//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file promotes memory references to be register references. It promotes // alloca instructions which only have loads and stores as uses. An alloca is // transformed by using iterated dominator frontiers to place PHI nodes, then // traversing the function in depth-first order to rewrite loads and stores as // appropriate. // // The algorithm used here is based on: // // Sreedhar and Gao. A linear time algorithm for placing phi-nodes. // In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of // Programming Languages // POPL '95. ACM, New York, NY, 62-73. // // It has been modified to not explicitly use the DJ graph data structure and to // directly compute pruned SSA using per-variable liveness information. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mem2reg" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/DIBuilder.h" #include "llvm/DebugInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Metadata.h" #include "llvm/InstVisitor.h" #include "llvm/Support/CFG.h" #include "llvm/Transforms/Utils/Local.h" #include <algorithm> #include <queue> using namespace llvm; STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); namespace { struct AllocaInfo : private InstVisitor<AllocaInfo, bool> { const DataLayout *DL; SmallVector<BasicBlock *, 32> DefiningBlocks; SmallVector<BasicBlock *, 32> UsingBlocks; SmallVector<Instruction *, 8> DeadInsts; Type *AllocaTy; StoreInst *OnlyStore; BasicBlock *OnlyBlock; bool OnlyUsedInOneBlock; Value *AllocaPointerVal; DbgDeclareInst *DbgDeclare; AllocaInfo(const DataLayout *DL) : DL(DL) {} void clear() { DefiningBlocks.clear(); UsingBlocks.clear(); DeadInsts.clear(); AllocaTy = 0; OnlyStore = 0; OnlyBlock = 0; OnlyUsedInOneBlock = true; AllocaPointerVal = 0; DbgDeclare = 0; } /// Scan the uses of the specified alloca, filling in the AllocaInfo used /// by the rest of the pass to reason about the uses of this alloca. bool analyzeAlloca(AllocaInst &AI) { clear(); AllocaTy = AI.getAllocatedType(); enqueueUsers(AI); // Walk queued up uses in the worklist to handle nested uses. while (!UseWorklist.empty()) { U = UseWorklist.pop_back_val(); Instruction &I = *cast<Instruction>(U->getUser()); if (!visit(I)) return false; // Propagate failure to promote up. if (OnlyUsedInOneBlock) { if (OnlyBlock == 0) OnlyBlock = I.getParent(); else if (OnlyBlock != I.getParent()) OnlyUsedInOneBlock = false; } } DbgDeclare = FindAllocaDbgDeclare(&AI); return true; } private: // Befriend the base class so it can call through private visitor methods. friend class InstVisitor<AllocaInfo, bool>; /// \brief A use pointer that is non-null when visiting uses. Use *U; /// \brief A worklist for recursively visiting all uses of an alloca. SmallVector<Use *, 8> UseWorklist; /// \brief A set for preventing cyclic visitation. SmallPtrSet<Use *, 8> VisitedUses; void enqueueUsers(Instruction &I) { for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) if (VisitedUses.insert(&UI.getUse())) UseWorklist.push_back(&UI.getUse()); } bool visitLoadInst(LoadInst &LI) { if (LI.isVolatile() || LI.getType() != AllocaTy) return false; // Keep track of variable reads. UsingBlocks.push_back(LI.getParent()); AllocaPointerVal = &LI; return true; } bool visitStoreInst(StoreInst &SI) { if (SI.isVolatile() || SI.getValueOperand() == U->get() || SI.getValueOperand()->getType() != AllocaTy) return false; // Remember the basic blocks which define new values for the alloca DefiningBlocks.push_back(SI.getParent()); AllocaPointerVal = SI.getOperand(0); OnlyStore = &SI; return true; } bool visitBitCastInst(BitCastInst &BC) { if (BC.use_empty()) DeadInsts.push_back(&BC); else enqueueUsers(BC); return true; } bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { if (GEPI.use_empty()) { DeadInsts.push_back(&GEPI); return true; } enqueueUsers(GEPI); return GEPI.hasAllZeroIndices(); } // We can promote through debug info intrinsics as they don't alter the // value stored in memory. bool visitDbgInfoIntrinsic(DbgInfoIntrinsic &I) { DeadInsts.push_back(&I); return true; } bool visitIntrinsicInst(IntrinsicInst &II) { switch (II.getIntrinsicID()) { default: return false; // Lifetime intrinsics don't preclude promoting the memory to a register. // FIXME: We should use these to promote to undef when outside of a valid // lifetime. case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: DeadInsts.push_back(&II); return true; } } // The fallback is that the alloca cannot be promoted. bool visitInstruction(Instruction &I) { return false; } }; // Data package used by RenamePass() class RenamePassData { public: typedef std::vector<Value *> ValVector; RenamePassData() : BB(NULL), Pred(NULL), Values() {} RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V) : BB(B), Pred(P), Values(V) {} BasicBlock *BB; BasicBlock *Pred; ValVector Values; void swap(RenamePassData &RHS) { std::swap(BB, RHS.BB); std::swap(Pred, RHS.Pred); Values.swap(RHS.Values); } }; /// \brief This assigns and keeps a per-bb relative ordering of load/store /// instructions in the block that directly load or store an alloca. /// /// This functionality is important because it avoids scanning large basic /// blocks multiple times when promoting many allocas in the same block. class LargeBlockInfo { /// \brief For each instruction that we track, keep the index of the /// instruction. /// /// The index starts out as the number of the instruction from the start of /// the block. DenseMap<const Instruction *, unsigned> InstNumbers; public: /// This code only looks at accesses to allocas. static bool isInterestingInstruction(const Instruction *I) { return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); } /// Get or calculate the index of the specified instruction. unsigned getInstructionIndex(const Instruction *I) { assert(isInterestingInstruction(I) && "Not a load/store to/from an alloca?"); // If we already have this instruction number, return it. DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); if (It != InstNumbers.end()) return It->second; // Scan the whole block to get the instruction. This accumulates // information for every interesting instruction in the block, in order to // avoid gratuitus rescans. const BasicBlock *BB = I->getParent(); unsigned InstNo = 0; for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E; ++BBI) if (isInterestingInstruction(BBI)) InstNumbers[BBI] = InstNo++; It = InstNumbers.find(I); assert(It != InstNumbers.end() && "Didn't insert instruction?"); return It->second; } void deleteValue(const Instruction *I) { InstNumbers.erase(I); } void clear() { InstNumbers.clear(); } }; struct PromoteMem2Reg { /// The alloca instructions being promoted. std::vector<AllocaInst *> Allocas; DominatorTree &DT; DIBuilder DIB; const DataLayout *DL; /// An AliasSetTracker object to update. If null, don't update it. AliasSetTracker *AST; /// Reverse mapping of Allocas. DenseMap<AllocaInst *, unsigned> AllocaLookup; /// \brief The PhiNodes we're adding. /// /// That map is used to simplify some Phi nodes as we iterate over it, so /// it should have deterministic iterators. We could use a MapVector, but /// since we already maintain a map from BasicBlock* to a stable numbering /// (BBNumbers), the DenseMap is more efficient (also supports removal). DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; /// For each PHI node, keep track of which entry in Allocas it corresponds /// to. DenseMap<PHINode *, unsigned> PhiToAllocaMap; /// If we are updating an AliasSetTracker, then for each alloca that is of /// pointer type, we keep track of what to copyValue to the inserted PHI /// nodes here. std::vector<Value *> PointerAllocaValues; /// For each alloca, we keep track of the dbg.declare intrinsic that /// describes it, if any, so that we can convert it to a dbg.value /// intrinsic if the alloca gets promoted. SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares; /// The set of basic blocks the renamer has already visited. /// SmallPtrSet<BasicBlock *, 16> Visited; /// Contains a stable numbering of basic blocks to avoid non-determinstic /// behavior. DenseMap<BasicBlock *, unsigned> BBNumbers; /// Maps DomTreeNodes to their level in the dominator tree. DenseMap<DomTreeNode *, unsigned> DomLevels; /// Lazily compute the number of predecessors a block has. DenseMap<const BasicBlock *, unsigned> BBNumPreds; public: PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, const DataLayout *DL, AliasSetTracker *AST) : Allocas(Allocas.begin(), Allocas.end()), DT(DT), DIB(*DT.getRoot()->getParent()->getParent()), DL(DL), AST(AST) {} void run(); private: void RemoveFromAllocasList(unsigned &AllocaIdx) { Allocas[AllocaIdx] = Allocas.back(); Allocas.pop_back(); --AllocaIdx; } unsigned getNumPreds(const BasicBlock *BB) { unsigned &NP = BBNumPreds[BB]; if (NP == 0) NP = std::distance(pred_begin(BB), pred_end(BB)) + 1; return NP - 1; } void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, AllocaInfo &Info); void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, const SmallPtrSet<BasicBlock *, 32> &DefBlocks, SmallPtrSet<BasicBlock *, 32> &LiveInBlocks); void RenamePass(BasicBlock *BB, BasicBlock *Pred, RenamePassData::ValVector &IncVals, std::vector<RenamePassData> &Worklist); bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); }; } // end of anonymous namespace /// \brief Walk a small vector of dead instructions and recursively remove them /// and subsequently dead instructions. /// /// This is only valid to call on dead instructions using an alloca which is /// promotable, as we leverage that assumption to delete them faster. static void removeDeadInstructions(AllocaInst *AI, SmallVectorImpl<Instruction *> &DeadInsts) { while (!DeadInsts.empty()) { Instruction *I = DeadInsts.pop_back_val(); // Don't delete the alloca itself. if (I == AI) continue; // Note that we open code the deletion algorithm here because we know // apriori that all of the instructions using an alloca that reaches here // are trivially dead when their use list becomes empty (The only risk are // lifetime markers which we specifically want to nuke). By coding it here // we can skip the triviality test and be more efficient. // // Null out all of the instruction's operands to see if any operand becomes // dead as we go. for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { Instruction *Op = dyn_cast<Instruction>(*OI); if (!Op) continue; OI->set(0); if (!Op->use_empty()) continue; DeadInsts.push_back(Op); } I->eraseFromParent(); } } /// \brief Rewrite as many loads as possible given a single store. /// /// When there is only a single store, we can use the domtree to trivially /// replace all of the dominated loads with the stored value. Do so, and return /// true if this has successfully promoted the alloca entirely. If this returns /// false there were some loads which were not dominated by the single store /// and thus must be phi-ed with undef. We fall back to the standard alloca /// promotion algorithm in that case. static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI, DominatorTree &DT, AliasSetTracker *AST) { StoreInst *OnlyStore = Info.OnlyStore; bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); BasicBlock *StoreBB = OnlyStore->getParent(); int StoreIndex = -1; // Clear out UsingBlocks. We will reconstruct it here if needed. Info.UsingBlocks.clear(); for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) { Instruction *UserInst = cast<Instruction>(*UI++); if (!isa<LoadInst>(UserInst)) { assert(UserInst == OnlyStore && "Should only have load/stores"); continue; } LoadInst *LI = cast<LoadInst>(UserInst); // Okay, if we have a load from the alloca, we want to replace it with the // only value stored to the alloca. We can do this if the value is // dominated by the store. If not, we use the rest of the mem2reg machinery // to insert the phi nodes as needed. if (!StoringGlobalVal) { // Non-instructions are always dominated. if (LI->getParent() == StoreBB) { // If we have a use that is in the same block as the store, compare the // indices of the two instructions to see which one came first. If the // load came before the store, we can't handle it. if (StoreIndex == -1) StoreIndex = LBI.getInstructionIndex(OnlyStore); if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { // Can't handle this load, bail out. Info.UsingBlocks.push_back(StoreBB); continue; } } else if (LI->getParent() != StoreBB && !DT.dominates(StoreBB, LI->getParent())) { // If the load and store are in different blocks, use BB dominance to // check their relationships. If the store doesn't dom the use, bail // out. Info.UsingBlocks.push_back(LI->getParent()); continue; } } // Otherwise, we *can* safely rewrite this load. Value *ReplVal = OnlyStore->getOperand(0); // If the replacement value is the load, this must occur in unreachable // code. if (ReplVal == LI) ReplVal = UndefValue::get(LI->getType()); LI->replaceAllUsesWith(ReplVal); if (AST && LI->getType()->isPointerTy()) AST->deleteValue(LI); LI->eraseFromParent(); LBI.deleteValue(LI); } // Finally, after the scan, check to see if the store is all that is left. if (!Info.UsingBlocks.empty()) return false; // If not, we'll have to fall back for the remainder. // Record debuginfo for the store and remove the declaration's // debuginfo. if (DbgDeclareInst *DDI = Info.DbgDeclare) { DIBuilder DIB(*AI->getParent()->getParent()->getParent()); ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB); DDI->eraseFromParent(); } // Remove the (now dead) store and alloca. Info.OnlyStore->eraseFromParent(); LBI.deleteValue(Info.OnlyStore); if (AST) AST->deleteValue(AI); AI->eraseFromParent(); LBI.deleteValue(AI); return true; } namespace { /// This is a helper predicate used to search by the first element of a pair. struct StoreIndexSearchPredicate { bool operator()(const std::pair<unsigned, StoreInst *> &LHS, const std::pair<unsigned, StoreInst *> &RHS) { return LHS.first < RHS.first; } }; } /// Many allocas are only used within a single basic block. If this is the /// case, avoid traversing the CFG and inserting a lot of potentially useless /// PHI nodes by just performing a single linear pass over the basic block /// using the Alloca. /// /// If we cannot promote this alloca (because it is read before it is written), /// return true. This is necessary in cases where, due to control flow, the /// alloca is potentially undefined on some control flow paths. e.g. code like /// this is potentially correct: /// /// for (...) { if (c) { A = undef; undef = B; } } /// /// ... so long as A is not used before undef is set. static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, LargeBlockInfo &LBI, AliasSetTracker *AST) { // The trickiest case to handle is when we have large blocks. Because of this, // this code is optimized assuming that large blocks happen. This does not // significantly pessimize the small block case. This uses LargeBlockInfo to // make it efficient to get the index of various operations in the block. // Walk the use-def list of the alloca, getting the locations of all stores. typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy; StoresByIndexTy StoresByIndex; for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ++UI) if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); // Sort the stores by their index, making it efficient to do a lookup with a // binary search. std::sort(StoresByIndex.begin(), StoresByIndex.end(), StoreIndexSearchPredicate()); // Walk all of the loads from this alloca, replacing them with the nearest // store above them, if any. for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) { LoadInst *LI = dyn_cast<LoadInst>(*UI++); if (!LI) continue; unsigned LoadIdx = LBI.getInstructionIndex(LI); // Find the nearest store that has a lower index than this load. StoresByIndexTy::iterator I = std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), std::make_pair(LoadIdx, static_cast<StoreInst *>(0)), StoreIndexSearchPredicate()); if (I == StoresByIndex.begin()) // If there is no store before this load, the load takes the undef value. LI->replaceAllUsesWith(UndefValue::get(LI->getType())); else // Otherwise, there was a store before this load, the load takes its value. LI->replaceAllUsesWith(llvm::prior(I)->second->getOperand(0)); if (AST && LI->getType()->isPointerTy()) AST->deleteValue(LI); LI->eraseFromParent(); LBI.deleteValue(LI); } // Remove the (now dead) stores and alloca. while (!AI->use_empty()) { StoreInst *SI = cast<StoreInst>(AI->use_back()); // Record debuginfo for the store before removing it. if (DbgDeclareInst *DDI = Info.DbgDeclare) { DIBuilder DIB(*AI->getParent()->getParent()->getParent()); ConvertDebugDeclareToDebugValue(DDI, SI, DIB); } SI->eraseFromParent(); LBI.deleteValue(SI); } if (AST) AST->deleteValue(AI); AI->eraseFromParent(); LBI.deleteValue(AI); // The alloca's debuginfo can be removed as well. if (DbgDeclareInst *DDI = Info.DbgDeclare) DDI->eraseFromParent(); ++NumLocalPromoted; } void PromoteMem2Reg::run() { Function &F = *DT.getRoot()->getParent(); if (AST) PointerAllocaValues.resize(Allocas.size()); AllocaDbgDeclares.resize(Allocas.size()); AllocaInfo Info(DL); LargeBlockInfo LBI; for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { AllocaInst *AI = Allocas[AllocaNum]; assert(AI->getParent()->getParent() == &F && "All allocas should be in the same function, which is same as DF!"); // Calculate the set of read and write-locations for each alloca. This is // analogous to finding the 'uses' and 'definitions' of each variable. bool Good = Info.analyzeAlloca(*AI); (void)Good; assert(Good && "Cannot promote non-promotable alloca!"); // Nuke all of the dead instructions. removeDeadInstructions(AI, Info.DeadInsts); if (AI->use_empty()) { // If there are no uses of the alloca, just delete it now. if (AST) AST->deleteValue(AI); AI->eraseFromParent(); // Remove the alloca from the Allocas list, since it has been processed RemoveFromAllocasList(AllocaNum); ++NumDeadAlloca; continue; } // If there is only a single store to this value, replace any loads of // it that are directly dominated by the definition with the value stored. if (Info.DefiningBlocks.size() == 1) { if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) { // The alloca has been processed, move on. RemoveFromAllocasList(AllocaNum); ++NumSingleStore; continue; } } // If the alloca is only read and written in one basic block, just perform a // linear sweep over the block to eliminate it. if (Info.OnlyUsedInOneBlock) { promoteSingleBlockAlloca(AI, Info, LBI, AST); // The alloca has been processed, move on. RemoveFromAllocasList(AllocaNum); continue; } // If we haven't computed dominator tree levels, do so now. if (DomLevels.empty()) { SmallVector<DomTreeNode *, 32> Worklist; DomTreeNode *Root = DT.getRootNode(); DomLevels[Root] = 0; Worklist.push_back(Root); while (!Worklist.empty()) { DomTreeNode *Node = Worklist.pop_back_val(); unsigned ChildLevel = DomLevels[Node] + 1; for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE; ++CI) { DomLevels[*CI] = ChildLevel; Worklist.push_back(*CI); } } } // If we haven't computed a numbering for the BB's in the function, do so // now. if (BBNumbers.empty()) { unsigned ID = 0; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) BBNumbers[I] = ID++; } // If we have an AST to keep updated, remember some pointer value that is // stored into the alloca. if (AST) PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal; // Remember the dbg.declare intrinsic describing this alloca, if any. if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; // Keep the reverse mapping of the 'Allocas' array for the rename pass. AllocaLookup[Allocas[AllocaNum]] = AllocaNum; // At this point, we're committed to promoting the alloca using IDF's, and // the standard SSA construction algorithm. Determine which blocks need PHI // nodes and see if we can optimize out some work by avoiding insertion of // dead phi nodes. DetermineInsertionPoint(AI, AllocaNum, Info); } if (Allocas.empty()) return; // All of the allocas must have been trivial! LBI.clear(); // Set the incoming values for the basic block to be null values for all of // the alloca's. We do this in case there is a load of a value that has not // been stored yet. In this case, it will get this null value. // RenamePassData::ValVector Values(Allocas.size()); for (unsigned i = 0, e = Allocas.size(); i != e; ++i) Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); // Walks all basic blocks in the function performing the SSA rename algorithm // and inserting the phi nodes we marked as necessary // std::vector<RenamePassData> RenamePassWorkList; RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values)); do { RenamePassData RPD; RPD.swap(RenamePassWorkList.back()); RenamePassWorkList.pop_back(); // RenamePass may add new worklist entries. RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); } while (!RenamePassWorkList.empty()); // The renamer uses the Visited set to avoid infinite loops. Clear it now. Visited.clear(); // Remove the allocas themselves from the function. for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { Instruction *A = Allocas[i]; // If there are any uses of the alloca instructions left, they must be in // unreachable basic blocks that were not processed by walking the dominator // tree. Just delete the users now. if (!A->use_empty()) A->replaceAllUsesWith(UndefValue::get(A->getType())); if (AST) AST->deleteValue(A); A->eraseFromParent(); } // Remove alloca's dbg.declare instrinsics from the function. for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i) if (DbgDeclareInst *DDI = AllocaDbgDeclares[i]) DDI->eraseFromParent(); // Loop over all of the PHI nodes and see if there are any that we can get // rid of because they merge all of the same incoming values. This can // happen due to undef values coming into the PHI nodes. This process is // iterative, because eliminating one PHI node can cause others to be removed. bool EliminatedAPHI = true; while (EliminatedAPHI) { EliminatedAPHI = false; // Iterating over NewPhiNodes is deterministic, so it is safe to try to // simplify and RAUW them as we go. If it was not, we could add uses to // the values we replace with in a non deterministic order, thus creating // non deterministic def->use chains. for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator I = NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) { PHINode *PN = I->second; // If this PHI node merges one value and/or undefs, get the value. if (Value *V = SimplifyInstruction(PN, 0, 0, &DT)) { if (AST && PN->getType()->isPointerTy()) AST->deleteValue(PN); PN->replaceAllUsesWith(V); PN->eraseFromParent(); NewPhiNodes.erase(I++); EliminatedAPHI = true; continue; } ++I; } } // At this point, the renamer has added entries to PHI nodes for all reachable // code. Unfortunately, there may be unreachable blocks which the renamer // hasn't traversed. If this is the case, the PHI nodes may not // have incoming values for all predecessors. Loop over all PHI nodes we have // created, inserting undef values if they are missing any incoming values. // for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator I = NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) { // We want to do this once per basic block. As such, only process a block // when we find the PHI that is the first entry in the block. PHINode *SomePHI = I->second; BasicBlock *BB = SomePHI->getParent(); if (&BB->front() != SomePHI) continue; // Only do work here if there the PHI nodes are missing incoming values. We // know that all PHI nodes that were inserted in a block will have the same // number of incoming values, so we can just check any of them. if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) continue; // Get the preds for BB. SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); // Ok, now we know that all of the PHI nodes are missing entries for some // basic blocks. Start by sorting the incoming predecessors for efficient // access. std::sort(Preds.begin(), Preds.end()); // Now we loop through all BB's which have entries in SomePHI and remove // them from the Preds list. for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { // Do a log(n) search of the Preds list for the entry we want. SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound( Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && "PHI node has entry for a block which is not a predecessor!"); // Remove the entry Preds.erase(EntIt); } // At this point, the blocks left in the preds list must have dummy // entries inserted into every PHI nodes for the block. Update all the phi // nodes in this block that we are inserting (there could be phis before // mem2reg runs). unsigned NumBadPreds = SomePHI->getNumIncomingValues(); BasicBlock::iterator BBI = BB->begin(); while ((SomePHI = dyn_cast<PHINode>(BBI++)) && SomePHI->getNumIncomingValues() == NumBadPreds) { Value *UndefVal = UndefValue::get(SomePHI->getType()); for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred) SomePHI->addIncoming(UndefVal, Preds[pred]); } } NewPhiNodes.clear(); } /// \brief Determine which blocks the value is live in. /// /// These are blocks which lead to uses. Knowing this allows us to avoid /// inserting PHI nodes into blocks which don't lead to uses (thus, the /// inserted phi nodes would be dead). void PromoteMem2Reg::ComputeLiveInBlocks( AllocaInst *AI, AllocaInfo &Info, const SmallPtrSet<BasicBlock *, 32> &DefBlocks, SmallPtrSet<BasicBlock *, 32> &LiveInBlocks) { // To determine liveness, we must iterate through the predecessors of blocks // where the def is live. Blocks are added to the worklist if we need to // check their predecessors. Start with all the using blocks. SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), Info.UsingBlocks.end()); // If any of the using blocks is also a definition block, check to see if the // definition occurs before or after the use. If it happens before the use, // the value isn't really live-in. for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { BasicBlock *BB = LiveInBlockWorklist[i]; if (!DefBlocks.count(BB)) continue; // Okay, this is a block that both uses and defines the value. If the first // reference to the alloca is a def (store), then we know it isn't live-in. for (BasicBlock::iterator I = BB->begin();; ++I) { if (StoreInst *SI = dyn_cast<StoreInst>(I)) { if (SI->getOperand(1) != AI) continue; // We found a store to the alloca before a load. The alloca is not // actually live-in here. LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); LiveInBlockWorklist.pop_back(); --i, --e; break; } if (LoadInst *LI = dyn_cast<LoadInst>(I)) { if (LI->getOperand(0) != AI) continue; // Okay, we found a load before a store to the alloca. It is actually // live into this block. break; } } } // Now that we have a set of blocks where the phi is live-in, recursively add // their predecessors until we find the full region the value is live. while (!LiveInBlockWorklist.empty()) { BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); // The block really is live in here, insert it into the set. If already in // the set, then it has already been processed. if (!LiveInBlocks.insert(BB)) continue; // Since the value is live into BB, it is either defined in a predecessor or // live into it to. Add the preds to the worklist unless they are a // defining block. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { BasicBlock *P = *PI; // The value is not live into a predecessor if it defines the value. if (DefBlocks.count(P)) continue; // Otherwise it is, add to the worklist. LiveInBlockWorklist.push_back(P); } } } namespace { typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair; struct DomTreeNodeCompare { bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) { return LHS.second < RHS.second; } }; } // end anonymous namespace /// At this point, we're committed to promoting the alloca using IDF's, and the /// standard SSA construction algorithm. Determine which blocks need phi nodes /// and see if we can optimize out some work by avoiding insertion of dead phi /// nodes. void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, AllocaInfo &Info) { // Unique the set of defining blocks for efficient lookup. SmallPtrSet<BasicBlock *, 32> DefBlocks; DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); // Determine which blocks the value is live in. These are blocks which lead // to uses. SmallPtrSet<BasicBlock *, 32> LiveInBlocks; ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); // Use a priority queue keyed on dominator tree level so that inserted nodes // are handled from the bottom of the dominator tree upwards. typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>, DomTreeNodeCompare> IDFPriorityQueue; IDFPriorityQueue PQ; for (SmallPtrSet<BasicBlock *, 32>::const_iterator I = DefBlocks.begin(), E = DefBlocks.end(); I != E; ++I) { if (DomTreeNode *Node = DT.getNode(*I)) PQ.push(std::make_pair(Node, DomLevels[Node])); } SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks; SmallPtrSet<DomTreeNode *, 32> Visited; SmallVector<DomTreeNode *, 32> Worklist; while (!PQ.empty()) { DomTreeNodePair RootPair = PQ.top(); PQ.pop(); DomTreeNode *Root = RootPair.first; unsigned RootLevel = RootPair.second; // Walk all dominator tree children of Root, inspecting their CFG edges with // targets elsewhere on the dominator tree. Only targets whose level is at // most Root's level are added to the iterated dominance frontier of the // definition set. Worklist.clear(); Worklist.push_back(Root); while (!Worklist.empty()) { DomTreeNode *Node = Worklist.pop_back_val(); BasicBlock *BB = Node->getBlock(); for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { DomTreeNode *SuccNode = DT.getNode(*SI); // Quickly skip all CFG edges that are also dominator tree edges instead // of catching them below. if (SuccNode->getIDom() == Node) continue; unsigned SuccLevel = DomLevels[SuccNode]; if (SuccLevel > RootLevel) continue; if (!Visited.insert(SuccNode)) continue; BasicBlock *SuccBB = SuccNode->getBlock(); if (!LiveInBlocks.count(SuccBB)) continue; DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB)); if (!DefBlocks.count(SuccBB)) PQ.push(std::make_pair(SuccNode, SuccLevel)); } for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE; ++CI) { if (!Visited.count(*CI)) Worklist.push_back(*CI); } } } if (DFBlocks.size() > 1) std::sort(DFBlocks.begin(), DFBlocks.end()); unsigned CurrentVersion = 0; for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion); } /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca. /// /// Returns true if there wasn't already a phi-node for that variable bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, unsigned &Version) { // Look up the basic-block in question. PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; // If the BB already has a phi node added for the i'th alloca then we're done! if (PN) return false; // Create a PhiNode using the dereferenced type... and add the phi-node to the // BasicBlock. PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), Allocas[AllocaNo]->getName() + "." + Twine(Version++), BB->begin()); ++NumPHIInsert; PhiToAllocaMap[PN] = AllocaNo; if (AST && PN->getType()->isPointerTy()) AST->copyValue(PointerAllocaValues[AllocaNo], PN); return true; } /// \brief Recursively traverse the CFG of the function, renaming loads and /// stores to the allocas which we are promoting. /// /// IncomingVals indicates what value each Alloca contains on exit from the /// predecessor block Pred. void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, RenamePassData::ValVector &IncomingVals, std::vector<RenamePassData> &Worklist) { NextIteration: // If we are inserting any phi nodes into this BB, they will already be in the // block. if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { // If we have PHI nodes to update, compute the number of edges from Pred to // BB. if (PhiToAllocaMap.count(APN)) { // We want to be able to distinguish between PHI nodes being inserted by // this invocation of mem2reg from those phi nodes that already existed in // the IR before mem2reg was run. We determine that APN is being inserted // because it is missing incoming edges. All other PHI nodes being // inserted by this pass of mem2reg will have the same number of incoming // operands so far. Remember this count. unsigned NewPHINumOperands = APN->getNumOperands(); unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); assert(NumEdges && "Must be at least one edge from Pred to BB!"); // Add entries for all the phis. BasicBlock::iterator PNI = BB->begin(); do { unsigned AllocaNo = PhiToAllocaMap[APN]; // Add N incoming values to the PHI node. for (unsigned i = 0; i != NumEdges; ++i) APN->addIncoming(IncomingVals[AllocaNo], Pred); // The currently active variable for this block is now the PHI. IncomingVals[AllocaNo] = APN; // Get the next phi node. ++PNI; APN = dyn_cast<PHINode>(PNI); if (APN == 0) break; // Verify that it is missing entries. If not, it is not being inserted // by this mem2reg invocation so we want to ignore it. } while (APN->getNumOperands() == NewPHINumOperands); } } // Don't revisit blocks. if (!Visited.insert(BB)) return; for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) { Instruction *I = II++; // get the instruction, increment iterator if (LoadInst *LI = dyn_cast<LoadInst>(I)) { AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); if (!Src) continue; DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); if (AI == AllocaLookup.end()) continue; Value *V = IncomingVals[AI->second]; // Anything using the load now uses the current value. LI->replaceAllUsesWith(V); if (AST && LI->getType()->isPointerTy()) AST->deleteValue(LI); BB->getInstList().erase(LI); } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { // Delete this instruction and mark the name as the current holder of the // value AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); if (!Dest) continue; DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); if (ai == AllocaLookup.end()) continue; // what value were we writing? IncomingVals[ai->second] = SI->getOperand(0); // Record debuginfo for the store before removing it. if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) ConvertDebugDeclareToDebugValue(DDI, SI, DIB); BB->getInstList().erase(SI); } } // 'Recurse' to our successors. succ_iterator I = succ_begin(BB), E = succ_end(BB); if (I == E) return; // Keep track of the successors so we don't visit the same successor twice SmallPtrSet<BasicBlock *, 8> VisitedSuccs; // Handle the first successor without using the worklist. VisitedSuccs.insert(*I); Pred = BB; BB = *I; ++I; for (; I != E; ++I) if (VisitedSuccs.insert(*I)) Worklist.push_back(RenamePassData(*I, Pred, IncomingVals)); goto NextIteration; } bool llvm::isAllocaPromotable(const AllocaInst *AI, const DataLayout *DL) { // We cast away constness because we re-use the non-const analysis that the // actual promotion routine uses. While it is non-const, it doesn't actually // mutate anything at this phase, and we discard the non-const results that // promotion uses to mutate the alloca. return AllocaInfo(DL).analyzeAlloca(*const_cast<AllocaInst *>(AI)); } void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, const DataLayout *DL, AliasSetTracker *AST) { // If there is nothing to do, bail out... if (Allocas.empty()) return; PromoteMem2Reg(Allocas, DT, DL, AST).run(); }