//===- CodeGenMapTable.cpp - Instruction Mapping Table Generator ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // CodeGenMapTable provides functionality for the TabelGen to create // relation mapping between instructions. Relation models are defined using // InstrMapping as a base class. This file implements the functionality which // parses these definitions and generates relation maps using the information // specified there. These maps are emitted as tables in the XXXGenInstrInfo.inc // file along with the functions to query them. // // A relationship model to relate non-predicate instructions with their // predicated true/false forms can be defined as follows: // // def getPredOpcode : InstrMapping { // let FilterClass = "PredRel"; // let RowFields = ["BaseOpcode"]; // let ColFields = ["PredSense"]; // let KeyCol = ["none"]; // let ValueCols = [["true"], ["false"]]; } // // CodeGenMapTable parses this map and generates a table in XXXGenInstrInfo.inc // file that contains the instructions modeling this relationship. This table // is defined in the function // "int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense)" // that can be used to retrieve the predicated form of the instruction by // passing its opcode value and the predicate sense (true/false) of the desired // instruction as arguments. // // Short description of the algorithm: // // 1) Iterate through all the records that derive from "InstrMapping" class. // 2) For each record, filter out instructions based on the FilterClass value. // 3) Iterate through this set of instructions and insert them into // RowInstrMap map based on their RowFields values. RowInstrMap is keyed by the // vector of RowFields values and contains vectors of Records (instructions) as // values. RowFields is a list of fields that are required to have the same // values for all the instructions appearing in the same row of the relation // table. All the instructions in a given row of the relation table have some // sort of relationship with the key instruction defined by the corresponding // relationship model. // // Ex: RowInstrMap(RowVal1, RowVal2, ...) -> [Instr1, Instr2, Instr3, ... ] // Here Instr1, Instr2, Instr3 have same values (RowVal1, RowVal2) for // RowFields. These groups of instructions are later matched against ValueCols // to determine the column they belong to, if any. // // While building the RowInstrMap map, collect all the key instructions in // KeyInstrVec. These are the instructions having the same values as KeyCol // for all the fields listed in ColFields. // // For Example: // // Relate non-predicate instructions with their predicated true/false forms. // // def getPredOpcode : InstrMapping { // let FilterClass = "PredRel"; // let RowFields = ["BaseOpcode"]; // let ColFields = ["PredSense"]; // let KeyCol = ["none"]; // let ValueCols = [["true"], ["false"]]; } // // Here, only instructions that have "none" as PredSense will be selected as key // instructions. // // 4) For each key instruction, get the group of instructions that share the // same key-value as the key instruction from RowInstrMap. Iterate over the list // of columns in ValueCols (it is defined as a list<list<string> >. Therefore, // it can specify multi-column relationships). For each column, find the // instruction from the group that matches all the values for the column. // Multiple matches are not allowed. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "llvm/Support/Format.h" #include "llvm/TableGen/Error.h" using namespace llvm; typedef std::map<std::string, std::vector<Record*> > InstrRelMapTy; typedef std::map<std::vector<Init*>, std::vector<Record*> > RowInstrMapTy; namespace { //===----------------------------------------------------------------------===// // This class is used to represent InstrMapping class defined in Target.td file. class InstrMap { private: std::string Name; std::string FilterClass; ListInit *RowFields; ListInit *ColFields; ListInit *KeyCol; std::vector<ListInit*> ValueCols; public: InstrMap(Record* MapRec) { Name = MapRec->getName(); // FilterClass - It's used to reduce the search space only to the // instructions that define the kind of relationship modeled by // this InstrMapping object/record. const RecordVal *Filter = MapRec->getValue("FilterClass"); FilterClass = Filter->getValue()->getAsUnquotedString(); // List of fields/attributes that need to be same across all the // instructions in a row of the relation table. RowFields = MapRec->getValueAsListInit("RowFields"); // List of fields/attributes that are constant across all the instruction // in a column of the relation table. Ex: ColFields = 'predSense' ColFields = MapRec->getValueAsListInit("ColFields"); // Values for the fields/attributes listed in 'ColFields'. // Ex: KeyCol = 'noPred' -- key instruction is non predicated KeyCol = MapRec->getValueAsListInit("KeyCol"); // List of values for the fields/attributes listed in 'ColFields', one for // each column in the relation table. // // Ex: ValueCols = [['true'],['false']] -- it results two columns in the // table. First column requires all the instructions to have predSense // set to 'true' and second column requires it to be 'false'. ListInit *ColValList = MapRec->getValueAsListInit("ValueCols"); // Each instruction map must specify at least one column for it to be valid. if (ColValList->getSize() == 0) PrintFatalError(MapRec->getLoc(), "InstrMapping record `" + MapRec->getName() + "' has empty " + "`ValueCols' field!"); for (unsigned i = 0, e = ColValList->getSize(); i < e; i++) { ListInit *ColI = dyn_cast<ListInit>(ColValList->getElement(i)); // Make sure that all the sub-lists in 'ValueCols' have same number of // elements as the fields in 'ColFields'. if (ColI->getSize() != ColFields->getSize()) PrintFatalError(MapRec->getLoc(), "Record `" + MapRec->getName() + "', field `ValueCols' entries don't match with " + " the entries in 'ColFields'!"); ValueCols.push_back(ColI); } } std::string getName() const { return Name; } std::string getFilterClass() { return FilterClass; } ListInit *getRowFields() const { return RowFields; } ListInit *getColFields() const { return ColFields; } ListInit *getKeyCol() const { return KeyCol; } const std::vector<ListInit*> &getValueCols() const { return ValueCols; } }; } // End anonymous namespace. //===----------------------------------------------------------------------===// // class MapTableEmitter : It builds the instruction relation maps using // the information provided in InstrMapping records. It outputs these // relationship maps as tables into XXXGenInstrInfo.inc file along with the // functions to query them. namespace { class MapTableEmitter { private: // std::string TargetName; const CodeGenTarget &Target; // InstrMapDesc - InstrMapping record to be processed. InstrMap InstrMapDesc; // InstrDefs - list of instructions filtered using FilterClass defined // in InstrMapDesc. std::vector<Record*> InstrDefs; // RowInstrMap - maps RowFields values to the instructions. It's keyed by the // values of the row fields and contains vector of records as values. RowInstrMapTy RowInstrMap; // KeyInstrVec - list of key instructions. std::vector<Record*> KeyInstrVec; DenseMap<Record*, std::vector<Record*> > MapTable; public: MapTableEmitter(CodeGenTarget &Target, RecordKeeper &Records, Record *IMRec): Target(Target), InstrMapDesc(IMRec) { const std::string FilterClass = InstrMapDesc.getFilterClass(); InstrDefs = Records.getAllDerivedDefinitions(FilterClass); } void buildRowInstrMap(); // Returns true if an instruction is a key instruction, i.e., its ColFields // have same values as KeyCol. bool isKeyColInstr(Record* CurInstr); // Find column instruction corresponding to a key instruction based on the // constraints for that column. Record *getInstrForColumn(Record *KeyInstr, ListInit *CurValueCol); // Find column instructions for each key instruction based // on ValueCols and store them into MapTable. void buildMapTable(); void emitBinSearch(raw_ostream &OS, unsigned TableSize); void emitTablesWithFunc(raw_ostream &OS); unsigned emitBinSearchTable(raw_ostream &OS); // Lookup functions to query binary search tables. void emitMapFuncBody(raw_ostream &OS, unsigned TableSize); }; } // End anonymous namespace. //===----------------------------------------------------------------------===// // Process all the instructions that model this relation (alreday present in // InstrDefs) and insert them into RowInstrMap which is keyed by the values of // the fields listed as RowFields. It stores vectors of records as values. // All the related instructions have the same values for the RowFields thus are // part of the same key-value pair. //===----------------------------------------------------------------------===// void MapTableEmitter::buildRowInstrMap() { for (unsigned i = 0, e = InstrDefs.size(); i < e; i++) { std::vector<Record*> InstrList; Record *CurInstr = InstrDefs[i]; std::vector<Init*> KeyValue; ListInit *RowFields = InstrMapDesc.getRowFields(); for (unsigned j = 0, endRF = RowFields->getSize(); j < endRF; j++) { Init *RowFieldsJ = RowFields->getElement(j); Init *CurInstrVal = CurInstr->getValue(RowFieldsJ)->getValue(); KeyValue.push_back(CurInstrVal); } // Collect key instructions into KeyInstrVec. Later, these instructions are // processed to assign column position to the instructions sharing // their KeyValue in RowInstrMap. if (isKeyColInstr(CurInstr)) KeyInstrVec.push_back(CurInstr); RowInstrMap[KeyValue].push_back(CurInstr); } } //===----------------------------------------------------------------------===// // Return true if an instruction is a KeyCol instruction. //===----------------------------------------------------------------------===// bool MapTableEmitter::isKeyColInstr(Record* CurInstr) { ListInit *ColFields = InstrMapDesc.getColFields(); ListInit *KeyCol = InstrMapDesc.getKeyCol(); // Check if the instruction is a KeyCol instruction. bool MatchFound = true; for (unsigned j = 0, endCF = ColFields->getSize(); (j < endCF) && MatchFound; j++) { RecordVal *ColFieldName = CurInstr->getValue(ColFields->getElement(j)); std::string CurInstrVal = ColFieldName->getValue()->getAsUnquotedString(); std::string KeyColValue = KeyCol->getElement(j)->getAsUnquotedString(); MatchFound = (CurInstrVal == KeyColValue); } return MatchFound; } //===----------------------------------------------------------------------===// // Build a map to link key instructions with the column instructions arranged // according to their column positions. //===----------------------------------------------------------------------===// void MapTableEmitter::buildMapTable() { // Find column instructions for a given key based on the ColField // constraints. const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols(); unsigned NumOfCols = ValueCols.size(); for (unsigned j = 0, endKI = KeyInstrVec.size(); j < endKI; j++) { Record *CurKeyInstr = KeyInstrVec[j]; std::vector<Record*> ColInstrVec(NumOfCols); // Find the column instruction based on the constraints for the column. for (unsigned ColIdx = 0; ColIdx < NumOfCols; ColIdx++) { ListInit *CurValueCol = ValueCols[ColIdx]; Record *ColInstr = getInstrForColumn(CurKeyInstr, CurValueCol); ColInstrVec[ColIdx] = ColInstr; } MapTable[CurKeyInstr] = ColInstrVec; } } //===----------------------------------------------------------------------===// // Find column instruction based on the constraints for that column. //===----------------------------------------------------------------------===// Record *MapTableEmitter::getInstrForColumn(Record *KeyInstr, ListInit *CurValueCol) { ListInit *RowFields = InstrMapDesc.getRowFields(); std::vector<Init*> KeyValue; // Construct KeyValue using KeyInstr's values for RowFields. for (unsigned j = 0, endRF = RowFields->getSize(); j < endRF; j++) { Init *RowFieldsJ = RowFields->getElement(j); Init *KeyInstrVal = KeyInstr->getValue(RowFieldsJ)->getValue(); KeyValue.push_back(KeyInstrVal); } // Get all the instructions that share the same KeyValue as the KeyInstr // in RowInstrMap. We search through these instructions to find a match // for the current column, i.e., the instruction which has the same values // as CurValueCol for all the fields in ColFields. const std::vector<Record*> &RelatedInstrVec = RowInstrMap[KeyValue]; ListInit *ColFields = InstrMapDesc.getColFields(); Record *MatchInstr = NULL; for (unsigned i = 0, e = RelatedInstrVec.size(); i < e; i++) { bool MatchFound = true; Record *CurInstr = RelatedInstrVec[i]; for (unsigned j = 0, endCF = ColFields->getSize(); (j < endCF) && MatchFound; j++) { Init *ColFieldJ = ColFields->getElement(j); Init *CurInstrInit = CurInstr->getValue(ColFieldJ)->getValue(); std::string CurInstrVal = CurInstrInit->getAsUnquotedString(); Init *ColFieldJVallue = CurValueCol->getElement(j); MatchFound = (CurInstrVal == ColFieldJVallue->getAsUnquotedString()); } if (MatchFound) { if (MatchInstr) // Already had a match // Error if multiple matches are found for a column. PrintFatalError("Multiple matches found for `" + KeyInstr->getName() + "', for the relation `" + InstrMapDesc.getName()); MatchInstr = CurInstr; } } return MatchInstr; } //===----------------------------------------------------------------------===// // Emit one table per relation. Only instructions with a valid relation of a // given type are included in the table sorted by their enum values (opcodes). // Binary search is used for locating instructions in the table. //===----------------------------------------------------------------------===// unsigned MapTableEmitter::emitBinSearchTable(raw_ostream &OS) { const std::vector<const CodeGenInstruction*> &NumberedInstructions = Target.getInstructionsByEnumValue(); std::string TargetName = Target.getName(); const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols(); unsigned NumCol = ValueCols.size(); unsigned TotalNumInstr = NumberedInstructions.size(); unsigned TableSize = 0; OS << "static const uint16_t "<<InstrMapDesc.getName(); // Number of columns in the table are NumCol+1 because key instructions are // emitted as first column. OS << "Table[]["<< NumCol+1 << "] = {\n"; for (unsigned i = 0; i < TotalNumInstr; i++) { Record *CurInstr = NumberedInstructions[i]->TheDef; std::vector<Record*> ColInstrs = MapTable[CurInstr]; std::string OutStr(""); unsigned RelExists = 0; if (ColInstrs.size()) { for (unsigned j = 0; j < NumCol; j++) { if (ColInstrs[j] != NULL) { RelExists = 1; OutStr += ", "; OutStr += TargetName; OutStr += "::"; OutStr += ColInstrs[j]->getName(); } else { OutStr += ", -1";} } if (RelExists) { OS << " { " << TargetName << "::" << CurInstr->getName(); OS << OutStr <<" },\n"; TableSize++; } } } if (!TableSize) { OS << " { " << TargetName << "::" << "INSTRUCTION_LIST_END, "; OS << TargetName << "::" << "INSTRUCTION_LIST_END }"; } OS << "}; // End of " << InstrMapDesc.getName() << "Table\n\n"; return TableSize; } //===----------------------------------------------------------------------===// // Emit binary search algorithm as part of the functions used to query // relation tables. //===----------------------------------------------------------------------===// void MapTableEmitter::emitBinSearch(raw_ostream &OS, unsigned TableSize) { OS << " unsigned mid;\n"; OS << " unsigned start = 0;\n"; OS << " unsigned end = " << TableSize << ";\n"; OS << " while (start < end) {\n"; OS << " mid = start + (end - start)/2;\n"; OS << " if (Opcode == " << InstrMapDesc.getName() << "Table[mid][0]) {\n"; OS << " break;\n"; OS << " }\n"; OS << " if (Opcode < " << InstrMapDesc.getName() << "Table[mid][0])\n"; OS << " end = mid;\n"; OS << " else\n"; OS << " start = mid + 1;\n"; OS << " }\n"; OS << " if (start == end)\n"; OS << " return -1; // Instruction doesn't exist in this table.\n\n"; } //===----------------------------------------------------------------------===// // Emit functions to query relation tables. //===----------------------------------------------------------------------===// void MapTableEmitter::emitMapFuncBody(raw_ostream &OS, unsigned TableSize) { ListInit *ColFields = InstrMapDesc.getColFields(); const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols(); // Emit binary search algorithm to locate instructions in the // relation table. If found, return opcode value from the appropriate column // of the table. emitBinSearch(OS, TableSize); if (ValueCols.size() > 1) { for (unsigned i = 0, e = ValueCols.size(); i < e; i++) { ListInit *ColumnI = ValueCols[i]; for (unsigned j = 0, ColSize = ColumnI->getSize(); j < ColSize; j++) { std::string ColName = ColFields->getElement(j)->getAsUnquotedString(); OS << " if (in" << ColName; OS << " == "; OS << ColName << "_" << ColumnI->getElement(j)->getAsUnquotedString(); if (j < ColumnI->getSize() - 1) OS << " && "; else OS << ")\n"; } OS << " return " << InstrMapDesc.getName(); OS << "Table[mid]["<<i+1<<"];\n"; } OS << " return -1;"; } else OS << " return " << InstrMapDesc.getName() << "Table[mid][1];\n"; OS <<"}\n\n"; } //===----------------------------------------------------------------------===// // Emit relation tables and the functions to query them. //===----------------------------------------------------------------------===// void MapTableEmitter::emitTablesWithFunc(raw_ostream &OS) { // Emit function name and the input parameters : mostly opcode value of the // current instruction. However, if a table has multiple columns (more than 2 // since first column is used for the key instructions), then we also need // to pass another input to indicate the column to be selected. ListInit *ColFields = InstrMapDesc.getColFields(); const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols(); OS << "// "<< InstrMapDesc.getName() << "\n"; OS << "int "<< InstrMapDesc.getName() << "(uint16_t Opcode"; if (ValueCols.size() > 1) { for (unsigned i = 0, e = ColFields->getSize(); i < e; i++) { std::string ColName = ColFields->getElement(i)->getAsUnquotedString(); OS << ", enum " << ColName << " in" << ColName << ") {\n"; } } else { OS << ") {\n"; } // Emit map table. unsigned TableSize = emitBinSearchTable(OS); // Emit rest of the function body. emitMapFuncBody(OS, TableSize); } //===----------------------------------------------------------------------===// // Emit enums for the column fields across all the instruction maps. //===----------------------------------------------------------------------===// static void emitEnums(raw_ostream &OS, RecordKeeper &Records) { std::vector<Record*> InstrMapVec; InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping"); std::map<std::string, std::vector<Init*> > ColFieldValueMap; // Iterate over all InstrMapping records and create a map between column // fields and their possible values across all records. for (unsigned i = 0, e = InstrMapVec.size(); i < e; i++) { Record *CurMap = InstrMapVec[i]; ListInit *ColFields; ColFields = CurMap->getValueAsListInit("ColFields"); ListInit *List = CurMap->getValueAsListInit("ValueCols"); std::vector<ListInit*> ValueCols; unsigned ListSize = List->getSize(); for (unsigned j = 0; j < ListSize; j++) { ListInit *ListJ = dyn_cast<ListInit>(List->getElement(j)); if (ListJ->getSize() != ColFields->getSize()) PrintFatalError("Record `" + CurMap->getName() + "', field " "`ValueCols' entries don't match with the entries in 'ColFields' !"); ValueCols.push_back(ListJ); } for (unsigned j = 0, endCF = ColFields->getSize(); j < endCF; j++) { for (unsigned k = 0; k < ListSize; k++){ std::string ColName = ColFields->getElement(j)->getAsUnquotedString(); ColFieldValueMap[ColName].push_back((ValueCols[k])->getElement(j)); } } } for (std::map<std::string, std::vector<Init*> >::iterator II = ColFieldValueMap.begin(), IE = ColFieldValueMap.end(); II != IE; II++) { std::vector<Init*> FieldValues = (*II).second; // Delete duplicate entries from ColFieldValueMap for (unsigned i = 0; i < FieldValues.size() - 1; i++) { Init *CurVal = FieldValues[i]; for (unsigned j = i+1; j < FieldValues.size(); j++) { if (CurVal == FieldValues[j]) { FieldValues.erase(FieldValues.begin()+j); } } } // Emit enumerated values for the column fields. OS << "enum " << (*II).first << " {\n"; for (unsigned i = 0, endFV = FieldValues.size(); i < endFV; i++) { OS << "\t" << (*II).first << "_" << FieldValues[i]->getAsUnquotedString(); if (i != endFV - 1) OS << ",\n"; else OS << "\n};\n\n"; } } } namespace llvm { //===----------------------------------------------------------------------===// // Parse 'InstrMapping' records and use the information to form relationship // between instructions. These relations are emitted as a tables along with the // functions to query them. //===----------------------------------------------------------------------===// void EmitMapTable(RecordKeeper &Records, raw_ostream &OS) { CodeGenTarget Target(Records); std::string TargetName = Target.getName(); std::vector<Record*> InstrMapVec; InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping"); if (!InstrMapVec.size()) return; OS << "#ifdef GET_INSTRMAP_INFO\n"; OS << "#undef GET_INSTRMAP_INFO\n"; OS << "namespace llvm {\n\n"; OS << "namespace " << TargetName << " {\n\n"; // Emit coulumn field names and their values as enums. emitEnums(OS, Records); // Iterate over all instruction mapping records and construct relationship // maps based on the information specified there. // for (unsigned i = 0, e = InstrMapVec.size(); i < e; i++) { MapTableEmitter IMap(Target, Records, InstrMapVec[i]); // Build RowInstrMap to group instructions based on their values for // RowFields. In the process, also collect key instructions into // KeyInstrVec. IMap.buildRowInstrMap(); // Build MapTable to map key instructions with the corresponding column // instructions. IMap.buildMapTable(); // Emit map tables and the functions to query them. IMap.emitTablesWithFunc(OS); } OS << "} // End " << TargetName << " namespace\n"; OS << "} // End llvm namespace\n"; OS << "#endif // GET_INSTRMAP_INFO\n\n"; } } // End llvm namespace