//===- X86DisassemblerTables.cpp - Disassembler tables ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler Emitter. // It contains the implementation of the disassembler tables. // Documentation for the disassembler emitter in general can be found in // X86DisasemblerEmitter.h. // //===----------------------------------------------------------------------===// #include "X86DisassemblerTables.h" #include "X86DisassemblerShared.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/TableGen/TableGenBackend.h" #include <map> using namespace llvm; using namespace X86Disassembler; /// inheritsFrom - Indicates whether all instructions in one class also belong /// to another class. /// /// @param child - The class that may be the subset /// @param parent - The class that may be the superset /// @return - True if child is a subset of parent, false otherwise. static inline bool inheritsFrom(InstructionContext child, InstructionContext parent, bool VEX_LIG = false) { if (child == parent) return true; switch (parent) { case IC: return(inheritsFrom(child, IC_64BIT) || inheritsFrom(child, IC_OPSIZE) || inheritsFrom(child, IC_ADSIZE) || inheritsFrom(child, IC_XD) || inheritsFrom(child, IC_XS)); case IC_64BIT: return(inheritsFrom(child, IC_64BIT_REXW) || inheritsFrom(child, IC_64BIT_OPSIZE) || inheritsFrom(child, IC_64BIT_ADSIZE) || inheritsFrom(child, IC_64BIT_XD) || inheritsFrom(child, IC_64BIT_XS)); case IC_OPSIZE: return inheritsFrom(child, IC_64BIT_OPSIZE); case IC_ADSIZE: case IC_64BIT_ADSIZE: return false; case IC_XD: return inheritsFrom(child, IC_64BIT_XD); case IC_XS: return inheritsFrom(child, IC_64BIT_XS); case IC_XD_OPSIZE: return inheritsFrom(child, IC_64BIT_XD_OPSIZE); case IC_XS_OPSIZE: return inheritsFrom(child, IC_64BIT_XS_OPSIZE); case IC_64BIT_REXW: return(inheritsFrom(child, IC_64BIT_REXW_XS) || inheritsFrom(child, IC_64BIT_REXW_XD) || inheritsFrom(child, IC_64BIT_REXW_OPSIZE)); case IC_64BIT_OPSIZE: return(inheritsFrom(child, IC_64BIT_REXW_OPSIZE)); case IC_64BIT_XD: return(inheritsFrom(child, IC_64BIT_REXW_XD)); case IC_64BIT_XS: return(inheritsFrom(child, IC_64BIT_REXW_XS)); case IC_64BIT_XD_OPSIZE: case IC_64BIT_XS_OPSIZE: return false; case IC_64BIT_REXW_XD: case IC_64BIT_REXW_XS: case IC_64BIT_REXW_OPSIZE: return false; case IC_VEX: return inheritsFrom(child, IC_VEX_L_W) || inheritsFrom(child, IC_VEX_W) || (VEX_LIG && inheritsFrom(child, IC_VEX_L)); case IC_VEX_XS: return inheritsFrom(child, IC_VEX_L_W_XS) || inheritsFrom(child, IC_VEX_W_XS) || (VEX_LIG && inheritsFrom(child, IC_VEX_L_XS)); case IC_VEX_XD: return inheritsFrom(child, IC_VEX_L_W_XD) || inheritsFrom(child, IC_VEX_W_XD) || (VEX_LIG && inheritsFrom(child, IC_VEX_L_XD)); case IC_VEX_OPSIZE: return inheritsFrom(child, IC_VEX_L_W_OPSIZE) || inheritsFrom(child, IC_VEX_W_OPSIZE) || (VEX_LIG && inheritsFrom(child, IC_VEX_L_OPSIZE)); case IC_VEX_W: case IC_VEX_W_XS: case IC_VEX_W_XD: case IC_VEX_W_OPSIZE: return false; case IC_VEX_L: case IC_VEX_L_XS: case IC_VEX_L_XD: case IC_VEX_L_OPSIZE: return false; case IC_VEX_L_W: case IC_VEX_L_W_XS: case IC_VEX_L_W_XD: case IC_VEX_L_W_OPSIZE: return false; case IC_EVEX: return inheritsFrom(child, IC_EVEX_W) || inheritsFrom(child, IC_EVEX_L_W); case IC_EVEX_XS: return inheritsFrom(child, IC_EVEX_W_XS) || inheritsFrom(child, IC_EVEX_L_W_XS); case IC_EVEX_XD: return inheritsFrom(child, IC_EVEX_W_XD) || inheritsFrom(child, IC_EVEX_L_W_XD); case IC_EVEX_OPSIZE: return inheritsFrom(child, IC_EVEX_W_OPSIZE) || inheritsFrom(child, IC_EVEX_W_OPSIZE); case IC_EVEX_W: case IC_EVEX_W_XS: case IC_EVEX_W_XD: case IC_EVEX_W_OPSIZE: return false; case IC_EVEX_L: case IC_EVEX_L_XS: case IC_EVEX_L_XD: case IC_EVEX_L_OPSIZE: return false; case IC_EVEX_L_W: case IC_EVEX_L_W_XS: case IC_EVEX_L_W_XD: case IC_EVEX_L_W_OPSIZE: return false; case IC_EVEX_L2: case IC_EVEX_L2_XS: case IC_EVEX_L2_XD: case IC_EVEX_L2_OPSIZE: return false; case IC_EVEX_L2_W: case IC_EVEX_L2_W_XS: case IC_EVEX_L2_W_XD: case IC_EVEX_L2_W_OPSIZE: return false; case IC_EVEX_K: return inheritsFrom(child, IC_EVEX_W_K) || inheritsFrom(child, IC_EVEX_L_W_K); case IC_EVEX_XS_K: return inheritsFrom(child, IC_EVEX_W_XS_K) || inheritsFrom(child, IC_EVEX_L_W_XS_K); case IC_EVEX_XD_K: return inheritsFrom(child, IC_EVEX_W_XD_K) || inheritsFrom(child, IC_EVEX_L_W_XD_K); case IC_EVEX_OPSIZE_K: return inheritsFrom(child, IC_EVEX_W_OPSIZE_K) || inheritsFrom(child, IC_EVEX_W_OPSIZE_K); case IC_EVEX_W_K: case IC_EVEX_W_XS_K: case IC_EVEX_W_XD_K: case IC_EVEX_W_OPSIZE_K: return false; case IC_EVEX_L_K: case IC_EVEX_L_XS_K: case IC_EVEX_L_XD_K: case IC_EVEX_L_OPSIZE_K: return false; case IC_EVEX_L_W_K: case IC_EVEX_L_W_XS_K: case IC_EVEX_L_W_XD_K: case IC_EVEX_L_W_OPSIZE_K: return false; case IC_EVEX_L2_K: case IC_EVEX_L2_B: case IC_EVEX_L2_XS_K: case IC_EVEX_L2_XD_K: case IC_EVEX_L2_OPSIZE_K: case IC_EVEX_L2_OPSIZE_B: return false; case IC_EVEX_L2_W_K: case IC_EVEX_L2_W_XS_K: case IC_EVEX_L2_W_XD_K: case IC_EVEX_L2_W_OPSIZE_K: case IC_EVEX_L2_W_OPSIZE_B: return false; default: llvm_unreachable("Unknown instruction class"); } } /// outranks - Indicates whether, if an instruction has two different applicable /// classes, which class should be preferred when performing decode. This /// imposes a total ordering (ties are resolved toward "lower") /// /// @param upper - The class that may be preferable /// @param lower - The class that may be less preferable /// @return - True if upper is to be preferred, false otherwise. static inline bool outranks(InstructionContext upper, InstructionContext lower) { assert(upper < IC_max); assert(lower < IC_max); #define ENUM_ENTRY(n, r, d) r, #define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) \ ENUM_ENTRY(n##_K_B, r, d) ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d) static int ranks[IC_max] = { INSTRUCTION_CONTEXTS }; #undef ENUM_ENTRY #undef ENUM_ENTRY_K_B return (ranks[upper] > ranks[lower]); } /// stringForContext - Returns a string containing the name of a particular /// InstructionContext, usually for diagnostic purposes. /// /// @param insnContext - The instruction class to transform to a string. /// @return - A statically-allocated string constant that contains the /// name of the instruction class. static inline const char* stringForContext(InstructionContext insnContext) { switch (insnContext) { default: llvm_unreachable("Unhandled instruction class"); #define ENUM_ENTRY(n, r, d) case n: return #n; break; #define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) ENUM_ENTRY(n##_K_B, r, d)\ ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d) INSTRUCTION_CONTEXTS #undef ENUM_ENTRY #undef ENUM_ENTRY_K_B } } /// stringForOperandType - Like stringForContext, but for OperandTypes. static inline const char* stringForOperandType(OperandType type) { switch (type) { default: llvm_unreachable("Unhandled type"); #define ENUM_ENTRY(i, d) case i: return #i; TYPES #undef ENUM_ENTRY } } /// stringForOperandEncoding - like stringForContext, but for /// OperandEncodings. static inline const char* stringForOperandEncoding(OperandEncoding encoding) { switch (encoding) { default: llvm_unreachable("Unhandled encoding"); #define ENUM_ENTRY(i, d) case i: return #i; ENCODINGS #undef ENUM_ENTRY } } void DisassemblerTables::emitOneID(raw_ostream &o, unsigned &i, InstrUID id, bool addComma) const { if (id) o.indent(i * 2) << format("0x%hx", id); else o.indent(i * 2) << 0; if (addComma) o << ", "; else o << " "; o << "/* "; o << InstructionSpecifiers[id].name; o << "*/"; o << "\n"; } /// emitEmptyTable - Emits the modRMEmptyTable, which is used as a ID table by /// all ModR/M decisions for instructions that are invalid for all possible /// ModR/M byte values. /// /// @param o - The output stream on which to emit the table. /// @param i - The indentation level for that output stream. static void emitEmptyTable(raw_ostream &o, unsigned &i) { o.indent(i * 2) << "0x0, /* EmptyTable */\n"; } /// getDecisionType - Determines whether a ModRM decision with 255 entries can /// be compacted by eliminating redundant information. /// /// @param decision - The decision to be compacted. /// @return - The compactest available representation for the decision. static ModRMDecisionType getDecisionType(ModRMDecision &decision) { bool satisfiesOneEntry = true; bool satisfiesSplitRM = true; bool satisfiesSplitReg = true; bool satisfiesSplitMisc = true; for (unsigned index = 0; index < 256; ++index) { if (decision.instructionIDs[index] != decision.instructionIDs[0]) satisfiesOneEntry = false; if (((index & 0xc0) == 0xc0) && (decision.instructionIDs[index] != decision.instructionIDs[0xc0])) satisfiesSplitRM = false; if (((index & 0xc0) != 0xc0) && (decision.instructionIDs[index] != decision.instructionIDs[0x00])) satisfiesSplitRM = false; if (((index & 0xc0) == 0xc0) && (decision.instructionIDs[index] != decision.instructionIDs[index&0xf8])) satisfiesSplitReg = false; if (((index & 0xc0) != 0xc0) && (decision.instructionIDs[index] != decision.instructionIDs[index&0x38])) satisfiesSplitMisc = false; } if (satisfiesOneEntry) return MODRM_ONEENTRY; if (satisfiesSplitRM) return MODRM_SPLITRM; if (satisfiesSplitReg && satisfiesSplitMisc) return MODRM_SPLITREG; if (satisfiesSplitMisc) return MODRM_SPLITMISC; return MODRM_FULL; } /// stringForDecisionType - Returns a statically-allocated string corresponding /// to a particular decision type. /// /// @param dt - The decision type. /// @return - A pointer to the statically-allocated string (e.g., /// "MODRM_ONEENTRY" for MODRM_ONEENTRY). static const char* stringForDecisionType(ModRMDecisionType dt) { #define ENUM_ENTRY(n) case n: return #n; switch (dt) { default: llvm_unreachable("Unknown decision type"); MODRMTYPES }; #undef ENUM_ENTRY } /// stringForModifierType - Returns a statically-allocated string corresponding /// to an opcode modifier type. /// /// @param mt - The modifier type. /// @return - A pointer to the statically-allocated string (e.g., /// "MODIFIER_NONE" for MODIFIER_NONE). static const char* stringForModifierType(ModifierType mt) { #define ENUM_ENTRY(n) case n: return #n; switch(mt) { default: llvm_unreachable("Unknown modifier type"); MODIFIER_TYPES }; #undef ENUM_ENTRY } DisassemblerTables::DisassemblerTables() { unsigned i; for (i = 0; i < array_lengthof(Tables); i++) { Tables[i] = new ContextDecision; memset(Tables[i], 0, sizeof(ContextDecision)); } HasConflicts = false; } DisassemblerTables::~DisassemblerTables() { unsigned i; for (i = 0; i < array_lengthof(Tables); i++) delete Tables[i]; } void DisassemblerTables::emitModRMDecision(raw_ostream &o1, raw_ostream &o2, unsigned &i1, unsigned &i2, ModRMDecision &decision) const { static uint32_t sTableNumber = 0; static uint32_t sEntryNumber = 1; ModRMDecisionType dt = getDecisionType(decision); if (dt == MODRM_ONEENTRY && decision.instructionIDs[0] == 0) { o2.indent(i2) << "{ /* ModRMDecision */" << "\n"; i2++; o2.indent(i2) << stringForDecisionType(dt) << "," << "\n"; o2.indent(i2) << 0 << " /* EmptyTable */\n"; i2--; o2.indent(i2) << "}"; return; } o1 << "/* Table" << sTableNumber << " */\n"; i1++; switch (dt) { default: llvm_unreachable("Unknown decision type"); case MODRM_ONEENTRY: emitOneID(o1, i1, decision.instructionIDs[0], true); break; case MODRM_SPLITRM: emitOneID(o1, i1, decision.instructionIDs[0x00], true); // mod = 0b00 emitOneID(o1, i1, decision.instructionIDs[0xc0], true); // mod = 0b11 break; case MODRM_SPLITREG: for (unsigned index = 0; index < 64; index += 8) emitOneID(o1, i1, decision.instructionIDs[index], true); for (unsigned index = 0xc0; index < 256; index += 8) emitOneID(o1, i1, decision.instructionIDs[index], true); break; case MODRM_SPLITMISC: for (unsigned index = 0; index < 64; index += 8) emitOneID(o1, i1, decision.instructionIDs[index], true); for (unsigned index = 0xc0; index < 256; ++index) emitOneID(o1, i1, decision.instructionIDs[index], true); break; case MODRM_FULL: for (unsigned index = 0; index < 256; ++index) emitOneID(o1, i1, decision.instructionIDs[index], true); break; } i1--; o2.indent(i2) << "{ /* struct ModRMDecision */" << "\n"; i2++; o2.indent(i2) << stringForDecisionType(dt) << "," << "\n"; o2.indent(i2) << sEntryNumber << " /* Table" << sTableNumber << " */\n"; i2--; o2.indent(i2) << "}"; switch (dt) { default: llvm_unreachable("Unknown decision type"); case MODRM_ONEENTRY: sEntryNumber += 1; break; case MODRM_SPLITRM: sEntryNumber += 2; break; case MODRM_SPLITREG: sEntryNumber += 16; break; case MODRM_SPLITMISC: sEntryNumber += 8 + 64; break; case MODRM_FULL: sEntryNumber += 256; break; } // We assume that the index can fit into uint16_t. assert(sEntryNumber < 65536U && "Index into ModRMDecision is too large for uint16_t!"); ++sTableNumber; } void DisassemblerTables::emitOpcodeDecision(raw_ostream &o1, raw_ostream &o2, unsigned &i1, unsigned &i2, OpcodeDecision &decision) const { o2.indent(i2) << "{ /* struct OpcodeDecision */" << "\n"; i2++; o2.indent(i2) << "{" << "\n"; i2++; for (unsigned index = 0; index < 256; ++index) { o2.indent(i2); o2 << "/* 0x" << format("%02hhx", index) << " */" << "\n"; emitModRMDecision(o1, o2, i1, i2, decision.modRMDecisions[index]); if (index < 255) o2 << ","; o2 << "\n"; } i2--; o2.indent(i2) << "}" << "\n"; i2--; o2.indent(i2) << "}" << "\n"; } void DisassemblerTables::emitContextDecision(raw_ostream &o1, raw_ostream &o2, unsigned &i1, unsigned &i2, ContextDecision &decision, const char* name) const { o2.indent(i2) << "static const struct ContextDecision " << name << " = {\n"; i2++; o2.indent(i2) << "{ /* opcodeDecisions */" << "\n"; i2++; for (unsigned index = 0; index < IC_max; ++index) { o2.indent(i2) << "/* "; o2 << stringForContext((InstructionContext)index); o2 << " */"; o2 << "\n"; emitOpcodeDecision(o1, o2, i1, i2, decision.opcodeDecisions[index]); if (index + 1 < IC_max) o2 << ", "; } i2--; o2.indent(i2) << "}" << "\n"; i2--; o2.indent(i2) << "};" << "\n"; } void DisassemblerTables::emitInstructionInfo(raw_ostream &o, unsigned &i) const { unsigned NumInstructions = InstructionSpecifiers.size(); o << "static const struct OperandSpecifier x86OperandSets[][" << X86_MAX_OPERANDS << "] = {\n"; typedef std::vector<std::pair<const char *, const char *> > OperandListTy; std::map<OperandListTy, unsigned> OperandSets; unsigned OperandSetNum = 0; for (unsigned Index = 0; Index < NumInstructions; ++Index) { OperandListTy OperandList; for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS; ++OperandIndex) { const char *Encoding = stringForOperandEncoding((OperandEncoding)InstructionSpecifiers[Index] .operands[OperandIndex].encoding); const char *Type = stringForOperandType((OperandType)InstructionSpecifiers[Index] .operands[OperandIndex].type); OperandList.push_back(std::make_pair(Encoding, Type)); } unsigned &N = OperandSets[OperandList]; if (N != 0) continue; N = ++OperandSetNum; o << " { /* " << (OperandSetNum - 1) << " */\n"; for (unsigned i = 0, e = OperandList.size(); i != e; ++i) { o << " { " << OperandList[i].first << ", " << OperandList[i].second << " },\n"; } o << " },\n"; } o << "};" << "\n\n"; o.indent(i * 2) << "static const struct InstructionSpecifier "; o << INSTRUCTIONS_STR "[" << InstructionSpecifiers.size() << "] = {\n"; i++; for (unsigned index = 0; index < NumInstructions; ++index) { o.indent(i * 2) << "{ /* " << index << " */" << "\n"; i++; o.indent(i * 2) << stringForModifierType( (ModifierType)InstructionSpecifiers[index].modifierType); o << ",\n"; o.indent(i * 2) << "0x"; o << format("%02hhx", (uint16_t)InstructionSpecifiers[index].modifierBase); o << ",\n"; OperandListTy OperandList; for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS; ++OperandIndex) { const char *Encoding = stringForOperandEncoding((OperandEncoding)InstructionSpecifiers[index] .operands[OperandIndex].encoding); const char *Type = stringForOperandType((OperandType)InstructionSpecifiers[index] .operands[OperandIndex].type); OperandList.push_back(std::make_pair(Encoding, Type)); } o.indent(i * 2) << (OperandSets[OperandList] - 1) << ",\n"; o.indent(i * 2) << "/* " << InstructionSpecifiers[index].name << " */"; o << "\n"; i--; o.indent(i * 2) << "}"; if (index + 1 < NumInstructions) o << ","; o << "\n"; } i--; o.indent(i * 2) << "};" << "\n"; } void DisassemblerTables::emitContextTable(raw_ostream &o, unsigned &i) const { o.indent(i * 2) << "static const uint8_t " CONTEXTS_STR "[256] = {\n"; i++; for (unsigned index = 0; index < 256; ++index) { o.indent(i * 2); if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_OPSIZE)) o << "IC_VEX_L_W_OPSIZE"; else if ((index & ATTR_VEXL) && (index & ATTR_OPSIZE)) o << "IC_VEX_L_OPSIZE"; else if ((index & ATTR_VEXL) && (index & ATTR_XD)) o << "IC_VEX_L_XD"; else if ((index & ATTR_VEXL) && (index & ATTR_XS)) o << "IC_VEX_L_XS"; else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_OPSIZE)) o << "IC_VEX_W_OPSIZE"; else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XD)) o << "IC_VEX_W_XD"; else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XS)) o << "IC_VEX_W_XS"; else if (index & ATTR_VEXL) o << "IC_VEX_L"; else if ((index & ATTR_VEX) && (index & ATTR_REXW)) o << "IC_VEX_W"; else if ((index & ATTR_VEX) && (index & ATTR_OPSIZE)) o << "IC_VEX_OPSIZE"; else if ((index & ATTR_VEX) && (index & ATTR_XD)) o << "IC_VEX_XD"; else if ((index & ATTR_VEX) && (index & ATTR_XS)) o << "IC_VEX_XS"; else if (index & ATTR_VEX) o << "IC_VEX"; else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XS)) o << "IC_64BIT_REXW_XS"; else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XD)) o << "IC_64BIT_REXW_XD"; else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_OPSIZE)) o << "IC_64BIT_REXW_OPSIZE"; else if ((index & ATTR_64BIT) && (index & ATTR_XD) && (index & ATTR_OPSIZE)) o << "IC_64BIT_XD_OPSIZE"; else if ((index & ATTR_64BIT) && (index & ATTR_XS) && (index & ATTR_OPSIZE)) o << "IC_64BIT_XS_OPSIZE"; else if ((index & ATTR_64BIT) && (index & ATTR_XS)) o << "IC_64BIT_XS"; else if ((index & ATTR_64BIT) && (index & ATTR_XD)) o << "IC_64BIT_XD"; else if ((index & ATTR_64BIT) && (index & ATTR_OPSIZE)) o << "IC_64BIT_OPSIZE"; else if ((index & ATTR_64BIT) && (index & ATTR_ADSIZE)) o << "IC_64BIT_ADSIZE"; else if ((index & ATTR_64BIT) && (index & ATTR_REXW)) o << "IC_64BIT_REXW"; else if ((index & ATTR_64BIT)) o << "IC_64BIT"; else if ((index & ATTR_XS) && (index & ATTR_OPSIZE)) o << "IC_XS_OPSIZE"; else if ((index & ATTR_XD) && (index & ATTR_OPSIZE)) o << "IC_XD_OPSIZE"; else if (index & ATTR_XS) o << "IC_XS"; else if (index & ATTR_XD) o << "IC_XD"; else if (index & ATTR_OPSIZE) o << "IC_OPSIZE"; else if (index & ATTR_ADSIZE) o << "IC_ADSIZE"; else o << "IC"; if (index < 255) o << ","; else o << " "; o << " /* " << index << " */"; o << "\n"; } i--; o.indent(i * 2) << "};" << "\n"; } void DisassemblerTables::emitContextDecisions(raw_ostream &o1, raw_ostream &o2, unsigned &i1, unsigned &i2) const { emitContextDecision(o1, o2, i1, i2, *Tables[0], ONEBYTE_STR); emitContextDecision(o1, o2, i1, i2, *Tables[1], TWOBYTE_STR); emitContextDecision(o1, o2, i1, i2, *Tables[2], THREEBYTE38_STR); emitContextDecision(o1, o2, i1, i2, *Tables[3], THREEBYTE3A_STR); emitContextDecision(o1, o2, i1, i2, *Tables[4], THREEBYTEA6_STR); emitContextDecision(o1, o2, i1, i2, *Tables[5], THREEBYTEA7_STR); } void DisassemblerTables::emit(raw_ostream &o) const { unsigned i1 = 0; unsigned i2 = 0; std::string s1; std::string s2; raw_string_ostream o1(s1); raw_string_ostream o2(s2); emitInstructionInfo(o, i2); o << "\n"; emitContextTable(o, i2); o << "\n"; o << "static const InstrUID modRMTable[] = {\n"; i1++; emitEmptyTable(o1, i1); i1--; emitContextDecisions(o1, o2, i1, i2); o << o1.str(); o << " 0x0\n"; o << "};\n"; o << "\n"; o << o2.str(); o << "\n"; o << "\n"; } void DisassemblerTables::setTableFields(ModRMDecision &decision, const ModRMFilter &filter, InstrUID uid, uint8_t opcode) { for (unsigned index = 0; index < 256; ++index) { if (filter.accepts(index)) { if (decision.instructionIDs[index] == uid) continue; if (decision.instructionIDs[index] != 0) { InstructionSpecifier &newInfo = InstructionSpecifiers[uid]; InstructionSpecifier &previousInfo = InstructionSpecifiers[decision.instructionIDs[index]]; if(newInfo.filtered) continue; // filtered instructions get lowest priority if(previousInfo.name == "NOOP" && (newInfo.name == "XCHG16ar" || newInfo.name == "XCHG32ar" || newInfo.name == "XCHG32ar64" || newInfo.name == "XCHG64ar")) continue; // special case for XCHG*ar and NOOP if (outranks(previousInfo.insnContext, newInfo.insnContext)) continue; if (previousInfo.insnContext == newInfo.insnContext && !previousInfo.filtered) { errs() << "Error: Primary decode conflict: "; errs() << newInfo.name << " would overwrite " << previousInfo.name; errs() << "\n"; errs() << "ModRM " << index << "\n"; errs() << "Opcode " << (uint16_t)opcode << "\n"; errs() << "Context " << stringForContext(newInfo.insnContext) << "\n"; HasConflicts = true; } } decision.instructionIDs[index] = uid; } } } void DisassemblerTables::setTableFields(OpcodeType type, InstructionContext insnContext, uint8_t opcode, const ModRMFilter &filter, InstrUID uid, bool is32bit, bool ignoresVEX_L) { ContextDecision &decision = *Tables[type]; for (unsigned index = 0; index < IC_max; ++index) { if (is32bit && inheritsFrom((InstructionContext)index, IC_64BIT)) continue; if (inheritsFrom((InstructionContext)index, InstructionSpecifiers[uid].insnContext, ignoresVEX_L)) setTableFields(decision.opcodeDecisions[index].modRMDecisions[opcode], filter, uid, opcode); } }