//===- FastISelEmitter.cpp - Generate an instruction selector -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits code for use by the "fast" instruction // selection algorithm. See the comments at the top of // lib/CodeGen/SelectionDAG/FastISel.cpp for background. // // This file scans through the target's tablegen instruction-info files // and extracts instructions with obvious-looking patterns, and it emits // code to look up these instructions by type and operator. // //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" using namespace llvm; /// InstructionMemo - This class holds additional information about an /// instruction needed to emit code for it. /// namespace { struct InstructionMemo { std::string Name; const CodeGenRegisterClass *RC; std::string SubRegNo; std::vector<std::string>* PhysRegs; }; } // End anonymous namespace /// ImmPredicateSet - This uniques predicates (represented as a string) and /// gives them unique (small) integer ID's that start at 0. namespace { class ImmPredicateSet { DenseMap<TreePattern *, unsigned> ImmIDs; std::vector<TreePredicateFn> PredsByName; public: unsigned getIDFor(TreePredicateFn Pred) { unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; if (Entry == 0) { PredsByName.push_back(Pred); Entry = PredsByName.size(); } return Entry-1; } const TreePredicateFn &getPredicate(unsigned i) { assert(i < PredsByName.size()); return PredsByName[i]; } typedef std::vector<TreePredicateFn>::const_iterator iterator; iterator begin() const { return PredsByName.begin(); } iterator end() const { return PredsByName.end(); } }; } // End anonymous namespace /// OperandsSignature - This class holds a description of a list of operand /// types. It has utility methods for emitting text based on the operands. /// namespace { struct OperandsSignature { class OpKind { enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; char Repr; public: OpKind() : Repr(OK_Invalid) {} bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; } static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; } static OpKind getImm(unsigned V) { assert((unsigned)OK_Imm+V < 128 && "Too many integer predicates for the 'Repr' char"); OpKind K; K.Repr = OK_Imm+V; return K; } bool isReg() const { return Repr == OK_Reg; } bool isFP() const { return Repr == OK_FP; } bool isImm() const { return Repr >= OK_Imm; } unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; } void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, bool StripImmCodes) const { if (isReg()) OS << 'r'; else if (isFP()) OS << 'f'; else { OS << 'i'; if (!StripImmCodes) if (unsigned Code = getImmCode()) OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName(); } } }; SmallVector<OpKind, 3> Operands; bool operator<(const OperandsSignature &O) const { return Operands < O.Operands; } bool operator==(const OperandsSignature &O) const { return Operands == O.Operands; } bool empty() const { return Operands.empty(); } bool hasAnyImmediateCodes() const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) if (Operands[i].isImm() && Operands[i].getImmCode() != 0) return true; return false; } /// getWithoutImmCodes - Return a copy of this with any immediate codes forced /// to zero. OperandsSignature getWithoutImmCodes() const { OperandsSignature Result; for (unsigned i = 0, e = Operands.size(); i != e; ++i) if (!Operands[i].isImm()) Result.Operands.push_back(Operands[i]); else Result.Operands.push_back(OpKind::getImm(0)); return Result; } void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) { bool EmittedAnything = false; for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (!Operands[i].isImm()) continue; unsigned Code = Operands[i].getImmCode(); if (Code == 0) continue; if (EmittedAnything) OS << " &&\n "; TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1); // Emit the type check. OS << "VT == " << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0)) << " && "; OS << PredFn.getFnName() << "(imm" << i <<')'; EmittedAnything = true; } } /// initialize - Examine the given pattern and initialize the contents /// of the Operands array accordingly. Return true if all the operands /// are supported, false otherwise. /// bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target, MVT::SimpleValueType VT, ImmPredicateSet &ImmediatePredicates, const CodeGenRegisterClass *OrigDstRC) { if (InstPatNode->isLeaf()) return false; if (InstPatNode->getOperator()->getName() == "imm") { Operands.push_back(OpKind::getImm(0)); return true; } if (InstPatNode->getOperator()->getName() == "fpimm") { Operands.push_back(OpKind::getFP()); return true; } const CodeGenRegisterClass *DstRC = 0; for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { TreePatternNode *Op = InstPatNode->getChild(i); // Handle imm operands specially. if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") { unsigned PredNo = 0; if (!Op->getPredicateFns().empty()) { TreePredicateFn PredFn = Op->getPredicateFns()[0]; // If there is more than one predicate weighing in on this operand // then we don't handle it. This doesn't typically happen for // immediates anyway. if (Op->getPredicateFns().size() > 1 || !PredFn.isImmediatePattern()) return false; // Ignore any instruction with 'FastIselShouldIgnore', these are // not needed and just bloat the fast instruction selector. For // example, X86 doesn't need to generate code to match ADD16ri8 since // ADD16ri will do just fine. Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); if (Rec->getValueAsBit("FastIselShouldIgnore")) return false; PredNo = ImmediatePredicates.getIDFor(PredFn)+1; } // Handle unmatched immediate sizes here. //if (Op->getType(0) != VT) // return false; Operands.push_back(OpKind::getImm(PredNo)); continue; } // For now, filter out any operand with a predicate. // For now, filter out any operand with multiple values. if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1) return false; if (!Op->isLeaf()) { if (Op->getOperator()->getName() == "fpimm") { Operands.push_back(OpKind::getFP()); continue; } // For now, ignore other non-leaf nodes. return false; } assert(Op->hasTypeSet(0) && "Type infererence not done?"); // For now, all the operands must have the same type (if they aren't // immediates). Note that this causes us to reject variable sized shifts // on X86. if (Op->getType(0) != VT) return false; DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue()); if (!OpDI) return false; Record *OpLeafRec = OpDI->getDef(); // For now, the only other thing we accept is register operands. const CodeGenRegisterClass *RC = 0; if (OpLeafRec->isSubClassOf("RegisterOperand")) OpLeafRec = OpLeafRec->getValueAsDef("RegClass"); if (OpLeafRec->isSubClassOf("RegisterClass")) RC = &Target.getRegisterClass(OpLeafRec); else if (OpLeafRec->isSubClassOf("Register")) RC = Target.getRegBank().getRegClassForRegister(OpLeafRec); else if (OpLeafRec->isSubClassOf("ValueType")) { RC = OrigDstRC; } else return false; // For now, this needs to be a register class of some sort. if (!RC) return false; // For now, all the operands must have the same register class or be // a strict subclass of the destination. if (DstRC) { if (DstRC != RC && !DstRC->hasSubClass(RC)) return false; } else DstRC = RC; Operands.push_back(OpKind::getReg()); } return true; } void PrintParameters(raw_ostream &OS) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (Operands[i].isReg()) { OS << "unsigned Op" << i << ", bool Op" << i << "IsKill"; } else if (Operands[i].isImm()) { OS << "uint64_t imm" << i; } else if (Operands[i].isFP()) { OS << "const ConstantFP *f" << i; } else { llvm_unreachable("Unknown operand kind!"); } if (i + 1 != e) OS << ", "; } } void PrintArguments(raw_ostream &OS, const std::vector<std::string> &PR) const { assert(PR.size() == Operands.size()); bool PrintedArg = false; for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (PR[i] != "") // Implicit physical register operand. continue; if (PrintedArg) OS << ", "; if (Operands[i].isReg()) { OS << "Op" << i << ", Op" << i << "IsKill"; PrintedArg = true; } else if (Operands[i].isImm()) { OS << "imm" << i; PrintedArg = true; } else if (Operands[i].isFP()) { OS << "f" << i; PrintedArg = true; } else { llvm_unreachable("Unknown operand kind!"); } } } void PrintArguments(raw_ostream &OS) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (Operands[i].isReg()) { OS << "Op" << i << ", Op" << i << "IsKill"; } else if (Operands[i].isImm()) { OS << "imm" << i; } else if (Operands[i].isFP()) { OS << "f" << i; } else { llvm_unreachable("Unknown operand kind!"); } if (i + 1 != e) OS << ", "; } } void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR, ImmPredicateSet &ImmPredicates, bool StripImmCodes = false) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (PR[i] != "") // Implicit physical register operand. e.g. Instruction::Mul expect to // select to a binary op. On x86, mul may take a single operand with // the other operand being implicit. We must emit something that looks // like a binary instruction except for the very inner FastEmitInst_* // call. continue; Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); } } void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, bool StripImmCodes = false) const { for (unsigned i = 0, e = Operands.size(); i != e; ++i) Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); } }; } // End anonymous namespace namespace { class FastISelMap { typedef std::map<std::string, InstructionMemo> PredMap; typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> OperandsOpcodeTypeRetPredMap; OperandsOpcodeTypeRetPredMap SimplePatterns; std::map<OperandsSignature, std::vector<OperandsSignature> > SignaturesWithConstantForms; std::string InstNS; ImmPredicateSet ImmediatePredicates; public: explicit FastISelMap(std::string InstNS); void collectPatterns(CodeGenDAGPatterns &CGP); void printImmediatePredicates(raw_ostream &OS); void printFunctionDefinitions(raw_ostream &OS); }; } // End anonymous namespace static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { return CGP.getSDNodeInfo(Op).getEnumName(); } static std::string getLegalCName(std::string OpName) { std::string::size_type pos = OpName.find("::"); if (pos != std::string::npos) OpName.replace(pos, 2, "_"); return OpName; } FastISelMap::FastISelMap(std::string instns) : InstNS(instns) { } static std::string PhyRegForNode(TreePatternNode *Op, const CodeGenTarget &Target) { std::string PhysReg; if (!Op->isLeaf()) return PhysReg; Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef(); if (!OpLeafRec->isSubClassOf("Register")) return PhysReg; PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) ->getValue(); PhysReg += "::"; PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); return PhysReg; } void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) { const CodeGenTarget &Target = CGP.getTargetInfo(); // Determine the target's namespace name. InstNS = Target.getInstNamespace() + "::"; assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); // Scan through all the patterns and record the simple ones. for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); I != E; ++I) { const PatternToMatch &Pattern = *I; // For now, just look at Instructions, so that we don't have to worry // about emitting multiple instructions for a pattern. TreePatternNode *Dst = Pattern.getDstPattern(); if (Dst->isLeaf()) continue; Record *Op = Dst->getOperator(); if (!Op->isSubClassOf("Instruction")) continue; CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); if (II.Operands.empty()) continue; // For now, ignore multi-instruction patterns. bool MultiInsts = false; for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { TreePatternNode *ChildOp = Dst->getChild(i); if (ChildOp->isLeaf()) continue; if (ChildOp->getOperator()->isSubClassOf("Instruction")) { MultiInsts = true; break; } } if (MultiInsts) continue; // For now, ignore instructions where the first operand is not an // output register. const CodeGenRegisterClass *DstRC = 0; std::string SubRegNo; if (Op->getName() != "EXTRACT_SUBREG") { Record *Op0Rec = II.Operands[0].Rec; if (Op0Rec->isSubClassOf("RegisterOperand")) Op0Rec = Op0Rec->getValueAsDef("RegClass"); if (!Op0Rec->isSubClassOf("RegisterClass")) continue; DstRC = &Target.getRegisterClass(Op0Rec); if (!DstRC) continue; } else { // If this isn't a leaf, then continue since the register classes are // a bit too complicated for now. if (!Dst->getChild(1)->isLeaf()) continue; DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); if (SR) SubRegNo = getQualifiedName(SR->getDef()); else SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString(); } // Inspect the pattern. TreePatternNode *InstPatNode = Pattern.getSrcPattern(); if (!InstPatNode) continue; if (InstPatNode->isLeaf()) continue; // Ignore multiple result nodes for now. if (InstPatNode->getNumTypes() > 1) continue; Record *InstPatOp = InstPatNode->getOperator(); std::string OpcodeName = getOpcodeName(InstPatOp, CGP); MVT::SimpleValueType RetVT = MVT::isVoid; if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0); MVT::SimpleValueType VT = RetVT; if (InstPatNode->getNumChildren()) { assert(InstPatNode->getChild(0)->getNumTypes() == 1); VT = InstPatNode->getChild(0)->getType(0); } // For now, filter out any instructions with predicates. if (!InstPatNode->getPredicateFns().empty()) continue; // Check all the operands. OperandsSignature Operands; if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, DstRC)) continue; std::vector<std::string>* PhysRegInputs = new std::vector<std::string>(); if (InstPatNode->getOperator()->getName() == "imm" || InstPatNode->getOperator()->getName() == "fpimm") PhysRegInputs->push_back(""); else { // Compute the PhysRegs used by the given pattern, and check that // the mapping from the src to dst patterns is simple. bool FoundNonSimplePattern = false; unsigned DstIndex = 0; for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target); if (PhysReg.empty()) { if (DstIndex >= Dst->getNumChildren() || Dst->getChild(DstIndex)->getName() != InstPatNode->getChild(i)->getName()) { FoundNonSimplePattern = true; break; } ++DstIndex; } PhysRegInputs->push_back(PhysReg); } if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren()) FoundNonSimplePattern = true; if (FoundNonSimplePattern) continue; } // Get the predicate that guards this pattern. std::string PredicateCheck = Pattern.getPredicateCheck(); // Ok, we found a pattern that we can handle. Remember it. InstructionMemo Memo = { Pattern.getDstPattern()->getOperator()->getName(), DstRC, SubRegNo, PhysRegInputs }; if (SimplePatterns[Operands][OpcodeName][VT][RetVT].count(PredicateCheck)) PrintFatalError(Pattern.getSrcRecord()->getLoc(), "Duplicate record in FastISel table!"); SimplePatterns[Operands][OpcodeName][VT][RetVT][PredicateCheck] = Memo; // If any of the operands were immediates with predicates on them, strip // them down to a signature that doesn't have predicates so that we can // associate them with the stripped predicate version. if (Operands.hasAnyImmediateCodes()) { SignaturesWithConstantForms[Operands.getWithoutImmCodes()] .push_back(Operands); } } } void FastISelMap::printImmediatePredicates(raw_ostream &OS) { if (ImmediatePredicates.begin() == ImmediatePredicates.end()) return; OS << "\n// FastEmit Immediate Predicate functions.\n"; for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(), E = ImmediatePredicates.end(); I != E; ++I) { OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n"; OS << I->getImmediatePredicateCode() << "\n}\n"; } OS << "\n\n"; } void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { // Now emit code for all the patterns that we collected. for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(), OE = SimplePatterns.end(); OI != OE; ++OI) { const OperandsSignature &Operands = OI->first; const OpcodeTypeRetPredMap &OTM = OI->second; for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); I != E; ++I) { const std::string &Opcode = I->first; const TypeRetPredMap &TM = I->second; OS << "// FastEmit functions for " << Opcode << ".\n"; OS << "\n"; // Emit one function for each opcode,type pair. for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); TI != TE; ++TI) { MVT::SimpleValueType VT = TI->first; const RetPredMap &RM = TI->second; if (RM.size() != 1) { for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); RI != RE; ++RI) { MVT::SimpleValueType RetVT = RI->first; const PredMap &PM = RI->second; bool HasPred = false; OS << "unsigned FastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) << "_" << getLegalCName(getName(RetVT)) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "("; Operands.PrintParameters(OS); OS << ") {\n"; // Emit code for each possible instruction. There may be // multiple if there are subtarget concerns. for (PredMap::const_iterator PI = PM.begin(), PE = PM.end(); PI != PE; ++PI) { std::string PredicateCheck = PI->first; const InstructionMemo &Memo = PI->second; if (PredicateCheck.empty()) { assert(!HasPred && "Multiple instructions match, at least one has " "a predicate and at least one doesn't!"); } else { OS << " if (" + PredicateCheck + ") {\n"; OS << " "; HasPred = true; } for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { if ((*Memo.PhysRegs)[i] != "") OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, " << "TII.get(TargetOpcode::COPY), " << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n"; } OS << " return FastEmitInst_"; if (Memo.SubRegNo.empty()) { Operands.PrintManglingSuffix(OS, *Memo.PhysRegs, ImmediatePredicates, true); OS << "(" << InstNS << Memo.Name << ", "; OS << "&" << InstNS << Memo.RC->getName() << "RegClass"; if (!Operands.empty()) OS << ", "; Operands.PrintArguments(OS, *Memo.PhysRegs); OS << ");\n"; } else { OS << "extractsubreg(" << getName(RetVT); OS << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n"; } if (HasPred) OS << " }\n"; } // Return 0 if none of the predicates were satisfied. if (HasPred) OS << " return 0;\n"; OS << "}\n"; OS << "\n"; } // Emit one function for the type that demultiplexes on return type. OS << "unsigned FastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "(MVT RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ") {\nswitch (RetVT.SimpleTy) {\n"; for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); RI != RE; ++RI) { MVT::SimpleValueType RetVT = RI->first; OS << " case " << getName(RetVT) << ": return FastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) << "_" << getLegalCName(getName(RetVT)) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "("; Operands.PrintArguments(OS); OS << ");\n"; } OS << " default: return 0;\n}\n}\n\n"; } else { // Non-variadic return type. OS << "unsigned FastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "(MVT RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ") {\n"; OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) << ")\n return 0;\n"; const PredMap &PM = RM.begin()->second; bool HasPred = false; // Emit code for each possible instruction. There may be // multiple if there are subtarget concerns. for (PredMap::const_iterator PI = PM.begin(), PE = PM.end(); PI != PE; ++PI) { std::string PredicateCheck = PI->first; const InstructionMemo &Memo = PI->second; if (PredicateCheck.empty()) { assert(!HasPred && "Multiple instructions match, at least one has " "a predicate and at least one doesn't!"); } else { OS << " if (" + PredicateCheck + ") {\n"; OS << " "; HasPred = true; } for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { if ((*Memo.PhysRegs)[i] != "") OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, " << "TII.get(TargetOpcode::COPY), " << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n"; } OS << " return FastEmitInst_"; if (Memo.SubRegNo.empty()) { Operands.PrintManglingSuffix(OS, *Memo.PhysRegs, ImmediatePredicates, true); OS << "(" << InstNS << Memo.Name << ", "; OS << "&" << InstNS << Memo.RC->getName() << "RegClass"; if (!Operands.empty()) OS << ", "; Operands.PrintArguments(OS, *Memo.PhysRegs); OS << ");\n"; } else { OS << "extractsubreg(RetVT, Op0, Op0IsKill, "; OS << Memo.SubRegNo; OS << ");\n"; } if (HasPred) OS << " }\n"; } // Return 0 if none of the predicates were satisfied. if (HasPred) OS << " return 0;\n"; OS << "}\n"; OS << "\n"; } } // Emit one function for the opcode that demultiplexes based on the type. OS << "unsigned FastEmit_" << getLegalCName(Opcode) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "(MVT VT, MVT RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ") {\n"; OS << " switch (VT.SimpleTy) {\n"; for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); TI != TE; ++TI) { MVT::SimpleValueType VT = TI->first; std::string TypeName = getName(VT); OS << " case " << TypeName << ": return FastEmit_" << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "(RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintArguments(OS); OS << ");\n"; } OS << " default: return 0;\n"; OS << " }\n"; OS << "}\n"; OS << "\n"; } OS << "// Top-level FastEmit function.\n"; OS << "\n"; // Emit one function for the operand signature that demultiplexes based // on opcode and type. OS << "unsigned FastEmit_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "(MVT VT, MVT RetVT, unsigned Opcode"; if (!Operands.empty()) OS << ", "; Operands.PrintParameters(OS); OS << ") {\n"; // If there are any forms of this signature available that operand on // constrained forms of the immediate (e.g. 32-bit sext immediate in a // 64-bit operand), check them first. std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI = SignaturesWithConstantForms.find(Operands); if (MI != SignaturesWithConstantForms.end()) { // Unique any duplicates out of the list. std::sort(MI->second.begin(), MI->second.end()); MI->second.erase(std::unique(MI->second.begin(), MI->second.end()), MI->second.end()); // Check each in order it was seen. It would be nice to have a good // relative ordering between them, but we're not going for optimality // here. for (unsigned i = 0, e = MI->second.size(); i != e; ++i) { OS << " if ("; MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates); OS << ")\n if (unsigned Reg = FastEmit_"; MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates); OS << "(VT, RetVT, Opcode"; if (!MI->second[i].empty()) OS << ", "; MI->second[i].PrintArguments(OS); OS << "))\n return Reg;\n\n"; } // Done with this, remove it. SignaturesWithConstantForms.erase(MI); } OS << " switch (Opcode) {\n"; for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); I != E; ++I) { const std::string &Opcode = I->first; OS << " case " << Opcode << ": return FastEmit_" << getLegalCName(Opcode) << "_"; Operands.PrintManglingSuffix(OS, ImmediatePredicates); OS << "(VT, RetVT"; if (!Operands.empty()) OS << ", "; Operands.PrintArguments(OS); OS << ");\n"; } OS << " default: return 0;\n"; OS << " }\n"; OS << "}\n"; OS << "\n"; } // TODO: SignaturesWithConstantForms should be empty here. } namespace llvm { void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) { CodeGenDAGPatterns CGP(RK); const CodeGenTarget &Target = CGP.getTargetInfo(); emitSourceFileHeader("\"Fast\" Instruction Selector for the " + Target.getName() + " target", OS); // Determine the target's namespace name. std::string InstNS = Target.getInstNamespace() + "::"; assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); FastISelMap F(InstNS); F.collectPatterns(CGP); F.printImmediatePredicates(OS); F.printFunctionDefinitions(OS); } } // End llvm namespace