/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkDither.h" #include "SkPerlinNoiseShader.h" #include "SkColorFilter.h" #include "SkFlattenableBuffers.h" #include "SkShader.h" #include "SkUnPreMultiply.h" #include "SkString.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrCoordTransform.h" #include "gl/GrGLEffect.h" #include "GrTBackendEffectFactory.h" #include "SkGr.h" #endif static const int kBlockSize = 256; static const int kBlockMask = kBlockSize - 1; static const int kPerlinNoise = 4096; static const int kRandMaximum = SK_MaxS32; // 2**31 - 1 namespace { // noiseValue is the color component's value (or color) // limitValue is the maximum perlin noise array index value allowed // newValue is the current noise dimension (either width or height) inline int checkNoise(int noiseValue, int limitValue, int newValue) { // If the noise value would bring us out of bounds of the current noise array while we are // stiching noise tiles together, wrap the noise around the current dimension of the noise to // stay within the array bounds in a continuous fashion (so that tiling lines are not visible) if (noiseValue >= limitValue) { noiseValue -= newValue; } if (noiseValue >= limitValue - 1) { noiseValue -= newValue - 1; } return noiseValue; } inline SkScalar smoothCurve(SkScalar t) { static const SkScalar SK_Scalar3 = 3.0f; // returns t * t * (3 - 2 * t) return SkScalarMul(SkScalarSquare(t), SK_Scalar3 - 2 * t); } bool perlin_noise_type_is_valid(SkPerlinNoiseShader::Type type) { return (SkPerlinNoiseShader::kFractalNoise_Type == type) || (SkPerlinNoiseShader::kTurbulence_Type == type); } } // end namespace struct SkPerlinNoiseShader::StitchData { StitchData() : fWidth(0) , fWrapX(0) , fHeight(0) , fWrapY(0) {} bool operator==(const StitchData& other) const { return fWidth == other.fWidth && fWrapX == other.fWrapX && fHeight == other.fHeight && fWrapY == other.fWrapY; } int fWidth; // How much to subtract to wrap for stitching. int fWrapX; // Minimum value to wrap. int fHeight; int fWrapY; }; struct SkPerlinNoiseShader::PaintingData { PaintingData(const SkISize& tileSize) : fSeed(0) , fTileSize(tileSize) , fPermutationsBitmap(NULL) , fNoiseBitmap(NULL) {} ~PaintingData() { SkDELETE(fPermutationsBitmap); SkDELETE(fNoiseBitmap); } int fSeed; uint8_t fLatticeSelector[kBlockSize]; uint16_t fNoise[4][kBlockSize][2]; SkPoint fGradient[4][kBlockSize]; SkISize fTileSize; SkVector fBaseFrequency; StitchData fStitchDataInit; private: SkBitmap* fPermutationsBitmap; SkBitmap* fNoiseBitmap; public: inline int random() { static const int gRandAmplitude = 16807; // 7**5; primitive root of m static const int gRandQ = 127773; // m / a static const int gRandR = 2836; // m % a int result = gRandAmplitude * (fSeed % gRandQ) - gRandR * (fSeed / gRandQ); if (result <= 0) result += kRandMaximum; fSeed = result; return result; } void init(SkScalar seed) { static const SkScalar gInvBlockSizef = SkScalarInvert(SkIntToScalar(kBlockSize)); // The seed value clamp to the range [1, kRandMaximum - 1]. fSeed = SkScalarRoundToInt(seed); if (fSeed <= 0) { fSeed = -(fSeed % (kRandMaximum - 1)) + 1; } if (fSeed > kRandMaximum - 1) { fSeed = kRandMaximum - 1; } for (int channel = 0; channel < 4; ++channel) { for (int i = 0; i < kBlockSize; ++i) { fLatticeSelector[i] = i; fNoise[channel][i][0] = (random() % (2 * kBlockSize)); fNoise[channel][i][1] = (random() % (2 * kBlockSize)); } } for (int i = kBlockSize - 1; i > 0; --i) { int k = fLatticeSelector[i]; int j = random() % kBlockSize; SkASSERT(j >= 0); SkASSERT(j < kBlockSize); fLatticeSelector[i] = fLatticeSelector[j]; fLatticeSelector[j] = k; } // Perform the permutations now { // Copy noise data uint16_t noise[4][kBlockSize][2]; for (int i = 0; i < kBlockSize; ++i) { for (int channel = 0; channel < 4; ++channel) { for (int j = 0; j < 2; ++j) { noise[channel][i][j] = fNoise[channel][i][j]; } } } // Do permutations on noise data for (int i = 0; i < kBlockSize; ++i) { for (int channel = 0; channel < 4; ++channel) { for (int j = 0; j < 2; ++j) { fNoise[channel][i][j] = noise[channel][fLatticeSelector[i]][j]; } } } } // Half of the largest possible value for 16 bit unsigned int static const SkScalar gHalfMax16bits = 32767.5f; // Compute gradients from permutated noise data for (int channel = 0; channel < 4; ++channel) { for (int i = 0; i < kBlockSize; ++i) { fGradient[channel][i] = SkPoint::Make( SkScalarMul(SkIntToScalar(fNoise[channel][i][0] - kBlockSize), gInvBlockSizef), SkScalarMul(SkIntToScalar(fNoise[channel][i][1] - kBlockSize), gInvBlockSizef)); fGradient[channel][i].normalize(); // Put the normalized gradient back into the noise data fNoise[channel][i][0] = SkScalarRoundToInt(SkScalarMul( fGradient[channel][i].fX + SK_Scalar1, gHalfMax16bits)); fNoise[channel][i][1] = SkScalarRoundToInt(SkScalarMul( fGradient[channel][i].fY + SK_Scalar1, gHalfMax16bits)); } } // Invalidate bitmaps SkDELETE(fPermutationsBitmap); fPermutationsBitmap = NULL; SkDELETE(fNoiseBitmap); fNoiseBitmap = NULL; } void stitch() { SkScalar tileWidth = SkIntToScalar(fTileSize.width()); SkScalar tileHeight = SkIntToScalar(fTileSize.height()); SkASSERT(tileWidth > 0 && tileHeight > 0); // When stitching tiled turbulence, the frequencies must be adjusted // so that the tile borders will be continuous. if (fBaseFrequency.fX) { SkScalar lowFrequencx = SkScalarDiv( SkScalarMulFloor(tileWidth, fBaseFrequency.fX), tileWidth); SkScalar highFrequencx = SkScalarDiv( SkScalarMulCeil(tileWidth, fBaseFrequency.fX), tileWidth); // BaseFrequency should be non-negative according to the standard. if (SkScalarDiv(fBaseFrequency.fX, lowFrequencx) < SkScalarDiv(highFrequencx, fBaseFrequency.fX)) { fBaseFrequency.fX = lowFrequencx; } else { fBaseFrequency.fX = highFrequencx; } } if (fBaseFrequency.fY) { SkScalar lowFrequency = SkScalarDiv( SkScalarMulFloor(tileHeight, fBaseFrequency.fY), tileHeight); SkScalar highFrequency = SkScalarDiv( SkScalarMulCeil(tileHeight, fBaseFrequency.fY), tileHeight); if (SkScalarDiv(fBaseFrequency.fY, lowFrequency) < SkScalarDiv(highFrequency, fBaseFrequency.fY)) { fBaseFrequency.fY = lowFrequency; } else { fBaseFrequency.fY = highFrequency; } } // Set up TurbulenceInitial stitch values. fStitchDataInit.fWidth = SkScalarMulRound(tileWidth, fBaseFrequency.fX); fStitchDataInit.fWrapX = kPerlinNoise + fStitchDataInit.fWidth; fStitchDataInit.fHeight = SkScalarMulRound(tileHeight, fBaseFrequency.fY); fStitchDataInit.fWrapY = kPerlinNoise + fStitchDataInit.fHeight; } SkBitmap* getPermutationsBitmap() { if (!fPermutationsBitmap) { fPermutationsBitmap = SkNEW(SkBitmap); fPermutationsBitmap->setConfig(SkBitmap::kA8_Config, kBlockSize, 1); fPermutationsBitmap->allocPixels(); uint8_t* bitmapPixels = fPermutationsBitmap->getAddr8(0, 0); memcpy(bitmapPixels, fLatticeSelector, sizeof(uint8_t) * kBlockSize); } return fPermutationsBitmap; } SkBitmap* getNoiseBitmap() { if (!fNoiseBitmap) { fNoiseBitmap = SkNEW(SkBitmap); fNoiseBitmap->setConfig(SkBitmap::kARGB_8888_Config, kBlockSize, 4); fNoiseBitmap->allocPixels(); uint32_t* bitmapPixels = fNoiseBitmap->getAddr32(0, 0); memcpy(bitmapPixels, fNoise[0][0], sizeof(uint16_t) * kBlockSize * 4 * 2); } return fNoiseBitmap; } }; SkShader* SkPerlinNoiseShader::CreateFractalNoise(SkScalar baseFrequencyX, SkScalar baseFrequencyY, int numOctaves, SkScalar seed, const SkISize* tileSize) { return SkNEW_ARGS(SkPerlinNoiseShader, (kFractalNoise_Type, baseFrequencyX, baseFrequencyY, numOctaves, seed, tileSize)); } SkShader* SkPerlinNoiseShader::CreateTubulence(SkScalar baseFrequencyX, SkScalar baseFrequencyY, int numOctaves, SkScalar seed, const SkISize* tileSize) { return SkNEW_ARGS(SkPerlinNoiseShader, (kTurbulence_Type, baseFrequencyX, baseFrequencyY, numOctaves, seed, tileSize)); } SkPerlinNoiseShader::SkPerlinNoiseShader(SkPerlinNoiseShader::Type type, SkScalar baseFrequencyX, SkScalar baseFrequencyY, int numOctaves, SkScalar seed, const SkISize* tileSize) : fType(type) , fBaseFrequencyX(baseFrequencyX) , fBaseFrequencyY(baseFrequencyY) , fNumOctaves(numOctaves > 255 ? 255 : numOctaves/*[0,255] octaves allowed*/) , fSeed(seed) , fStitchTiles((tileSize != NULL) && !tileSize->isEmpty()) , fPaintingData(NULL) { SkASSERT(numOctaves >= 0 && numOctaves < 256); setTileSize(fStitchTiles ? *tileSize : SkISize::Make(0,0)); fMatrix.reset(); } SkPerlinNoiseShader::SkPerlinNoiseShader(SkFlattenableReadBuffer& buffer) : INHERITED(buffer), fPaintingData(NULL) { fType = (SkPerlinNoiseShader::Type) buffer.readInt(); fBaseFrequencyX = buffer.readScalar(); fBaseFrequencyY = buffer.readScalar(); fNumOctaves = buffer.readInt(); fSeed = buffer.readScalar(); fStitchTiles = buffer.readBool(); fTileSize.fWidth = buffer.readInt(); fTileSize.fHeight = buffer.readInt(); setTileSize(fTileSize); fMatrix.reset(); buffer.validate(perlin_noise_type_is_valid(fType) && (fNumOctaves >= 0) && (fNumOctaves <= 255)); } SkPerlinNoiseShader::~SkPerlinNoiseShader() { // Safety, should have been done in endContext() SkDELETE(fPaintingData); } void SkPerlinNoiseShader::flatten(SkFlattenableWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeInt((int) fType); buffer.writeScalar(fBaseFrequencyX); buffer.writeScalar(fBaseFrequencyY); buffer.writeInt(fNumOctaves); buffer.writeScalar(fSeed); buffer.writeBool(fStitchTiles); buffer.writeInt(fTileSize.fWidth); buffer.writeInt(fTileSize.fHeight); } void SkPerlinNoiseShader::initPaint(PaintingData& paintingData) { paintingData.init(fSeed); // Set frequencies to original values paintingData.fBaseFrequency.set(fBaseFrequencyX, fBaseFrequencyY); // Adjust frequecies based on size if stitching is enabled if (fStitchTiles) { paintingData.stitch(); } } void SkPerlinNoiseShader::setTileSize(const SkISize& tileSize) { fTileSize = tileSize; if (NULL == fPaintingData) { fPaintingData = SkNEW_ARGS(PaintingData, (fTileSize)); initPaint(*fPaintingData); } else { // Set Size fPaintingData->fTileSize = fTileSize; // Set frequencies to original values fPaintingData->fBaseFrequency.set(fBaseFrequencyX, fBaseFrequencyY); // Adjust frequecies based on size if stitching is enabled if (fStitchTiles) { fPaintingData->stitch(); } } } SkScalar SkPerlinNoiseShader::noise2D(int channel, const PaintingData& paintingData, const StitchData& stitchData, const SkPoint& noiseVector) { struct Noise { int noisePositionIntegerValue; SkScalar noisePositionFractionValue; Noise(SkScalar component) { SkScalar position = component + kPerlinNoise; noisePositionIntegerValue = SkScalarFloorToInt(position); noisePositionFractionValue = position - SkIntToScalar(noisePositionIntegerValue); } }; Noise noiseX(noiseVector.x()); Noise noiseY(noiseVector.y()); SkScalar u, v; // If stitching, adjust lattice points accordingly. if (fStitchTiles) { noiseX.noisePositionIntegerValue = checkNoise(noiseX.noisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth); noiseY.noisePositionIntegerValue = checkNoise(noiseY.noisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight); } noiseX.noisePositionIntegerValue &= kBlockMask; noiseY.noisePositionIntegerValue &= kBlockMask; int latticeIndex = paintingData.fLatticeSelector[noiseX.noisePositionIntegerValue] + noiseY.noisePositionIntegerValue; int nextLatticeIndex = paintingData.fLatticeSelector[(noiseX.noisePositionIntegerValue + 1) & kBlockMask] + noiseY.noisePositionIntegerValue; SkScalar sx = smoothCurve(noiseX.noisePositionFractionValue); SkScalar sy = smoothCurve(noiseY.noisePositionFractionValue); // This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement SkPoint fractionValue = SkPoint::Make(noiseX.noisePositionFractionValue, noiseY.noisePositionFractionValue); // Offset (0,0) u = paintingData.fGradient[channel][latticeIndex & kBlockMask].dot(fractionValue); fractionValue.fX -= SK_Scalar1; // Offset (-1,0) v = paintingData.fGradient[channel][nextLatticeIndex & kBlockMask].dot(fractionValue); SkScalar a = SkScalarInterp(u, v, sx); fractionValue.fY -= SK_Scalar1; // Offset (-1,-1) v = paintingData.fGradient[channel][(nextLatticeIndex + 1) & kBlockMask].dot(fractionValue); fractionValue.fX = noiseX.noisePositionFractionValue; // Offset (0,-1) u = paintingData.fGradient[channel][(latticeIndex + 1) & kBlockMask].dot(fractionValue); SkScalar b = SkScalarInterp(u, v, sx); return SkScalarInterp(a, b, sy); } SkScalar SkPerlinNoiseShader::calculateTurbulenceValueForPoint( int channel, const PaintingData& paintingData, StitchData& stitchData, const SkPoint& point) { if (fStitchTiles) { // Set up TurbulenceInitial stitch values. stitchData = paintingData.fStitchDataInit; } SkScalar turbulenceFunctionResult = 0; SkPoint noiseVector(SkPoint::Make(SkScalarMul(point.x(), paintingData.fBaseFrequency.fX), SkScalarMul(point.y(), paintingData.fBaseFrequency.fY))); SkScalar ratio = SK_Scalar1; for (int octave = 0; octave < fNumOctaves; ++octave) { SkScalar noise = noise2D(channel, paintingData, stitchData, noiseVector); turbulenceFunctionResult += SkScalarDiv( (fType == kFractalNoise_Type) ? noise : SkScalarAbs(noise), ratio); noiseVector.fX *= 2; noiseVector.fY *= 2; ratio *= 2; if (fStitchTiles) { // Update stitch values stitchData.fWidth *= 2; stitchData.fWrapX = stitchData.fWidth + kPerlinNoise; stitchData.fHeight *= 2; stitchData.fWrapY = stitchData.fHeight + kPerlinNoise; } } // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 // by fractalNoise and (turbulenceFunctionResult) by turbulence. if (fType == kFractalNoise_Type) { turbulenceFunctionResult = SkScalarMul(turbulenceFunctionResult, SK_ScalarHalf) + SK_ScalarHalf; } if (channel == 3) { // Scale alpha by paint value turbulenceFunctionResult = SkScalarMul(turbulenceFunctionResult, SkScalarDiv(SkIntToScalar(getPaintAlpha()), SkIntToScalar(255))); } // Clamp result return SkScalarPin(turbulenceFunctionResult, 0, SK_Scalar1); } SkPMColor SkPerlinNoiseShader::shade(const SkPoint& point, StitchData& stitchData) { SkMatrix matrix = fMatrix; SkMatrix invMatrix; if (!matrix.invert(&invMatrix)) { invMatrix.reset(); } else { invMatrix.postConcat(invMatrix); // Square the matrix } // This (1,1) translation is due to WebKit's 1 based coordinates for the noise // (as opposed to 0 based, usually). The same adjustment is in the setData() function. matrix.postTranslate(SK_Scalar1, SK_Scalar1); SkPoint newPoint; matrix.mapPoints(&newPoint, &point, 1); invMatrix.mapPoints(&newPoint, &newPoint, 1); newPoint.fX = SkScalarRoundToScalar(newPoint.fX); newPoint.fY = SkScalarRoundToScalar(newPoint.fY); U8CPU rgba[4]; for (int channel = 3; channel >= 0; --channel) { rgba[channel] = SkScalarFloorToInt(255 * calculateTurbulenceValueForPoint(channel, *fPaintingData, stitchData, newPoint)); } return SkPreMultiplyARGB(rgba[3], rgba[0], rgba[1], rgba[2]); } bool SkPerlinNoiseShader::setContext(const SkBitmap& device, const SkPaint& paint, const SkMatrix& matrix) { fMatrix = matrix; return INHERITED::setContext(device, paint, matrix); } void SkPerlinNoiseShader::shadeSpan(int x, int y, SkPMColor result[], int count) { SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y)); StitchData stitchData; for (int i = 0; i < count; ++i) { result[i] = shade(point, stitchData); point.fX += SK_Scalar1; } } void SkPerlinNoiseShader::shadeSpan16(int x, int y, uint16_t result[], int count) { SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y)); StitchData stitchData; DITHER_565_SCAN(y); for (int i = 0; i < count; ++i) { unsigned dither = DITHER_VALUE(x); result[i] = SkDitherRGB32To565(shade(point, stitchData), dither); DITHER_INC_X(x); point.fX += SK_Scalar1; } } ///////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU #include "GrTBackendEffectFactory.h" class GrGLNoise : public GrGLEffect { public: GrGLNoise(const GrBackendEffectFactory& factory, const GrDrawEffect& drawEffect); virtual ~GrGLNoise() {} static inline EffectKey GenKey(const GrDrawEffect&, const GrGLCaps&); virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE; protected: SkPerlinNoiseShader::Type fType; bool fStitchTiles; int fNumOctaves; GrGLUniformManager::UniformHandle fBaseFrequencyUni; GrGLUniformManager::UniformHandle fAlphaUni; GrGLUniformManager::UniformHandle fInvMatrixUni; private: typedef GrGLEffect INHERITED; }; class GrGLPerlinNoise : public GrGLNoise { public: GrGLPerlinNoise(const GrBackendEffectFactory& factory, const GrDrawEffect& drawEffect) : GrGLNoise(factory, drawEffect) {} virtual ~GrGLPerlinNoise() {} virtual void emitCode(GrGLShaderBuilder*, const GrDrawEffect&, EffectKey, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray&) SK_OVERRIDE; virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE; private: GrGLUniformManager::UniformHandle fStitchDataUni; typedef GrGLNoise INHERITED; }; class GrGLSimplexNoise : public GrGLNoise { // Note : This is for reference only. GrGLPerlinNoise is used for processing. public: GrGLSimplexNoise(const GrBackendEffectFactory& factory, const GrDrawEffect& drawEffect) : GrGLNoise(factory, drawEffect) {} virtual ~GrGLSimplexNoise() {} virtual void emitCode(GrGLShaderBuilder*, const GrDrawEffect&, EffectKey, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray&) SK_OVERRIDE; virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE; private: GrGLUniformManager::UniformHandle fSeedUni; typedef GrGLNoise INHERITED; }; ///////////////////////////////////////////////////////////////////// class GrNoiseEffect : public GrEffect { public: virtual ~GrNoiseEffect() { } SkPerlinNoiseShader::Type type() const { return fType; } bool stitchTiles() const { return fStitchTiles; } const SkVector& baseFrequency() const { return fBaseFrequency; } int numOctaves() const { return fNumOctaves; } const SkMatrix& matrix() const { return fCoordTransform.getMatrix(); } uint8_t alpha() const { return fAlpha; } void getConstantColorComponents(GrColor*, uint32_t* validFlags) const SK_OVERRIDE { *validFlags = 0; // This is noise. Nothing is constant. } protected: virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE { const GrNoiseEffect& s = CastEffect<GrNoiseEffect>(sBase); return fType == s.fType && fBaseFrequency == s.fBaseFrequency && fNumOctaves == s.fNumOctaves && fStitchTiles == s.fStitchTiles && fCoordTransform.getMatrix() == s.fCoordTransform.getMatrix() && fAlpha == s.fAlpha; } GrNoiseEffect(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency, int numOctaves, bool stitchTiles, const SkMatrix& matrix, uint8_t alpha) : fType(type) , fBaseFrequency(baseFrequency) , fNumOctaves(numOctaves) , fStitchTiles(stitchTiles) , fMatrix(matrix) , fAlpha(alpha) { // This (1,1) translation is due to WebKit's 1 based coordinates for the noise // (as opposed to 0 based, usually). The same adjustment is in the shadeSpan() functions. SkMatrix m = matrix; m.postTranslate(SK_Scalar1, SK_Scalar1); fCoordTransform.reset(kLocal_GrCoordSet, m); this->addCoordTransform(&fCoordTransform); this->setWillNotUseInputColor(); } SkPerlinNoiseShader::Type fType; GrCoordTransform fCoordTransform; SkVector fBaseFrequency; int fNumOctaves; bool fStitchTiles; SkMatrix fMatrix; uint8_t fAlpha; private: typedef GrEffect INHERITED; }; class GrPerlinNoiseEffect : public GrNoiseEffect { public: static GrEffectRef* Create(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency, int numOctaves, bool stitchTiles, const SkPerlinNoiseShader::StitchData& stitchData, GrTexture* permutationsTexture, GrTexture* noiseTexture, const SkMatrix& matrix, uint8_t alpha) { AutoEffectUnref effect(SkNEW_ARGS(GrPerlinNoiseEffect, (type, baseFrequency, numOctaves, stitchTiles, stitchData, permutationsTexture, noiseTexture, matrix, alpha))); return CreateEffectRef(effect); } virtual ~GrPerlinNoiseEffect() { } static const char* Name() { return "PerlinNoise"; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory<GrPerlinNoiseEffect>::getInstance(); } const SkPerlinNoiseShader::StitchData& stitchData() const { return fStitchData; } typedef GrGLPerlinNoise GLEffect; private: virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE { const GrPerlinNoiseEffect& s = CastEffect<GrPerlinNoiseEffect>(sBase); return INHERITED::onIsEqual(sBase) && fPermutationsAccess.getTexture() == s.fPermutationsAccess.getTexture() && fNoiseAccess.getTexture() == s.fNoiseAccess.getTexture() && fStitchData == s.fStitchData; } GrPerlinNoiseEffect(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency, int numOctaves, bool stitchTiles, const SkPerlinNoiseShader::StitchData& stitchData, GrTexture* permutationsTexture, GrTexture* noiseTexture, const SkMatrix& matrix, uint8_t alpha) : GrNoiseEffect(type, baseFrequency, numOctaves, stitchTiles, matrix, alpha) , fPermutationsAccess(permutationsTexture) , fNoiseAccess(noiseTexture) , fStitchData(stitchData) { this->addTextureAccess(&fPermutationsAccess); this->addTextureAccess(&fNoiseAccess); } GR_DECLARE_EFFECT_TEST; GrTextureAccess fPermutationsAccess; GrTextureAccess fNoiseAccess; SkPerlinNoiseShader::StitchData fStitchData; typedef GrNoiseEffect INHERITED; }; class GrSimplexNoiseEffect : public GrNoiseEffect { // Note : This is for reference only. GrPerlinNoiseEffect is used for processing. public: static GrEffectRef* Create(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency, int numOctaves, bool stitchTiles, const SkScalar seed, const SkMatrix& matrix, uint8_t alpha) { AutoEffectUnref effect(SkNEW_ARGS(GrSimplexNoiseEffect, (type, baseFrequency, numOctaves, stitchTiles, seed, matrix, alpha))); return CreateEffectRef(effect); } virtual ~GrSimplexNoiseEffect() { } static const char* Name() { return "SimplexNoise"; } virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { return GrTBackendEffectFactory<GrSimplexNoiseEffect>::getInstance(); } const SkScalar& seed() const { return fSeed; } typedef GrGLSimplexNoise GLEffect; private: virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE { const GrSimplexNoiseEffect& s = CastEffect<GrSimplexNoiseEffect>(sBase); return INHERITED::onIsEqual(sBase) && fSeed == s.fSeed; } GrSimplexNoiseEffect(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency, int numOctaves, bool stitchTiles, const SkScalar seed, const SkMatrix& matrix, uint8_t alpha) : GrNoiseEffect(type, baseFrequency, numOctaves, stitchTiles, matrix, alpha) , fSeed(seed) { } SkScalar fSeed; typedef GrNoiseEffect INHERITED; }; ///////////////////////////////////////////////////////////////////// GR_DEFINE_EFFECT_TEST(GrPerlinNoiseEffect); GrEffectRef* GrPerlinNoiseEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture**) { int numOctaves = random->nextRangeU(2, 10); bool stitchTiles = random->nextBool(); SkScalar seed = SkIntToScalar(random->nextU()); SkISize tileSize = SkISize::Make(random->nextRangeU(4, 4096), random->nextRangeU(4, 4096)); SkScalar baseFrequencyX = random->nextRangeScalar(0.01f, 0.99f); SkScalar baseFrequencyY = random->nextRangeScalar(0.01f, 0.99f); SkShader* shader = random->nextBool() ? SkPerlinNoiseShader::CreateFractalNoise(baseFrequencyX, baseFrequencyY, numOctaves, seed, stitchTiles ? &tileSize : NULL) : SkPerlinNoiseShader::CreateTubulence(baseFrequencyX, baseFrequencyY, numOctaves, seed, stitchTiles ? &tileSize : NULL); SkPaint paint; GrEffectRef* effect = shader->asNewEffect(context, paint); SkDELETE(shader); return effect; } ///////////////////////////////////////////////////////////////////// void GrGLSimplexNoise::emitCode(GrGLShaderBuilder* builder, const GrDrawEffect&, EffectKey key, const char* outputColor, const char* inputColor, const TransformedCoordsArray& coords, const TextureSamplerArray&) { sk_ignore_unused_variable(inputColor); SkString vCoords = builder->ensureFSCoords2D(coords, 0); fSeedUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kFloat_GrSLType, "seed"); const char* seedUni = builder->getUniformCStr(fSeedUni); fInvMatrixUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kMat33f_GrSLType, "invMatrix"); const char* invMatrixUni = builder->getUniformCStr(fInvMatrixUni); fBaseFrequencyUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kVec2f_GrSLType, "baseFrequency"); const char* baseFrequencyUni = builder->getUniformCStr(fBaseFrequencyUni); fAlphaUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kFloat_GrSLType, "alpha"); const char* alphaUni = builder->getUniformCStr(fAlphaUni); // Add vec3 modulo 289 function static const GrGLShaderVar gVec3Args[] = { GrGLShaderVar("x", kVec3f_GrSLType) }; SkString mod289_3_funcName; builder->fsEmitFunction(kVec3f_GrSLType, "mod289", SK_ARRAY_COUNT(gVec3Args), gVec3Args, "const vec2 C = vec2(1.0 / 289.0, 289.0);\n" "return x - floor(x * C.xxx) * C.yyy;", &mod289_3_funcName); // Add vec4 modulo 289 function static const GrGLShaderVar gVec4Args[] = { GrGLShaderVar("x", kVec4f_GrSLType) }; SkString mod289_4_funcName; builder->fsEmitFunction(kVec4f_GrSLType, "mod289", SK_ARRAY_COUNT(gVec4Args), gVec4Args, "const vec2 C = vec2(1.0 / 289.0, 289.0);\n" "return x - floor(x * C.xxxx) * C.yyyy;", &mod289_4_funcName); // Add vec4 permute function SkString permuteCode; permuteCode.appendf("const vec2 C = vec2(34.0, 1.0);\n" "return %s(((x * C.xxxx) + C.yyyy) * x);", mod289_4_funcName.c_str()); SkString permuteFuncName; builder->fsEmitFunction(kVec4f_GrSLType, "permute", SK_ARRAY_COUNT(gVec4Args), gVec4Args, permuteCode.c_str(), &permuteFuncName); // Add vec4 taylorInvSqrt function SkString taylorInvSqrtFuncName; builder->fsEmitFunction(kVec4f_GrSLType, "taylorInvSqrt", SK_ARRAY_COUNT(gVec4Args), gVec4Args, "const vec2 C = vec2(-0.85373472095314, 1.79284291400159);\n" "return x * C.xxxx + C.yyyy;", &taylorInvSqrtFuncName); // Add vec3 noise function static const GrGLShaderVar gNoiseVec3Args[] = { GrGLShaderVar("v", kVec3f_GrSLType) }; SkString noiseCode; noiseCode.append( "const vec2 C = vec2(1.0/6.0, 1.0/3.0);\n" "const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);\n" // First corner "vec3 i = floor(v + dot(v, C.yyy));\n" "vec3 x0 = v - i + dot(i, C.xxx);\n" // Other corners "vec3 g = step(x0.yzx, x0.xyz);\n" "vec3 l = 1.0 - g;\n" "vec3 i1 = min(g.xyz, l.zxy);\n" "vec3 i2 = max(g.xyz, l.zxy);\n" "vec3 x1 = x0 - i1 + C.xxx;\n" "vec3 x2 = x0 - i2 + C.yyy;\n" // 2.0*C.x = 1/3 = C.y "vec3 x3 = x0 - D.yyy;\n" // -1.0+3.0*C.x = -0.5 = -D.y ); noiseCode.appendf( // Permutations "i = %s(i);\n" "vec4 p = %s(%s(%s(\n" " i.z + vec4(0.0, i1.z, i2.z, 1.0)) +\n" " i.y + vec4(0.0, i1.y, i2.y, 1.0)) +\n" " i.x + vec4(0.0, i1.x, i2.x, 1.0));\n", mod289_3_funcName.c_str(), permuteFuncName.c_str(), permuteFuncName.c_str(), permuteFuncName.c_str()); noiseCode.append( // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) "float n_ = 0.142857142857;\n" // 1.0/7.0 "vec3 ns = n_ * D.wyz - D.xzx;\n" "vec4 j = p - 49.0 * floor(p * ns.z * ns.z);\n" // mod(p,7*7) "vec4 x_ = floor(j * ns.z);\n" "vec4 y_ = floor(j - 7.0 * x_);" // mod(j,N) "vec4 x = x_ *ns.x + ns.yyyy;\n" "vec4 y = y_ *ns.x + ns.yyyy;\n" "vec4 h = 1.0 - abs(x) - abs(y);\n" "vec4 b0 = vec4(x.xy, y.xy);\n" "vec4 b1 = vec4(x.zw, y.zw);\n" ); noiseCode.append( "vec4 s0 = floor(b0) * 2.0 + 1.0;\n" "vec4 s1 = floor(b1) * 2.0 + 1.0;\n" "vec4 sh = -step(h, vec4(0.0));\n" "vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy;\n" "vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww;\n" "vec3 p0 = vec3(a0.xy, h.x);\n" "vec3 p1 = vec3(a0.zw, h.y);\n" "vec3 p2 = vec3(a1.xy, h.z);\n" "vec3 p3 = vec3(a1.zw, h.w);\n" ); noiseCode.appendf( // Normalise gradients "vec4 norm = %s(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));\n" "p0 *= norm.x;\n" "p1 *= norm.y;\n" "p2 *= norm.z;\n" "p3 *= norm.w;\n" // Mix final noise value "vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);\n" "m = m * m;\n" "return 42.0 * dot(m*m, vec4(dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3)));", taylorInvSqrtFuncName.c_str()); SkString noiseFuncName; builder->fsEmitFunction(kFloat_GrSLType, "snoise", SK_ARRAY_COUNT(gNoiseVec3Args), gNoiseVec3Args, noiseCode.c_str(), &noiseFuncName); const char* noiseVecIni = "noiseVecIni"; const char* factors = "factors"; const char* sum = "sum"; const char* xOffsets = "xOffsets"; const char* yOffsets = "yOffsets"; const char* channel = "channel"; // Fill with some prime numbers builder->fsCodeAppendf("\t\tconst vec4 %s = vec4(13.0, 53.0, 101.0, 151.0);\n", xOffsets); builder->fsCodeAppendf("\t\tconst vec4 %s = vec4(109.0, 167.0, 23.0, 67.0);\n", yOffsets); // There are rounding errors if the floor operation is not performed here builder->fsCodeAppendf( "\t\tvec3 %s = vec3(floor((%s*vec3(%s, 1.0)).xy) * vec2(0.66) * %s, 0.0);\n", noiseVecIni, invMatrixUni, vCoords.c_str(), baseFrequencyUni); // Perturb the texcoords with three components of noise builder->fsCodeAppendf("\t\t%s += 0.1 * vec3(%s(%s + vec3( 0.0, 0.0, %s))," "%s(%s + vec3( 43.0, 17.0, %s))," "%s(%s + vec3(-17.0, -43.0, %s)));\n", noiseVecIni, noiseFuncName.c_str(), noiseVecIni, seedUni, noiseFuncName.c_str(), noiseVecIni, seedUni, noiseFuncName.c_str(), noiseVecIni, seedUni); builder->fsCodeAppendf("\t\t%s = vec4(0.0);\n", outputColor); builder->fsCodeAppendf("\t\tvec3 %s = vec3(1.0);\n", factors); builder->fsCodeAppendf("\t\tfloat %s = 0.0;\n", sum); // Loop over all octaves builder->fsCodeAppendf("\t\tfor (int octave = 0; octave < %d; ++octave) {\n", fNumOctaves); // Loop over the 4 channels builder->fsCodeAppendf("\t\t\tfor (int %s = 3; %s >= 0; --%s) {\n", channel, channel, channel); builder->fsCodeAppendf( "\t\t\t\t%s[channel] += %s.x * %s(%s * %s.yyy - vec3(%s[%s], %s[%s], %s * %s.z));\n", outputColor, factors, noiseFuncName.c_str(), noiseVecIni, factors, xOffsets, channel, yOffsets, channel, seedUni, factors); builder->fsCodeAppend("\t\t\t}\n"); // end of the for loop on channels builder->fsCodeAppendf("\t\t\t%s += %s.x;\n", sum, factors); builder->fsCodeAppendf("\t\t\t%s *= vec3(0.5, 2.0, 0.75);\n", factors); builder->fsCodeAppend("\t\t}\n"); // end of the for loop on octaves if (fType == SkPerlinNoiseShader::kFractalNoise_Type) { // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 // by fractalNoise and (turbulenceFunctionResult) by turbulence. builder->fsCodeAppendf("\t\t%s = %s * vec4(0.5 / %s) + vec4(0.5);\n", outputColor, outputColor, sum); } else { builder->fsCodeAppendf("\t\t%s = abs(%s / vec4(%s));\n", outputColor, outputColor, sum); } builder->fsCodeAppendf("\t\t%s.a *= %s;\n", outputColor, alphaUni); // Clamp values builder->fsCodeAppendf("\t\t%s = clamp(%s, 0.0, 1.0);\n", outputColor, outputColor); // Pre-multiply the result builder->fsCodeAppendf("\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n", outputColor, outputColor, outputColor, outputColor); } void GrGLPerlinNoise::emitCode(GrGLShaderBuilder* builder, const GrDrawEffect&, EffectKey key, const char* outputColor, const char* inputColor, const TransformedCoordsArray& coords, const TextureSamplerArray& samplers) { sk_ignore_unused_variable(inputColor); SkString vCoords = builder->ensureFSCoords2D(coords, 0); fInvMatrixUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kMat33f_GrSLType, "invMatrix"); const char* invMatrixUni = builder->getUniformCStr(fInvMatrixUni); fBaseFrequencyUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kVec2f_GrSLType, "baseFrequency"); const char* baseFrequencyUni = builder->getUniformCStr(fBaseFrequencyUni); fAlphaUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kFloat_GrSLType, "alpha"); const char* alphaUni = builder->getUniformCStr(fAlphaUni); const char* stitchDataUni = NULL; if (fStitchTiles) { fStitchDataUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kVec2f_GrSLType, "stitchData"); stitchDataUni = builder->getUniformCStr(fStitchDataUni); } // There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8 const char* chanCoordR = "0.125"; const char* chanCoordG = "0.375"; const char* chanCoordB = "0.625"; const char* chanCoordA = "0.875"; const char* chanCoord = "chanCoord"; const char* stitchData = "stitchData"; const char* ratio = "ratio"; const char* noiseXY = "noiseXY"; const char* noiseVec = "noiseVec"; const char* noiseSmooth = "noiseSmooth"; const char* fractVal = "fractVal"; const char* uv = "uv"; const char* ab = "ab"; const char* latticeIdx = "latticeIdx"; const char* lattice = "lattice"; const char* inc8bit = "0.00390625"; // 1.0 / 256.0 // This is the math to convert the two 16bit integer packed into rgba 8 bit input into a // [-1,1] vector and perform a dot product between that vector and the provided vector. const char* dotLattice = "dot(((%s.ga + %s.rb * vec2(%s)) * vec2(2.0) - vec2(1.0)), %s);"; // Add noise function static const GrGLShaderVar gPerlinNoiseArgs[] = { GrGLShaderVar(chanCoord, kFloat_GrSLType), GrGLShaderVar(noiseVec, kVec2f_GrSLType) }; static const GrGLShaderVar gPerlinNoiseStitchArgs[] = { GrGLShaderVar(chanCoord, kFloat_GrSLType), GrGLShaderVar(noiseVec, kVec2f_GrSLType), GrGLShaderVar(stitchData, kVec2f_GrSLType) }; SkString noiseCode; noiseCode.appendf("\tvec4 %s = vec4(floor(%s), fract(%s));", noiseXY, noiseVec, noiseVec); // smooth curve : t * t * (3 - 2 * t) noiseCode.appendf("\n\tvec2 %s = %s.zw * %s.zw * (vec2(3.0) - vec2(2.0) * %s.zw);", noiseSmooth, noiseXY, noiseXY, noiseXY); // Adjust frequencies if we're stitching tiles if (fStitchTiles) { noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }", noiseXY, stitchData, noiseXY, stitchData); noiseCode.appendf("\n\tif(%s.x >= (%s.x - 1.0)) { %s.x -= (%s.x - 1.0); }", noiseXY, stitchData, noiseXY, stitchData); noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }", noiseXY, stitchData, noiseXY, stitchData); noiseCode.appendf("\n\tif(%s.y >= (%s.y - 1.0)) { %s.y -= (%s.y - 1.0); }", noiseXY, stitchData, noiseXY, stitchData); } // Get texture coordinates and normalize noiseCode.appendf("\n\t%s.xy = fract(floor(mod(%s.xy, 256.0)) / vec2(256.0));\n", noiseXY, noiseXY); // Get permutation for x { SkString xCoords(""); xCoords.appendf("vec2(%s.x, 0.5)", noiseXY); noiseCode.appendf("\n\tvec2 %s;\n\t%s.x = ", latticeIdx, latticeIdx); builder->appendTextureLookup(&noiseCode, samplers[0], xCoords.c_str(), kVec2f_GrSLType); noiseCode.append(".r;"); } // Get permutation for x + 1 { SkString xCoords(""); xCoords.appendf("vec2(fract(%s.x + %s), 0.5)", noiseXY, inc8bit); noiseCode.appendf("\n\t%s.y = ", latticeIdx); builder->appendTextureLookup(&noiseCode, samplers[0], xCoords.c_str(), kVec2f_GrSLType); noiseCode.append(".r;"); } #if defined(SK_BUILD_FOR_ANDROID) // Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3). // The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit // value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725 // (or 0.484368 here). The following rounding operation prevents these precision issues from // affecting the result of the noise by making sure that we only have multiples of 1/255. // (Note that 1/255 is about 0.003921569, which is the value used here). noiseCode.appendf("\n\t%s = floor(%s * vec2(255.0) + vec2(0.5)) * vec2(0.003921569);", latticeIdx, latticeIdx); #endif // Get (x,y) coordinates with the permutated x noiseCode.appendf("\n\t%s = fract(%s + %s.yy);", latticeIdx, latticeIdx, noiseXY); noiseCode.appendf("\n\tvec2 %s = %s.zw;", fractVal, noiseXY); noiseCode.appendf("\n\n\tvec2 %s;", uv); // Compute u, at offset (0,0) { SkString latticeCoords(""); latticeCoords.appendf("vec2(%s.x, %s)", latticeIdx, chanCoord); noiseCode.appendf("\n\tvec4 %s = ", lattice); builder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(), kVec2f_GrSLType); noiseCode.appendf(".bgra;\n\t%s.x = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } noiseCode.appendf("\n\t%s.x -= 1.0;", fractVal); // Compute v, at offset (-1,0) { SkString latticeCoords(""); latticeCoords.appendf("vec2(%s.y, %s)", latticeIdx, chanCoord); noiseCode.append("\n\tlattice = "); builder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(), kVec2f_GrSLType); noiseCode.appendf(".bgra;\n\t%s.y = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } // Compute 'a' as a linear interpolation of 'u' and 'v' noiseCode.appendf("\n\tvec2 %s;", ab); noiseCode.appendf("\n\t%s.x = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth); noiseCode.appendf("\n\t%s.y -= 1.0;", fractVal); // Compute v, at offset (-1,-1) { SkString latticeCoords(""); latticeCoords.appendf("vec2(fract(%s.y + %s), %s)", latticeIdx, inc8bit, chanCoord); noiseCode.append("\n\tlattice = "); builder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(), kVec2f_GrSLType); noiseCode.appendf(".bgra;\n\t%s.y = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } noiseCode.appendf("\n\t%s.x += 1.0;", fractVal); // Compute u, at offset (0,-1) { SkString latticeCoords(""); latticeCoords.appendf("vec2(fract(%s.x + %s), %s)", latticeIdx, inc8bit, chanCoord); noiseCode.append("\n\tlattice = "); builder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(), kVec2f_GrSLType); noiseCode.appendf(".bgra;\n\t%s.x = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } // Compute 'b' as a linear interpolation of 'u' and 'v' noiseCode.appendf("\n\t%s.y = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth); // Compute the noise as a linear interpolation of 'a' and 'b' noiseCode.appendf("\n\treturn mix(%s.x, %s.y, %s.y);\n", ab, ab, noiseSmooth); SkString noiseFuncName; if (fStitchTiles) { builder->fsEmitFunction(kFloat_GrSLType, "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs), gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName); } else { builder->fsEmitFunction(kFloat_GrSLType, "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs), gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName); } // There are rounding errors if the floor operation is not performed here builder->fsCodeAppendf("\n\t\tvec2 %s = floor((%s * vec3(%s, 1.0)).xy) * %s;", noiseVec, invMatrixUni, vCoords.c_str(), baseFrequencyUni); // Clear the color accumulator builder->fsCodeAppendf("\n\t\t%s = vec4(0.0);", outputColor); if (fStitchTiles) { // Set up TurbulenceInitial stitch values. builder->fsCodeAppendf("\n\t\tvec2 %s = %s;", stitchData, stitchDataUni); } builder->fsCodeAppendf("\n\t\tfloat %s = 1.0;", ratio); // Loop over all octaves builder->fsCodeAppendf("\n\t\tfor (int octave = 0; octave < %d; ++octave) {", fNumOctaves); builder->fsCodeAppendf("\n\t\t\t%s += ", outputColor); if (fType != SkPerlinNoiseShader::kFractalNoise_Type) { builder->fsCodeAppend("abs("); } if (fStitchTiles) { builder->fsCodeAppendf( "vec4(\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s)," "\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s))", noiseFuncName.c_str(), chanCoordR, noiseVec, stitchData, noiseFuncName.c_str(), chanCoordG, noiseVec, stitchData, noiseFuncName.c_str(), chanCoordB, noiseVec, stitchData, noiseFuncName.c_str(), chanCoordA, noiseVec, stitchData); } else { builder->fsCodeAppendf( "vec4(\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s)," "\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s))", noiseFuncName.c_str(), chanCoordR, noiseVec, noiseFuncName.c_str(), chanCoordG, noiseVec, noiseFuncName.c_str(), chanCoordB, noiseVec, noiseFuncName.c_str(), chanCoordA, noiseVec); } if (fType != SkPerlinNoiseShader::kFractalNoise_Type) { builder->fsCodeAppendf(")"); // end of "abs(" } builder->fsCodeAppendf(" * %s;", ratio); builder->fsCodeAppendf("\n\t\t\t%s *= vec2(2.0);", noiseVec); builder->fsCodeAppendf("\n\t\t\t%s *= 0.5;", ratio); if (fStitchTiles) { builder->fsCodeAppendf("\n\t\t\t%s *= vec2(2.0);", stitchData); } builder->fsCodeAppend("\n\t\t}"); // end of the for loop on octaves if (fType == SkPerlinNoiseShader::kFractalNoise_Type) { // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 // by fractalNoise and (turbulenceFunctionResult) by turbulence. builder->fsCodeAppendf("\n\t\t%s = %s * vec4(0.5) + vec4(0.5);", outputColor, outputColor); } builder->fsCodeAppendf("\n\t\t%s.a *= %s;", outputColor, alphaUni); // Clamp values builder->fsCodeAppendf("\n\t\t%s = clamp(%s, 0.0, 1.0);", outputColor, outputColor); // Pre-multiply the result builder->fsCodeAppendf("\n\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n", outputColor, outputColor, outputColor, outputColor); } GrGLNoise::GrGLNoise(const GrBackendEffectFactory& factory, const GrDrawEffect& drawEffect) : INHERITED (factory) , fType(drawEffect.castEffect<GrPerlinNoiseEffect>().type()) , fStitchTiles(drawEffect.castEffect<GrPerlinNoiseEffect>().stitchTiles()) , fNumOctaves(drawEffect.castEffect<GrPerlinNoiseEffect>().numOctaves()) { } GrGLEffect::EffectKey GrGLNoise::GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { const GrPerlinNoiseEffect& turbulence = drawEffect.castEffect<GrPerlinNoiseEffect>(); EffectKey key = turbulence.numOctaves(); key = key << 3; // Make room for next 3 bits switch (turbulence.type()) { case SkPerlinNoiseShader::kFractalNoise_Type: key |= 0x1; break; case SkPerlinNoiseShader::kTurbulence_Type: key |= 0x2; break; default: // leave key at 0 break; } if (turbulence.stitchTiles()) { key |= 0x4; // Flip the 3rd bit if tile stitching is on } return key; } void GrGLNoise::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) { const GrPerlinNoiseEffect& turbulence = drawEffect.castEffect<GrPerlinNoiseEffect>(); const SkVector& baseFrequency = turbulence.baseFrequency(); uman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY); uman.set1f(fAlphaUni, SkScalarDiv(SkIntToScalar(turbulence.alpha()), SkIntToScalar(255))); SkMatrix m = turbulence.matrix(); m.postTranslate(-SK_Scalar1, -SK_Scalar1); SkMatrix invM; if (!m.invert(&invM)) { invM.reset(); } else { invM.postConcat(invM); // Square the matrix } uman.setSkMatrix(fInvMatrixUni, invM); } void GrGLPerlinNoise::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) { INHERITED::setData(uman, drawEffect); const GrPerlinNoiseEffect& turbulence = drawEffect.castEffect<GrPerlinNoiseEffect>(); if (turbulence.stitchTiles()) { const SkPerlinNoiseShader::StitchData& stitchData = turbulence.stitchData(); uman.set2f(fStitchDataUni, SkIntToScalar(stitchData.fWidth), SkIntToScalar(stitchData.fHeight)); } } void GrGLSimplexNoise::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) { INHERITED::setData(uman, drawEffect); const GrSimplexNoiseEffect& turbulence = drawEffect.castEffect<GrSimplexNoiseEffect>(); uman.set1f(fSeedUni, turbulence.seed()); } ///////////////////////////////////////////////////////////////////// GrEffectRef* SkPerlinNoiseShader::asNewEffect(GrContext* context, const SkPaint& paint) const { SkASSERT(NULL != context); if (0 == fNumOctaves) { SkColor clearColor = 0; if (kFractalNoise_Type == fType) { clearColor = SkColorSetARGB(paint.getAlpha() / 2, 127, 127, 127); } SkAutoTUnref<SkColorFilter> cf(SkColorFilter::CreateModeFilter( clearColor, SkXfermode::kSrc_Mode)); return cf->asNewEffect(context); } // Either we don't stitch tiles, either we have a valid tile size SkASSERT(!fStitchTiles || !fTileSize.isEmpty()); #ifdef SK_USE_SIMPLEX_NOISE // Simplex noise is currently disabled but can be enabled by defining SK_USE_SIMPLEX_NOISE sk_ignore_unused_variable(context); GrEffectRef* effect = GrSimplexNoiseEffect::Create(fType, fPaintingData->fBaseFrequency, fNumOctaves, fStitchTiles, fSeed, this->getLocalMatrix(), paint.getAlpha()); #else GrTexture* permutationsTexture = GrLockAndRefCachedBitmapTexture( context, *fPaintingData->getPermutationsBitmap(), NULL); GrTexture* noiseTexture = GrLockAndRefCachedBitmapTexture( context, *fPaintingData->getNoiseBitmap(), NULL); GrEffectRef* effect = (NULL != permutationsTexture) && (NULL != noiseTexture) ? GrPerlinNoiseEffect::Create(fType, fPaintingData->fBaseFrequency, fNumOctaves, fStitchTiles, fPaintingData->fStitchDataInit, permutationsTexture, noiseTexture, this->getLocalMatrix(), paint.getAlpha()) : NULL; // Unlock immediately, this is not great, but we don't have a way of // knowing when else to unlock it currently. TODO: Remove this when // unref becomes the unlock replacement for all types of textures. if (NULL != permutationsTexture) { GrUnlockAndUnrefCachedBitmapTexture(permutationsTexture); } if (NULL != noiseTexture) { GrUnlockAndUnrefCachedBitmapTexture(noiseTexture); } #endif return effect; } #else GrEffectRef* SkPerlinNoiseShader::asNewEffect(GrContext*, const SkPaint&) const { SkDEBUGFAIL("Should not call in GPU-less build"); return NULL; } #endif #ifdef SK_DEVELOPER void SkPerlinNoiseShader::toString(SkString* str) const { str->append("SkPerlinNoiseShader: ("); str->append("type: "); switch (fType) { case kFractalNoise_Type: str->append("\"fractal noise\""); break; case kTurbulence_Type: str->append("\"turbulence\""); break; default: str->append("\"unknown\""); break; } str->append(" base frequency: ("); str->appendScalar(fBaseFrequencyX); str->append(", "); str->appendScalar(fBaseFrequencyY); str->append(") number of octaves: "); str->appendS32(fNumOctaves); str->append(" seed: "); str->appendScalar(fSeed); str->append(" stitch tiles: "); str->append(fStitchTiles ? "true " : "false "); this->INHERITED::toString(str); str->append(")"); } #endif