/* * Copyright 2010 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrContext_DEFINED #define GrContext_DEFINED #include "GrClipData.h" #include "GrColor.h" #include "GrPaint.h" #include "GrPathRendererChain.h" #include "GrPoint.h" #include "GrRenderTarget.h" #include "GrTexture.h" #include "SkMatrix.h" #include "SkTypes.h" class GrAARectRenderer; class GrAutoScratchTexture; class GrDrawState; class GrDrawTarget; class GrEffect; class GrFontCache; class GrGpu; class GrIndexBuffer; class GrIndexBufferAllocPool; class GrInOrderDrawBuffer; class GrOvalRenderer; class GrPath; class GrPathRenderer; class GrResourceEntry; class GrResourceCache; class GrStencilBuffer; class GrTestTarget; class GrTextureParams; class GrVertexBuffer; class GrVertexBufferAllocPool; class GrSoftwarePathRenderer; class SkStrokeRec; class SK_API GrContext : public SkRefCnt { public: SK_DECLARE_INST_COUNT(GrContext) /** * Creates a GrContext for a backend context. */ static GrContext* Create(GrBackend, GrBackendContext); virtual ~GrContext(); /** * The GrContext normally assumes that no outsider is setting state * within the underlying 3D API's context/device/whatever. This call informs * the context that the state was modified and it should resend. Shouldn't * be called frequently for good performance. * The flag bits, state, is dpendent on which backend is used by the * context, either GL or D3D (possible in future). */ void resetContext(uint32_t state = kAll_GrBackendState); /** * Callback function to allow classes to cleanup on GrContext destruction. * The 'info' field is filled in with the 'info' passed to addCleanUp. */ typedef void (*PFCleanUpFunc)(const GrContext* context, void* info); /** * Add a function to be called from within GrContext's destructor. * This gives classes a chance to free resources held on a per context basis. * The 'info' parameter will be stored and passed to the callback function. */ void addCleanUp(PFCleanUpFunc cleanUp, void* info) { CleanUpData* entry = fCleanUpData.push(); entry->fFunc = cleanUp; entry->fInfo = info; } /** * Abandons all GPU resources, assumes 3D API state is unknown. Call this * if you have lost the associated GPU context, and thus internal texture, * buffer, etc. references/IDs are now invalid. Should be called even when * GrContext is no longer going to be used for two reasons: * 1) ~GrContext will not try to free the objects in the 3D API. * 2) If you've created GrResources that outlive the GrContext they will * be marked as invalid (GrResource::isValid()) and won't attempt to * free their underlying resource in the 3D API. * Content drawn since the last GrContext::flush() may be lost. */ void contextLost(); /** * Similar to contextLost, but makes no attempt to reset state. * Use this method when GrContext destruction is pending, but * the graphics context is destroyed first. */ void contextDestroyed(); /** * Frees GPU created by the context. Can be called to reduce GPU memory * pressure. */ void freeGpuResources(); /** * Returns the number of bytes of GPU memory hosted by the texture cache. */ size_t getGpuTextureCacheBytes() const; /////////////////////////////////////////////////////////////////////////// // Textures /** * Creates a new entry, based on the specified key and texture and returns it. The caller owns a * ref on the returned texture which must be balanced by a call to unref. * * @param params The texture params used to draw a texture may help determine * the cache entry used. (e.g. different versions may exist * for different wrap modes on GPUs with limited NPOT * texture support). NULL implies clamp wrap modes. * @param desc Description of the texture properties. * @param cacheID Cache-specific properties (e.g., texture gen ID) * @param srcData Pointer to the pixel values. * @param rowBytes The number of bytes between rows of the texture. Zero * implies tightly packed rows. * @param cacheKey (optional) If non-NULL, we'll write the cache key we used to cacheKey. */ GrTexture* createTexture(const GrTextureParams* params, const GrTextureDesc& desc, const GrCacheID& cacheID, void* srcData, size_t rowBytes, GrResourceKey* cacheKey = NULL); /** * Search for an entry based on key and dimensions. If found, ref it and return it. The return * value will be NULL if not found. The caller must balance with a call to unref. * * @param desc Description of the texture properties. * @param cacheID Cache-specific properties (e.g., texture gen ID) * @param params The texture params used to draw a texture may help determine * the cache entry used. (e.g. different versions may exist * for different wrap modes on GPUs with limited NPOT * texture support). NULL implies clamp wrap modes. */ GrTexture* findAndRefTexture(const GrTextureDesc& desc, const GrCacheID& cacheID, const GrTextureParams* params); /** * Determines whether a texture is in the cache. If the texture is found it * will not be locked or returned. This call does not affect the priority of * the texture for deletion. */ bool isTextureInCache(const GrTextureDesc& desc, const GrCacheID& cacheID, const GrTextureParams* params) const; /** * Enum that determines how closely a returned scratch texture must match * a provided GrTextureDesc. */ enum ScratchTexMatch { /** * Finds a texture that exactly matches the descriptor. */ kExact_ScratchTexMatch, /** * Finds a texture that approximately matches the descriptor. Will be * at least as large in width and height as desc specifies. If desc * specifies that texture is a render target then result will be a * render target. If desc specifies a render target and doesn't set the * no stencil flag then result will have a stencil. Format and aa level * will always match. */ kApprox_ScratchTexMatch }; /** * Returns a texture matching the desc. It's contents are unknown. Subsequent * requests with the same descriptor are not guaranteed to return the same * texture. The same texture is guaranteed not be returned again until it is * unlocked. Call must be balanced with an unlockTexture() call. The caller * owns a ref on the returned texture and must balance with a call to unref. * * Textures created by createAndLockTexture() hide the complications of * tiling non-power-of-two textures on APIs that don't support this (e.g. * unextended GLES2). Tiling a NPOT texture created by lockScratchTexture on * such an API will create gaps in the tiling pattern. This includes clamp * mode. (This may be addressed in a future update.) */ GrTexture* lockAndRefScratchTexture(const GrTextureDesc&, ScratchTexMatch match); /** * When done with an entry, call unlockScratchTexture(entry) on it, which returns * it to the cache, where it may be purged. This does not unref the texture. */ void unlockScratchTexture(GrTexture* texture); /** * This method should be called whenever a GrTexture is unreffed or * switched from exclusive to non-exclusive. This * gives the resource cache a chance to discard unneeded textures. * Note: this entry point will be removed once totally ref-driven * cache maintenance is implemented */ void purgeCache(); /** * Creates a texture that is outside the cache. Does not count against * cache's budget. */ GrTexture* createUncachedTexture(const GrTextureDesc& desc, void* srcData, size_t rowBytes); /** * Returns true if the specified use of an indexed texture is supported. * Support may depend upon whether the texture params indicate that the * texture will be tiled. Passing NULL for the texture params indicates * clamp mode. */ bool supportsIndex8PixelConfig(const GrTextureParams*, int width, int height) const; /** * Return the current texture cache limits. * * @param maxTextures If non-null, returns maximum number of textures that * can be held in the cache. * @param maxTextureBytes If non-null, returns maximum number of bytes of * texture memory that can be held in the cache. */ void getTextureCacheLimits(int* maxTextures, size_t* maxTextureBytes) const; /** * Specify the texture cache limits. If the current cache exceeds either * of these, it will be purged (LRU) to keep the cache within these limits. * * @param maxTextures The maximum number of textures that can be held in * the cache. * @param maxTextureBytes The maximum number of bytes of texture memory * that can be held in the cache. */ void setTextureCacheLimits(int maxTextures, size_t maxTextureBytes); /** * Return the max width or height of a texture supported by the current GPU. */ int getMaxTextureSize() const; /** * Temporarily override the true max texture size. Note: an override * larger then the true max texture size will have no effect. * This entry point is mainly meant for testing texture size dependent * features and is only available if defined outside of Skia (see * bleed GM. */ void setMaxTextureSizeOverride(int maxTextureSizeOverride); /////////////////////////////////////////////////////////////////////////// // Render targets /** * Sets the render target. * @param target the render target to set. */ void setRenderTarget(GrRenderTarget* target) { fRenderTarget.reset(SkSafeRef(target)); } /** * Gets the current render target. * @return the currently bound render target. */ const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); } GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); } GrAARectRenderer* getAARectRenderer() { return fAARectRenderer; } /** * Can the provided configuration act as a color render target? */ bool isConfigRenderable(GrPixelConfig config, bool withMSAA) const; /** * Return the max width or height of a render target supported by the * current GPU. */ int getMaxRenderTargetSize() const; /** * Returns the max sample count for a render target. It will be 0 if MSAA * is not supported. */ int getMaxSampleCount() const; /////////////////////////////////////////////////////////////////////////// // Backend Surfaces /** * Wraps an existing texture with a GrTexture object. * * OpenGL: if the object is a texture Gr may change its GL texture params * when it is drawn. * * @param desc description of the object to create. * * @return GrTexture object or NULL on failure. */ GrTexture* wrapBackendTexture(const GrBackendTextureDesc& desc); /** * Wraps an existing render target with a GrRenderTarget object. It is * similar to wrapBackendTexture but can be used to draw into surfaces * that are not also textures (e.g. FBO 0 in OpenGL, or an MSAA buffer that * the client will resolve to a texture). * * @param desc description of the object to create. * * @return GrTexture object or NULL on failure. */ GrRenderTarget* wrapBackendRenderTarget(const GrBackendRenderTargetDesc& desc); /////////////////////////////////////////////////////////////////////////// // Matrix state /** * Gets the current transformation matrix. * @return the current matrix. */ const SkMatrix& getMatrix() const { return fViewMatrix; } /** * Sets the transformation matrix. * @param m the matrix to set. */ void setMatrix(const SkMatrix& m) { fViewMatrix = m; } /** * Sets the current transformation matrix to identity. */ void setIdentityMatrix() { fViewMatrix.reset(); } /** * Concats the current matrix. The passed matrix is applied before the * current matrix. * @param m the matrix to concat. */ void concatMatrix(const SkMatrix& m) { fViewMatrix.preConcat(m); } /////////////////////////////////////////////////////////////////////////// // Clip state /** * Gets the current clip. * @return the current clip. */ const GrClipData* getClip() const { return fClip; } /** * Sets the clip. * @param clipData the clip to set. */ void setClip(const GrClipData* clipData) { fClip = clipData; } /////////////////////////////////////////////////////////////////////////// // Draws /** * Clear the entire or rect of the render target, ignoring any clips. * @param rect the rect to clear or the whole thing if rect is NULL. * @param color the color to clear to. * @param canIgnoreRect allows partial clears to be converted to whole * clears on platforms for which that is cheap * @param target if non-NULL, the render target to clear otherwise clear * the current render target */ void clear(const SkIRect* rect, GrColor color, bool canIgnoreRect, GrRenderTarget* target = NULL); /** * Draw everywhere (respecting the clip) with the paint. */ void drawPaint(const GrPaint& paint); /** * Draw the rect using a paint. * @param paint describes how to color pixels. * @param stroke the stroke information (width, join, cap). * If stroke == NULL, then the rect is filled. * Otherwise, if stroke width == 0, then the stroke * is always a single pixel thick, else the rect is * mitered/beveled stroked based on stroke width. * @param matrix Optional matrix applied to the rect. Applied before * context's matrix or the paint's matrix. * The rects coords are used to access the paint (through texture matrix) */ void drawRect(const GrPaint& paint, const SkRect&, const SkStrokeRec* stroke = NULL, const SkMatrix* matrix = NULL); /** * Maps a rect of local coordinates onto the a rect of destination * coordinates. Each rect can optionally be transformed. The localRect * is stretched over the dstRect. The dstRect is transformed by the * context's matrix. Additional optional matrices for both rects can be * provided by parameters. * * @param paint describes how to color pixels. * @param dstRect the destination rect to draw. * @param localRect rect of local coordinates to be mapped onto dstRect * @param dstMatrix Optional matrix to transform dstRect. Applied before context's matrix. * @param localMatrix Optional matrix to transform localRect. */ void drawRectToRect(const GrPaint& paint, const SkRect& dstRect, const SkRect& localRect, const SkMatrix* dstMatrix = NULL, const SkMatrix* localMatrix = NULL); /** * Draw a roundrect using a paint. * * @param paint describes how to color pixels. * @param rrect the roundrect to draw * @param stroke the stroke information (width, join, cap) */ void drawRRect(const GrPaint& paint, const SkRRect& rrect, const SkStrokeRec& stroke); /** * Draws a path. * * @param paint describes how to color pixels. * @param path the path to draw * @param stroke the stroke information (width, join, cap) */ void drawPath(const GrPaint& paint, const SkPath& path, const SkStrokeRec& stroke); /** * Draws vertices with a paint. * * @param paint describes how to color pixels. * @param primitiveType primitives type to draw. * @param vertexCount number of vertices. * @param positions array of vertex positions, required. * @param texCoords optional array of texture coordinates used * to access the paint. * @param colors optional array of per-vertex colors, supercedes * the paint's color field. * @param indices optional array of indices. If NULL vertices * are drawn non-indexed. * @param indexCount if indices is non-null then this is the * number of indices. */ void drawVertices(const GrPaint& paint, GrPrimitiveType primitiveType, int vertexCount, const GrPoint positions[], const GrPoint texs[], const GrColor colors[], const uint16_t indices[], int indexCount); /** * Draws an oval. * * @param paint describes how to color pixels. * @param oval the bounding rect of the oval. * @param stroke the stroke information (width, style) */ void drawOval(const GrPaint& paint, const SkRect& oval, const SkStrokeRec& stroke); /////////////////////////////////////////////////////////////////////////// // Misc. /** * Flags that affect flush() behavior. */ enum FlushBits { /** * A client may reach a point where it has partially rendered a frame * through a GrContext that it knows the user will never see. This flag * causes the flush to skip submission of deferred content to the 3D API * during the flush. */ kDiscard_FlushBit = 0x2, }; /** * Call to ensure all drawing to the context has been issued to the * underlying 3D API. * @param flagsBitfield flags that control the flushing behavior. See * FlushBits. */ void flush(int flagsBitfield = 0); /** * These flags can be used with the read/write pixels functions below. */ enum PixelOpsFlags { /** The GrContext will not be flushed. This means that the read or write may occur before previous draws have executed. */ kDontFlush_PixelOpsFlag = 0x1, /** The src for write or dst read is unpremultiplied. This is only respected if both the config src and dst configs are an RGBA/BGRA 8888 format. */ kUnpremul_PixelOpsFlag = 0x2, }; /** * Reads a rectangle of pixels from a render target. * @param target the render target to read from. NULL means the current render target. * @param left left edge of the rectangle to read (inclusive) * @param top top edge of the rectangle to read (inclusive) * @param width width of rectangle to read in pixels. * @param height height of rectangle to read in pixels. * @param config the pixel config of the destination buffer * @param buffer memory to read the rectangle into. * @param rowBytes number of bytes bewtween consecutive rows. Zero means rows are tightly * packed. * @param pixelOpsFlags see PixelOpsFlags enum above. * * @return true if the read succeeded, false if not. The read can fail because of an unsupported * pixel config or because no render target is currently set and NULL was passed for * target. */ bool readRenderTargetPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes = 0, uint32_t pixelOpsFlags = 0); /** * Copy the src pixels [buffer, row bytes, pixel config] into a render target at the specified * rectangle. * @param target the render target to write into. NULL means the current render target. * @param left left edge of the rectangle to write (inclusive) * @param top top edge of the rectangle to write (inclusive) * @param width width of rectangle to write in pixels. * @param height height of rectangle to write in pixels. * @param config the pixel config of the source buffer * @param buffer memory to read the rectangle from. * @param rowBytes number of bytes between consecutive rows. Zero means rows are tightly * packed. * @param pixelOpsFlags see PixelOpsFlags enum above. * * @return true if the write succeeded, false if not. The write can fail because of an * unsupported combination of target and pixel configs. */ bool writeRenderTargetPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes = 0, uint32_t pixelOpsFlags = 0); /** * Reads a rectangle of pixels from a texture. * @param texture the texture to read from. * @param left left edge of the rectangle to read (inclusive) * @param top top edge of the rectangle to read (inclusive) * @param width width of rectangle to read in pixels. * @param height height of rectangle to read in pixels. * @param config the pixel config of the destination buffer * @param buffer memory to read the rectangle into. * @param rowBytes number of bytes between consecutive rows. Zero means rows are tightly * packed. * @param pixelOpsFlags see PixelOpsFlags enum above. * * @return true if the read succeeded, false if not. The read can fail because of an unsupported * pixel config. */ bool readTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes = 0, uint32_t pixelOpsFlags = 0); /** * Writes a rectangle of pixels to a texture. * @param texture the render target to read from. * @param left left edge of the rectangle to write (inclusive) * @param top top edge of the rectangle to write (inclusive) * @param width width of rectangle to write in pixels. * @param height height of rectangle to write in pixels. * @param config the pixel config of the source buffer * @param buffer memory to read pixels from * @param rowBytes number of bytes between consecutive rows. Zero * means rows are tightly packed. * @param pixelOpsFlags see PixelOpsFlags enum above. * @return true if the write succeeded, false if not. The write can fail because of an * unsupported combination of texture and pixel configs. */ bool writeTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes, uint32_t pixelOpsFlags = 0); /** * Copies a rectangle of texels from src to dst. The size of dst is the size of the rectangle * copied and topLeft is the position of the rect in src. The rectangle is clipped to src's * bounds. * @param src the texture to copy from. * @param dst the render target to copy to. * @param topLeft the point in src that will be copied to the top-left of dst. If NULL, * (0, 0) will be used. */ void copyTexture(GrTexture* src, GrRenderTarget* dst, const SkIPoint* topLeft = NULL); /** * Resolves a render target that has MSAA. The intermediate MSAA buffer is * down-sampled to the associated GrTexture (accessible via * GrRenderTarget::asTexture()). Any pending draws to the render target will * be executed before the resolve. * * This is only necessary when a client wants to access the object directly * using the backend API directly. GrContext will detect when it must * perform a resolve to a GrTexture used as the source of a draw or before * reading pixels back from a GrTexture or GrRenderTarget. */ void resolveRenderTarget(GrRenderTarget* target); #ifdef SK_DEVELOPER void dumpFontCache() const; #endif /////////////////////////////////////////////////////////////////////////// // Helpers class AutoRenderTarget : public ::SkNoncopyable { public: AutoRenderTarget(GrContext* context, GrRenderTarget* target) { fPrevTarget = context->getRenderTarget(); SkSafeRef(fPrevTarget); context->setRenderTarget(target); fContext = context; } AutoRenderTarget(GrContext* context) { fPrevTarget = context->getRenderTarget(); SkSafeRef(fPrevTarget); fContext = context; } ~AutoRenderTarget() { if (NULL != fContext) { fContext->setRenderTarget(fPrevTarget); } SkSafeUnref(fPrevTarget); } private: GrContext* fContext; GrRenderTarget* fPrevTarget; }; /** * Save/restore the view-matrix in the context. It can optionally adjust a paint to account * for a coordinate system change. Here is an example of how the paint param can be used: * * A GrPaint is setup with GrEffects. The stages will have access to the pre-matrix source * geometry positions when the draw is executed. Later on a decision is made to transform the * geometry to device space on the CPU. The effects now need to know that the space in which * the geometry will be specified has changed. * * Note that when restore is called (or in the destructor) the context's matrix will be * restored. However, the paint will not be restored. The caller must make a copy of the * paint if necessary. Hint: use SkTCopyOnFirstWrite if the AutoMatrix is conditionally * initialized. */ class AutoMatrix : public ::SkNoncopyable { public: AutoMatrix() : fContext(NULL) {} ~AutoMatrix() { this->restore(); } /** * Initializes by pre-concat'ing the context's current matrix with the preConcat param. */ void setPreConcat(GrContext* context, const SkMatrix& preConcat, GrPaint* paint = NULL) { SkASSERT(NULL != context); this->restore(); fContext = context; fMatrix = context->getMatrix(); this->preConcat(preConcat, paint); } /** * Sets the context's matrix to identity. Returns false if the inverse matrix is required to * update a paint but the matrix cannot be inverted. */ bool setIdentity(GrContext* context, GrPaint* paint = NULL) { SkASSERT(NULL != context); this->restore(); if (NULL != paint) { if (!paint->localCoordChangeInverse(context->getMatrix())) { return false; } } fMatrix = context->getMatrix(); fContext = context; context->setIdentityMatrix(); return true; } /** * Replaces the context's matrix with a new matrix. Returns false if the inverse matrix is * required to update a paint but the matrix cannot be inverted. */ bool set(GrContext* context, const SkMatrix& newMatrix, GrPaint* paint = NULL) { if (NULL != paint) { if (!this->setIdentity(context, paint)) { return false; } this->preConcat(newMatrix, paint); } else { this->restore(); fContext = context; fMatrix = context->getMatrix(); context->setMatrix(newMatrix); } return true; } /** * If this has been initialized then the context's matrix will be further updated by * pre-concat'ing the preConcat param. The matrix that will be restored remains unchanged. * The paint is assumed to be relative to the context's matrix at the time this call is * made, not the matrix at the time AutoMatrix was first initialized. In other words, this * performs an incremental update of the paint. */ void preConcat(const SkMatrix& preConcat, GrPaint* paint = NULL) { if (NULL != paint) { paint->localCoordChange(preConcat); } fContext->concatMatrix(preConcat); } /** * Returns false if never initialized or the inverse matrix was required to update a paint * but the matrix could not be inverted. */ bool succeeded() const { return NULL != fContext; } /** * If this has been initialized then the context's original matrix is restored. */ void restore() { if (NULL != fContext) { fContext->setMatrix(fMatrix); fContext = NULL; } } private: GrContext* fContext; SkMatrix fMatrix; }; class AutoClip : public ::SkNoncopyable { public: // This enum exists to require a caller of the constructor to acknowledge that the clip will // initially be wide open. It also could be extended if there are other desirable initial // clip states. enum InitialClip { kWideOpen_InitialClip, }; AutoClip(GrContext* context, InitialClip initialState) : fContext(context) { SkASSERT(kWideOpen_InitialClip == initialState); fNewClipData.fClipStack = &fNewClipStack; fOldClip = context->getClip(); context->setClip(&fNewClipData); } AutoClip(GrContext* context, const SkRect& newClipRect) : fContext(context) , fNewClipStack(newClipRect) { fNewClipData.fClipStack = &fNewClipStack; fOldClip = fContext->getClip(); fContext->setClip(&fNewClipData); } ~AutoClip() { if (NULL != fContext) { fContext->setClip(fOldClip); } } private: GrContext* fContext; const GrClipData* fOldClip; SkClipStack fNewClipStack; GrClipData fNewClipData; }; class AutoWideOpenIdentityDraw { public: AutoWideOpenIdentityDraw(GrContext* ctx, GrRenderTarget* rt) : fAutoClip(ctx, AutoClip::kWideOpen_InitialClip) , fAutoRT(ctx, rt) { fAutoMatrix.setIdentity(ctx); // should never fail with no paint param. SkASSERT(fAutoMatrix.succeeded()); } private: AutoClip fAutoClip; AutoRenderTarget fAutoRT; AutoMatrix fAutoMatrix; }; /////////////////////////////////////////////////////////////////////////// // Functions intended for internal use only. GrGpu* getGpu() { return fGpu; } const GrGpu* getGpu() const { return fGpu; } GrFontCache* getFontCache() { return fFontCache; } GrDrawTarget* getTextTarget(); const GrIndexBuffer* getQuadIndexBuffer() const; // Called by tests that draw directly to the context via GrDrawTarget void getTestTarget(GrTestTarget*); /** * Stencil buffers add themselves to the cache using addStencilBuffer. findStencilBuffer is * called to check the cache for a SB that matches an RT's criteria. */ void addStencilBuffer(GrStencilBuffer* sb); GrStencilBuffer* findStencilBuffer(int width, int height, int sampleCnt); GrPathRenderer* getPathRenderer( const SkPath& path, const SkStrokeRec& stroke, const GrDrawTarget* target, bool allowSW, GrPathRendererChain::DrawType drawType = GrPathRendererChain::kColor_DrawType, GrPathRendererChain::StencilSupport* stencilSupport = NULL); #if GR_CACHE_STATS void printCacheStats() const; #endif private: // Used to indicate whether a draw should be performed immediately or queued in fDrawBuffer. enum BufferedDraw { kYes_BufferedDraw, kNo_BufferedDraw, }; BufferedDraw fLastDrawWasBuffered; GrGpu* fGpu; SkMatrix fViewMatrix; SkAutoTUnref<GrRenderTarget> fRenderTarget; const GrClipData* fClip; // TODO: make this ref counted GrDrawState* fDrawState; GrResourceCache* fTextureCache; GrFontCache* fFontCache; GrPathRendererChain* fPathRendererChain; GrSoftwarePathRenderer* fSoftwarePathRenderer; GrVertexBufferAllocPool* fDrawBufferVBAllocPool; GrIndexBufferAllocPool* fDrawBufferIBAllocPool; GrInOrderDrawBuffer* fDrawBuffer; // Set by OverbudgetCB() to request that GrContext flush before exiting a draw. bool fFlushToReduceCacheSize; GrAARectRenderer* fAARectRenderer; GrOvalRenderer* fOvalRenderer; bool fDidTestPMConversions; int fPMToUPMConversion; int fUPMToPMConversion; struct CleanUpData { PFCleanUpFunc fFunc; void* fInfo; }; SkTDArray<CleanUpData> fCleanUpData; int fMaxTextureSizeOverride; GrContext(); // init must be called after the constructor. bool init(GrBackend, GrBackendContext); void setupDrawBuffer(); class AutoRestoreEffects; class AutoCheckFlush; /// Sets the paint and returns the target to draw into. The paint can be NULL in which case the /// draw state is left unmodified. GrDrawTarget* prepareToDraw(const GrPaint*, BufferedDraw, AutoRestoreEffects*, AutoCheckFlush*); void internalDrawPath(GrDrawTarget* target, bool useAA, const SkPath& path, const SkStrokeRec& stroke); GrTexture* createResizedTexture(const GrTextureDesc& desc, const GrCacheID& cacheID, void* srcData, size_t rowBytes, bool filter); // Needed so GrTexture's returnToCache helper function can call // addExistingTextureToCache friend class GrTexture; friend class GrStencilAndCoverPathRenderer; // Add an existing texture to the texture cache. This is intended solely // for use with textures released from an GrAutoScratchTexture. void addExistingTextureToCache(GrTexture* texture); /** * These functions create premul <-> unpremul effects if it is possible to generate a pair * of effects that make a readToUPM->writeToPM->readToUPM cycle invariant. Otherwise, they * return NULL. */ const GrEffectRef* createPMToUPMEffect(GrTexture* texture, bool swapRAndB, const SkMatrix& matrix); const GrEffectRef* createUPMToPMEffect(GrTexture* texture, bool swapRAndB, const SkMatrix& matrix); /** * This callback allows the resource cache to callback into the GrContext * when the cache is still overbudget after a purge. */ static bool OverbudgetCB(void* data); /** Creates a new gpu path, based on the specified path and stroke and returns it. * The caller owns a ref on the returned path which must be balanced by a call to unref. * * @param skPath the path geometry. * @param stroke the path stroke. * @return a new path or NULL if the operation is not supported by the backend. */ GrPath* createPath(const SkPath& skPath, const SkStrokeRec& stroke); typedef SkRefCnt INHERITED; }; /** * Gets and locks a scratch texture from a descriptor using either exact or approximate criteria. * Unlocks texture in the destructor. */ class GrAutoScratchTexture : public ::SkNoncopyable { public: GrAutoScratchTexture() : fContext(NULL) , fTexture(NULL) { } GrAutoScratchTexture(GrContext* context, const GrTextureDesc& desc, GrContext::ScratchTexMatch match = GrContext::kApprox_ScratchTexMatch) : fContext(NULL) , fTexture(NULL) { this->set(context, desc, match); } ~GrAutoScratchTexture() { this->reset(); } void reset() { if (NULL != fContext && NULL != fTexture) { fContext->unlockScratchTexture(fTexture); fTexture->unref(); fTexture = NULL; } } /* * When detaching a texture we do not unlock it in the texture cache but * we do set the returnToCache flag. In this way the texture remains * "locked" in the texture cache until it is freed and recycled in * GrTexture::internal_dispose. In reality, the texture has been removed * from the cache (because this is in AutoScratchTexture) and by not * calling unlockScratchTexture we simply don't re-add it. It will be * reattached in GrTexture::internal_dispose. * * Note that the caller is assumed to accept and manage the ref to the * returned texture. */ GrTexture* detach() { if (NULL == fTexture) { return NULL; } GrTexture* texture = fTexture; fTexture = NULL; // This GrAutoScratchTexture has a ref from lockAndRefScratchTexture, which we give up now. // The cache also has a ref which we are lending to the caller of detach(). When the caller // lets go of the ref and the ref count goes to 0 internal_dispose will see this flag is // set and re-ref the texture, thereby restoring the cache's ref. SkASSERT(texture->getRefCnt() > 1); texture->setFlag((GrTextureFlags) GrTexture::kReturnToCache_FlagBit); texture->unref(); SkASSERT(NULL != texture->getCacheEntry()); return texture; } GrTexture* set(GrContext* context, const GrTextureDesc& desc, GrContext::ScratchTexMatch match = GrContext::kApprox_ScratchTexMatch) { this->reset(); fContext = context; if (NULL != fContext) { fTexture = fContext->lockAndRefScratchTexture(desc, match); if (NULL == fTexture) { fContext = NULL; } return fTexture; } else { return NULL; } } GrTexture* texture() { return fTexture; } private: GrContext* fContext; GrTexture* fTexture; }; #endif