//===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements dead code elimination and basic block merging, along // with a collection of other peephole control flow optimizations. For example: // // * Removes basic blocks with no predecessors. // * Merges a basic block into its predecessor if there is only one and the // predecessor only has one successor. // * Eliminates PHI nodes for basic blocks with a single predecessor. // * Eliminates a basic block that only contains an unconditional branch. // * Changes invoke instructions to nounwind functions to be calls. // * Change things like "if (x) if (y)" into "if (x&y)". // * etc.. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "simplifycfg" #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CFG.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; STATISTIC(NumSimpl, "Number of blocks simplified"); namespace { struct CFGSimplifyPass : public FunctionPass { static char ID; // Pass identification, replacement for typeid CFGSimplifyPass() : FunctionPass(ID) { initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry()); } virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<TargetTransformInfo>(); } }; } char CFGSimplifyPass::ID = 0; INITIALIZE_PASS_BEGIN(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false, false) INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) INITIALIZE_PASS_END(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false, false) // Public interface to the CFGSimplification pass FunctionPass *llvm::createCFGSimplificationPass() { return new CFGSimplifyPass(); } /// changeToUnreachable - Insert an unreachable instruction before the specified /// instruction, making it and the rest of the code in the block dead. static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { BasicBlock *BB = I->getParent(); // Loop over all of the successors, removing BB's entry from any PHI // nodes. for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) (*SI)->removePredecessor(BB); // Insert a call to llvm.trap right before this. This turns the undefined // behavior into a hard fail instead of falling through into random code. if (UseLLVMTrap) { Function *TrapFn = Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); CallInst *CallTrap = CallInst::Create(TrapFn, "", I); CallTrap->setDebugLoc(I->getDebugLoc()); } new UnreachableInst(I->getContext(), I); // All instructions after this are dead. BasicBlock::iterator BBI = I, BBE = BB->end(); while (BBI != BBE) { if (!BBI->use_empty()) BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); BB->getInstList().erase(BBI++); } } /// changeToCall - Convert the specified invoke into a normal call. static void changeToCall(InvokeInst *II) { SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); NewCall->takeName(II); NewCall->setCallingConv(II->getCallingConv()); NewCall->setAttributes(II->getAttributes()); NewCall->setDebugLoc(II->getDebugLoc()); II->replaceAllUsesWith(NewCall); // Follow the call by a branch to the normal destination. BranchInst::Create(II->getNormalDest(), II); // Update PHI nodes in the unwind destination II->getUnwindDest()->removePredecessor(II->getParent()); II->eraseFromParent(); } static bool markAliveBlocks(BasicBlock *BB, SmallPtrSet<BasicBlock*, 128> &Reachable) { SmallVector<BasicBlock*, 128> Worklist; Worklist.push_back(BB); Reachable.insert(BB); bool Changed = false; do { BB = Worklist.pop_back_val(); // Do a quick scan of the basic block, turning any obviously unreachable // instructions into LLVM unreachable insts. The instruction combining pass // canonicalizes unreachable insts into stores to null or undef. for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ if (CallInst *CI = dyn_cast<CallInst>(BBI)) { if (CI->doesNotReturn()) { // If we found a call to a no-return function, insert an unreachable // instruction after it. Make sure there isn't *already* one there // though. ++BBI; if (!isa<UnreachableInst>(BBI)) { // Don't insert a call to llvm.trap right before the unreachable. changeToUnreachable(BBI, false); Changed = true; } break; } } // Store to undef and store to null are undefined and used to signal that // they should be changed to unreachable by passes that can't modify the // CFG. if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { // Don't touch volatile stores. if (SI->isVolatile()) continue; Value *Ptr = SI->getOperand(1); if (isa<UndefValue>(Ptr) || (isa<ConstantPointerNull>(Ptr) && SI->getPointerAddressSpace() == 0)) { changeToUnreachable(SI, true); Changed = true; break; } } } // Turn invokes that call 'nounwind' functions into ordinary calls. if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { Value *Callee = II->getCalledValue(); if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { changeToUnreachable(II, true); Changed = true; } else if (II->doesNotThrow()) { if (II->use_empty() && II->onlyReadsMemory()) { // jump to the normal destination branch. BranchInst::Create(II->getNormalDest(), II); II->getUnwindDest()->removePredecessor(II->getParent()); II->eraseFromParent(); } else changeToCall(II); Changed = true; } } Changed |= ConstantFoldTerminator(BB, true); for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) if (Reachable.insert(*SI)) Worklist.push_back(*SI); } while (!Worklist.empty()); return Changed; } /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even /// if they are in a dead cycle. Return true if a change was made, false /// otherwise. static bool removeUnreachableBlocksFromFn(Function &F) { SmallPtrSet<BasicBlock*, 128> Reachable; bool Changed = markAliveBlocks(F.begin(), Reachable); // If there are unreachable blocks in the CFG... if (Reachable.size() == F.size()) return Changed; assert(Reachable.size() < F.size()); NumSimpl += F.size()-Reachable.size(); // Loop over all of the basic blocks that are not reachable, dropping all of // their internal references... for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { if (Reachable.count(BB)) continue; for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) if (Reachable.count(*SI)) (*SI)->removePredecessor(BB); BB->dropAllReferences(); } for (Function::iterator I = ++F.begin(); I != F.end();) if (!Reachable.count(I)) I = F.getBasicBlockList().erase(I); else ++I; return true; } /// mergeEmptyReturnBlocks - If we have more than one empty (other than phi /// node) return blocks, merge them together to promote recursive block merging. static bool mergeEmptyReturnBlocks(Function &F) { bool Changed = false; BasicBlock *RetBlock = 0; // Scan all the blocks in the function, looking for empty return blocks. for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) { BasicBlock &BB = *BBI++; // Only look at return blocks. ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()); if (Ret == 0) continue; // Only look at the block if it is empty or the only other thing in it is a // single PHI node that is the operand to the return. if (Ret != &BB.front()) { // Check for something else in the block. BasicBlock::iterator I = Ret; --I; // Skip over debug info. while (isa<DbgInfoIntrinsic>(I) && I != BB.begin()) --I; if (!isa<DbgInfoIntrinsic>(I) && (!isa<PHINode>(I) || I != BB.begin() || Ret->getNumOperands() == 0 || Ret->getOperand(0) != I)) continue; } // If this is the first returning block, remember it and keep going. if (RetBlock == 0) { RetBlock = &BB; continue; } // Otherwise, we found a duplicate return block. Merge the two. Changed = true; // Case when there is no input to the return or when the returned values // agree is trivial. Note that they can't agree if there are phis in the // blocks. if (Ret->getNumOperands() == 0 || Ret->getOperand(0) == cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) { BB.replaceAllUsesWith(RetBlock); BB.eraseFromParent(); continue; } // If the canonical return block has no PHI node, create one now. PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin()); if (RetBlockPHI == 0) { Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0); pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock); RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(), std::distance(PB, PE), "merge", &RetBlock->front()); for (pred_iterator PI = PB; PI != PE; ++PI) RetBlockPHI->addIncoming(InVal, *PI); RetBlock->getTerminator()->setOperand(0, RetBlockPHI); } // Turn BB into a block that just unconditionally branches to the return // block. This handles the case when the two return blocks have a common // predecessor but that return different things. RetBlockPHI->addIncoming(Ret->getOperand(0), &BB); BB.getTerminator()->eraseFromParent(); BranchInst::Create(RetBlock, &BB); } return Changed; } /// iterativelySimplifyCFG - Call SimplifyCFG on all the blocks in the function, /// iterating until no more changes are made. static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI, const DataLayout *TD) { bool Changed = false; bool LocalChange = true; while (LocalChange) { LocalChange = false; // Loop over all of the basic blocks and remove them if they are unneeded... // for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) { if (SimplifyCFG(BBIt++, TTI, TD)) { LocalChange = true; ++NumSimpl; } } Changed |= LocalChange; } return Changed; } // It is possible that we may require multiple passes over the code to fully // simplify the CFG. // bool CFGSimplifyPass::runOnFunction(Function &F) { const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>(); const DataLayout *TD = getAnalysisIfAvailable<DataLayout>(); bool EverChanged = removeUnreachableBlocksFromFn(F); EverChanged |= mergeEmptyReturnBlocks(F); EverChanged |= iterativelySimplifyCFG(F, TTI, TD); // If neither pass changed anything, we're done. if (!EverChanged) return false; // iterativelySimplifyCFG can (rarely) make some loops dead. If this happens, // removeUnreachableBlocksFromFn is needed to nuke them, which means we should // iterate between the two optimizations. We structure the code like this to // avoid reruning iterativelySimplifyCFG if the second pass of // removeUnreachableBlocksFromFn doesn't do anything. if (!removeUnreachableBlocksFromFn(F)) return true; do { EverChanged = iterativelySimplifyCFG(F, TTI, TD); EverChanged |= removeUnreachableBlocksFromFn(F); } while (EverChanged); return true; }