/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkTArray_DEFINED #define SkTArray_DEFINED #include <new> #include "SkTypes.h" #include "SkTemplates.h" template <typename T, bool MEM_COPY = false> class SkTArray; namespace SkTArrayExt { template<typename T> inline void copy(SkTArray<T, true>* self, const T* array) { memcpy(self->fMemArray, array, self->fCount * sizeof(T)); } template<typename T> inline void copyAndDelete(SkTArray<T, true>* self, char* newMemArray) { memcpy(newMemArray, self->fMemArray, self->fCount * sizeof(T)); } template<typename T> inline void copy(SkTArray<T, false>* self, const T* array) { for (int i = 0; i < self->fCount; ++i) { SkNEW_PLACEMENT_ARGS(self->fItemArray + i, T, (array[i])); } } template<typename T> inline void copyAndDelete(SkTArray<T, false>* self, char* newMemArray) { for (int i = 0; i < self->fCount; ++i) { SkNEW_PLACEMENT_ARGS(newMemArray + sizeof(T) * i, T, (self->fItemArray[i])); self->fItemArray[i].~T(); } } } template <typename T, bool MEM_COPY> void* operator new(size_t, SkTArray<T, MEM_COPY>*, int); /** When MEM_COPY is true T will be bit copied when moved. When MEM_COPY is false, T will be copy constructed / destructed. In all cases T's constructor will be called on allocation, and its destructor will be called from this object's destructor. */ template <typename T, bool MEM_COPY> class SkTArray { public: /** * Creates an empty array with no initial storage */ SkTArray() { fCount = 0; fReserveCount = gMIN_ALLOC_COUNT; fAllocCount = 0; fMemArray = NULL; fPreAllocMemArray = NULL; } /** * Creates an empty array that will preallocate space for reserveCount * elements. */ explicit SkTArray(int reserveCount) { this->init(NULL, 0, NULL, reserveCount); } /** * Copies one array to another. The new array will be heap allocated. */ explicit SkTArray(const SkTArray& array) { this->init(array.fItemArray, array.fCount, NULL, 0); } /** * Creates a SkTArray by copying contents of a standard C array. The new * array will be heap allocated. Be careful not to use this constructor * when you really want the (void*, int) version. */ SkTArray(const T* array, int count) { this->init(array, count, NULL, 0); } /** * assign copy of array to this */ SkTArray& operator =(const SkTArray& array) { for (int i = 0; i < fCount; ++i) { fItemArray[i].~T(); } fCount = 0; this->checkRealloc((int)array.count()); fCount = array.count(); SkTArrayExt::copy(this, static_cast<const T*>(array.fMemArray)); return *this; } virtual ~SkTArray() { for (int i = 0; i < fCount; ++i) { fItemArray[i].~T(); } if (fMemArray != fPreAllocMemArray) { sk_free(fMemArray); } } /** * Resets to count() == 0 */ void reset() { this->pop_back_n(fCount); } /** * Resets to count() = n newly constructed T objects. */ void reset(int n) { SkASSERT(n >= 0); for (int i = 0; i < fCount; ++i) { fItemArray[i].~T(); } // set fCount to 0 before calling checkRealloc so that no copy cons. are called. fCount = 0; this->checkRealloc(n); fCount = n; for (int i = 0; i < fCount; ++i) { SkNEW_PLACEMENT(fItemArray + i, T); } } /** * Resets to a copy of a C array. */ void reset(const T* array, int count) { for (int i = 0; i < fCount; ++i) { fItemArray[i].~T(); } int delta = count - fCount; this->checkRealloc(delta); fCount = count; for (int i = 0; i < count; ++i) { SkTArrayExt::copy(this, array); } } /** * Number of elements in the array. */ int count() const { return fCount; } /** * Is the array empty. */ bool empty() const { return !fCount; } /** * Adds 1 new default-constructed T value and returns in by reference. Note * the reference only remains valid until the next call that adds or removes * elements. */ T& push_back() { T* newT = reinterpret_cast<T*>(this->push_back_raw(1)); SkNEW_PLACEMENT(newT, T); return *newT; } /** * Version of above that uses a copy constructor to initialize the new item */ T& push_back(const T& t) { T* newT = reinterpret_cast<T*>(this->push_back_raw(1)); SkNEW_PLACEMENT_ARGS(newT, T, (t)); return *newT; } /** * Allocates n more default T values, and returns the address of the start * of that new range. Note: this address is only valid until the next API * call made on the array that might add or remove elements. */ T* push_back_n(int n) { SkASSERT(n >= 0); T* newTs = reinterpret_cast<T*>(this->push_back_raw(n)); for (int i = 0; i < n; ++i) { SkNEW_PLACEMENT(newTs + i, T); } return newTs; } /** * Version of above that uses a copy constructor to initialize all n items * to the same T. */ T* push_back_n(int n, const T& t) { SkASSERT(n >= 0); T* newTs = reinterpret_cast<T*>(this->push_back_raw(n)); for (int i = 0; i < n; ++i) { SkNEW_PLACEMENT_ARGS(newTs[i], T, (t)); } return newTs; } /** * Version of above that uses a copy constructor to initialize the n items * to separate T values. */ T* push_back_n(int n, const T t[]) { SkASSERT(n >= 0); this->checkRealloc(n); for (int i = 0; i < n; ++i) { SkNEW_PLACEMENT_ARGS(fItemArray + fCount + i, T, (t[i])); } fCount += n; return fItemArray + fCount - n; } /** * Removes the last element. Not safe to call when count() == 0. */ void pop_back() { SkASSERT(fCount > 0); --fCount; fItemArray[fCount].~T(); this->checkRealloc(0); } /** * Removes the last n elements. Not safe to call when count() < n. */ void pop_back_n(int n) { SkASSERT(n >= 0); SkASSERT(fCount >= n); fCount -= n; for (int i = 0; i < n; ++i) { fItemArray[fCount + i].~T(); } this->checkRealloc(0); } /** * Pushes or pops from the back to resize. Pushes will be default * initialized. */ void resize_back(int newCount) { SkASSERT(newCount >= 0); if (newCount > fCount) { this->push_back_n(newCount - fCount); } else if (newCount < fCount) { this->pop_back_n(fCount - newCount); } } T* begin() { return fItemArray; } const T* begin() const { return fItemArray; } T* end() { return fItemArray ? fItemArray + fCount : NULL; } const T* end() const { return fItemArray ? fItemArray + fCount : NULL;; } /** * Get the i^th element. */ T& operator[] (int i) { SkASSERT(i < fCount); SkASSERT(i >= 0); return fItemArray[i]; } const T& operator[] (int i) const { SkASSERT(i < fCount); SkASSERT(i >= 0); return fItemArray[i]; } /** * equivalent to operator[](0) */ T& front() { SkASSERT(fCount > 0); return fItemArray[0];} const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];} /** * equivalent to operator[](count() - 1) */ T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];} const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];} /** * equivalent to operator[](count()-1-i) */ T& fromBack(int i) { SkASSERT(i >= 0); SkASSERT(i < fCount); return fItemArray[fCount - i - 1]; } const T& fromBack(int i) const { SkASSERT(i >= 0); SkASSERT(i < fCount); return fItemArray[fCount - i - 1]; } bool operator==(const SkTArray<T, MEM_COPY>& right) const { int leftCount = this->count(); if (leftCount != right.count()) { return false; } for (int index = 0; index < leftCount; ++index) { if (fItemArray[index] != right.fItemArray[index]) { return false; } } return true; } bool operator!=(const SkTArray<T, MEM_COPY>& right) const { return !(*this == right); } protected: /** * Creates an empty array that will use the passed storage block until it * is insufficiently large to hold the entire array. */ template <int N> SkTArray(SkAlignedSTStorage<N,T>* storage) { this->init(NULL, 0, storage->get(), N); } /** * Copy another array, using preallocated storage if preAllocCount >= * array.count(). Otherwise storage will only be used when array shrinks * to fit. */ template <int N> SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) { this->init(array.fItemArray, array.fCount, storage->get(), N); } /** * Copy a C array, using preallocated storage if preAllocCount >= * count. Otherwise storage will only be used when array shrinks * to fit. */ template <int N> SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) { this->init(array, count, storage->get(), N); } void init(const T* array, int count, void* preAllocStorage, int preAllocOrReserveCount) { SkASSERT(count >= 0); SkASSERT(preAllocOrReserveCount >= 0); fCount = count; fReserveCount = (preAllocOrReserveCount > 0) ? preAllocOrReserveCount : gMIN_ALLOC_COUNT; fPreAllocMemArray = preAllocStorage; if (fReserveCount >= fCount && NULL != preAllocStorage) { fAllocCount = fReserveCount; fMemArray = preAllocStorage; } else { fAllocCount = SkMax32(fCount, fReserveCount); fMemArray = sk_malloc_throw(fAllocCount * sizeof(T)); } SkTArrayExt::copy(this, array); } private: static const int gMIN_ALLOC_COUNT = 8; // Helper function that makes space for n objects, adjusts the count, but does not initialize // the new objects. void* push_back_raw(int n) { this->checkRealloc(n); void* ptr = fItemArray + fCount; fCount += n; return ptr; } inline void checkRealloc(int delta) { SkASSERT(fCount >= 0); SkASSERT(fAllocCount >= 0); SkASSERT(-delta <= fCount); int newCount = fCount + delta; int newAllocCount = fAllocCount; if (newCount > fAllocCount || newCount < (fAllocCount / 3)) { // whether we're growing or shrinking, we leave at least 50% extra space for future // growth (clamped to the reserve count). newAllocCount = SkMax32(newCount + ((newCount + 1) >> 1), fReserveCount); } if (newAllocCount != fAllocCount) { fAllocCount = newAllocCount; char* newMemArray; if (fAllocCount == fReserveCount && NULL != fPreAllocMemArray) { newMemArray = (char*) fPreAllocMemArray; } else { newMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T)); } SkTArrayExt::copyAndDelete<T>(this, newMemArray); if (fMemArray != fPreAllocMemArray) { sk_free(fMemArray); } fMemArray = newMemArray; } } friend void* operator new<T>(size_t, SkTArray*, int); template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, const X*); template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, true>* that, char*); template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, const X*); template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, false>* that, char*); int fReserveCount; int fCount; int fAllocCount; void* fPreAllocMemArray; union { T* fItemArray; void* fMemArray; }; }; // Use the below macro (SkNEW_APPEND_TO_TARRAY) rather than calling this directly template <typename T, bool MEM_COPY> void* operator new(size_t, SkTArray<T, MEM_COPY>* array, int atIndex) { // Currently, we only support adding to the end of the array. When the array class itself // supports random insertion then this should be updated. // SkASSERT(atIndex >= 0 && atIndex <= array->count()); SkASSERT(atIndex == array->count()); return array->push_back_raw(1); } // Skia doesn't use C++ exceptions but it may be compiled with them enabled. Having an op delete // to match the op new silences warnings about missing op delete when a constructor throws an // exception. template <typename T, bool MEM_COPY> void operator delete(void*, SkTArray<T, MEM_COPY>* array, int atIndex) { SK_CRASH(); } // Constructs a new object as the last element of an SkTArray. #define SkNEW_APPEND_TO_TARRAY(array_ptr, type_name, args) \ (new ((array_ptr), (array_ptr)->count()) type_name args) /** * Subclass of SkTArray that contains a preallocated memory block for the array. */ template <int N, typename T, bool MEM_COPY = false> class SkSTArray : public SkTArray<T, MEM_COPY> { private: typedef SkTArray<T, MEM_COPY> INHERITED; public: SkSTArray() : INHERITED(&fStorage) { } SkSTArray(const SkSTArray& array) : INHERITED(array, &fStorage) { } explicit SkSTArray(const INHERITED& array) : INHERITED(array, &fStorage) { } explicit SkSTArray(int reserveCount) : INHERITED(reserveCount) { } SkSTArray(const T* array, int count) : INHERITED(array, count, &fStorage) { } SkSTArray& operator= (const SkSTArray& array) { return *this = *(const INHERITED*)&array; } SkSTArray& operator= (const INHERITED& array) { INHERITED::operator=(array); return *this; } private: SkAlignedSTStorage<N,T> fStorage; }; #endif