGBA_8888_GrPixelConfig, "BGRA8888", // kBGRA_8888_GrPixelConfig, }; GR_STATIC_ASSERT(0 == kUnknown_GrPixelConfig); GR_STATIC_ASSERT(1 == kAlpha_8_GrPixelConfig); GR_STATIC_ASSERT(2 == kIndex_8_GrPixelConfig); GR_STATIC_ASSERT(3 == kRGB_565_GrPixelConfig); GR_STATIC_ASSERT(4 == kRGBA_4444_GrPixelConfig); GR_STATIC_ASSERT(5 == kRGBA_8888_GrPixelConfig); GR_STATIC_ASSERT(6 == kBGRA_8888_GrPixelConfig); GR_STATIC_ASSERT(SK_ARRAY_COUNT(kConfigNames) == kGrPixelConfigCnt); SkASSERT(!fConfigRenderSupport[kUnknown_GrPixelConfig][0]); SkASSERT(!fConfigRenderSupport[kUnknown_GrPixelConfig][1]); for (size_t i = 0; i < SK_ARRAY_COUNT(kConfigNames); ++i) { if (i != kUnknown_GrPixelConfig) { r.appendf("%s is renderable: %s, with MSAA: %s\n", kConfigNames[i], gNY[fConfigRenderSupport[i][0]], gNY[fConfigRenderSupport[i][1]]); } } return r; }