//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs a simple dominator tree walk that eliminates trivially // redundant instructions. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "early-cse" #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/ScopedHashTable.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Instructions.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/RecyclingAllocator.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Transforms/Utils/Local.h" #include <deque> using namespace llvm; STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); STATISTIC(NumCSE, "Number of instructions CSE'd"); STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); STATISTIC(NumCSECall, "Number of call instructions CSE'd"); STATISTIC(NumDSE, "Number of trivial dead stores removed"); static unsigned getHash(const void *V) { return DenseMapInfo<const void*>::getHashValue(V); } //===----------------------------------------------------------------------===// // SimpleValue //===----------------------------------------------------------------------===// namespace { /// SimpleValue - Instances of this struct represent available values in the /// scoped hash table. struct SimpleValue { Instruction *Inst; SimpleValue(Instruction *I) : Inst(I) { assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); } bool isSentinel() const { return Inst == DenseMapInfo<Instruction*>::getEmptyKey() || Inst == DenseMapInfo<Instruction*>::getTombstoneKey(); } static bool canHandle(Instruction *Inst) { // This can only handle non-void readnone functions. if (CallInst *CI = dyn_cast<CallInst>(Inst)) return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); } }; } namespace llvm { // SimpleValue is POD. template<> struct isPodLike<SimpleValue> { static const bool value = true; }; template<> struct DenseMapInfo<SimpleValue> { static inline SimpleValue getEmptyKey() { return DenseMapInfo<Instruction*>::getEmptyKey(); } static inline SimpleValue getTombstoneKey() { return DenseMapInfo<Instruction*>::getTombstoneKey(); } static unsigned getHashValue(SimpleValue Val); static bool isEqual(SimpleValue LHS, SimpleValue RHS); }; } unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { Instruction *Inst = Val.Inst; // Hash in all of the operands as pointers. if (BinaryOperator* BinOp = dyn_cast<BinaryOperator>(Inst)) { Value *LHS = BinOp->getOperand(0); Value *RHS = BinOp->getOperand(1); if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) std::swap(LHS, RHS); if (isa<OverflowingBinaryOperator>(BinOp)) { // Hash the overflow behavior unsigned Overflow = BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap | BinOp->hasNoUnsignedWrap() * OverflowingBinaryOperator::NoUnsignedWrap; return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS); } return hash_combine(BinOp->getOpcode(), LHS, RHS); } if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { Value *LHS = CI->getOperand(0); Value *RHS = CI->getOperand(1); CmpInst::Predicate Pred = CI->getPredicate(); if (Inst->getOperand(0) > Inst->getOperand(1)) { std::swap(LHS, RHS); Pred = CI->getSwappedPredicate(); } return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); } if (CastInst *CI = dyn_cast<CastInst>(Inst)) return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) return hash_combine(EVI->getOpcode(), EVI->getOperand(0), hash_combine_range(EVI->idx_begin(), EVI->idx_end())); if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) return hash_combine(IVI->getOpcode(), IVI->getOperand(0), IVI->getOperand(1), hash_combine_range(IVI->idx_begin(), IVI->idx_end())); assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst)) && "Invalid/unknown instruction"); // Mix in the opcode. return hash_combine(Inst->getOpcode(), hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); } bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; if (LHS.isSentinel() || RHS.isSentinel()) return LHSI == RHSI; if (LHSI->getOpcode() != RHSI->getOpcode()) return false; if (LHSI->isIdenticalTo(RHSI)) return true; // If we're not strictly identical, we still might be a commutable instruction if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { if (!LHSBinOp->isCommutative()) return false; assert(isa<BinaryOperator>(RHSI) && "same opcode, but different instruction type?"); BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); // Check overflow attributes if (isa<OverflowingBinaryOperator>(LHSBinOp)) { assert(isa<OverflowingBinaryOperator>(RHSBinOp) && "same opcode, but different operator type?"); if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() || LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap()) return false; } // Commuted equality return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); } if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { assert(isa<CmpInst>(RHSI) && "same opcode, but different instruction type?"); CmpInst *RHSCmp = cast<CmpInst>(RHSI); // Commuted equality return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); } return false; } //===----------------------------------------------------------------------===// // CallValue //===----------------------------------------------------------------------===// namespace { /// CallValue - Instances of this struct represent available call values in /// the scoped hash table. struct CallValue { Instruction *Inst; CallValue(Instruction *I) : Inst(I) { assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); } bool isSentinel() const { return Inst == DenseMapInfo<Instruction*>::getEmptyKey() || Inst == DenseMapInfo<Instruction*>::getTombstoneKey(); } static bool canHandle(Instruction *Inst) { // Don't value number anything that returns void. if (Inst->getType()->isVoidTy()) return false; CallInst *CI = dyn_cast<CallInst>(Inst); if (CI == 0 || !CI->onlyReadsMemory()) return false; return true; } }; } namespace llvm { // CallValue is POD. template<> struct isPodLike<CallValue> { static const bool value = true; }; template<> struct DenseMapInfo<CallValue> { static inline CallValue getEmptyKey() { return DenseMapInfo<Instruction*>::getEmptyKey(); } static inline CallValue getTombstoneKey() { return DenseMapInfo<Instruction*>::getTombstoneKey(); } static unsigned getHashValue(CallValue Val); static bool isEqual(CallValue LHS, CallValue RHS); }; } unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { Instruction *Inst = Val.Inst; // Hash in all of the operands as pointers. unsigned Res = 0; for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) { assert(!Inst->getOperand(i)->getType()->isMetadataTy() && "Cannot value number calls with metadata operands"); Res ^= getHash(Inst->getOperand(i)) << (i & 0xF); } // Mix in the opcode. return (Res << 1) ^ Inst->getOpcode(); } bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; if (LHS.isSentinel() || RHS.isSentinel()) return LHSI == RHSI; return LHSI->isIdenticalTo(RHSI); } //===----------------------------------------------------------------------===// // EarlyCSE pass. //===----------------------------------------------------------------------===// namespace { /// EarlyCSE - This pass does a simple depth-first walk over the dominator /// tree, eliminating trivially redundant instructions and using instsimplify /// to canonicalize things as it goes. It is intended to be fast and catch /// obvious cases so that instcombine and other passes are more effective. It /// is expected that a later pass of GVN will catch the interesting/hard /// cases. class EarlyCSE : public FunctionPass { public: const DataLayout *TD; const TargetLibraryInfo *TLI; DominatorTree *DT; typedef RecyclingAllocator<BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy; typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>, AllocatorTy> ScopedHTType; /// AvailableValues - This scoped hash table contains the current values of /// all of our simple scalar expressions. As we walk down the domtree, we /// look to see if instructions are in this: if so, we replace them with what /// we find, otherwise we insert them so that dominated values can succeed in /// their lookup. ScopedHTType *AvailableValues; /// AvailableLoads - This scoped hash table contains the current values /// of loads. This allows us to get efficient access to dominating loads when /// we have a fully redundant load. In addition to the most recent load, we /// keep track of a generation count of the read, which is compared against /// the current generation count. The current generation count is /// incremented after every possibly writing memory operation, which ensures /// that we only CSE loads with other loads that have no intervening store. typedef RecyclingAllocator<BumpPtrAllocator, ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator; typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>, DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType; LoadHTType *AvailableLoads; /// AvailableCalls - This scoped hash table contains the current values /// of read-only call values. It uses the same generation count as loads. typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType; CallHTType *AvailableCalls; /// CurrentGeneration - This is the current generation of the memory value. unsigned CurrentGeneration; static char ID; explicit EarlyCSE() : FunctionPass(ID) { initializeEarlyCSEPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F); private: // NodeScope - almost a POD, but needs to call the constructors for the // scoped hash tables so that a new scope gets pushed on. These are RAII so // that the scope gets popped when the NodeScope is destroyed. class NodeScope { public: NodeScope(ScopedHTType *availableValues, LoadHTType *availableLoads, CallHTType *availableCalls) : Scope(*availableValues), LoadScope(*availableLoads), CallScope(*availableCalls) {} private: NodeScope(const NodeScope&) LLVM_DELETED_FUNCTION; void operator=(const NodeScope&) LLVM_DELETED_FUNCTION; ScopedHTType::ScopeTy Scope; LoadHTType::ScopeTy LoadScope; CallHTType::ScopeTy CallScope; }; // StackNode - contains all the needed information to create a stack for // doing a depth first tranversal of the tree. This includes scopes for // values, loads, and calls as well as the generation. There is a child // iterator so that the children do not need to be store spearately. class StackNode { public: StackNode(ScopedHTType *availableValues, LoadHTType *availableLoads, CallHTType *availableCalls, unsigned cg, DomTreeNode *n, DomTreeNode::iterator child, DomTreeNode::iterator end) : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), EndIter(end), Scopes(availableValues, availableLoads, availableCalls), Processed(false) {} // Accessors. unsigned currentGeneration() { return CurrentGeneration; } unsigned childGeneration() { return ChildGeneration; } void childGeneration(unsigned generation) { ChildGeneration = generation; } DomTreeNode *node() { return Node; } DomTreeNode::iterator childIter() { return ChildIter; } DomTreeNode *nextChild() { DomTreeNode *child = *ChildIter; ++ChildIter; return child; } DomTreeNode::iterator end() { return EndIter; } bool isProcessed() { return Processed; } void process() { Processed = true; } private: StackNode(const StackNode&) LLVM_DELETED_FUNCTION; void operator=(const StackNode&) LLVM_DELETED_FUNCTION; // Members. unsigned CurrentGeneration; unsigned ChildGeneration; DomTreeNode *Node; DomTreeNode::iterator ChildIter; DomTreeNode::iterator EndIter; NodeScope Scopes; bool Processed; }; bool processNode(DomTreeNode *Node); // This transformation requires dominator postdominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<DominatorTree>(); AU.addRequired<TargetLibraryInfo>(); AU.setPreservesCFG(); } }; } char EarlyCSE::ID = 0; // createEarlyCSEPass - The public interface to this file. FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSE(); } INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false) bool EarlyCSE::processNode(DomTreeNode *Node) { BasicBlock *BB = Node->getBlock(); // If this block has a single predecessor, then the predecessor is the parent // of the domtree node and all of the live out memory values are still current // in this block. If this block has multiple predecessors, then they could // have invalidated the live-out memory values of our parent value. For now, // just be conservative and invalidate memory if this block has multiple // predecessors. if (BB->getSinglePredecessor() == 0) ++CurrentGeneration; /// LastStore - Keep track of the last non-volatile store that we saw... for /// as long as there in no instruction that reads memory. If we see a store /// to the same location, we delete the dead store. This zaps trivial dead /// stores which can occur in bitfield code among other things. StoreInst *LastStore = 0; bool Changed = false; // See if any instructions in the block can be eliminated. If so, do it. If // not, add them to AvailableValues. for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { Instruction *Inst = I++; // Dead instructions should just be removed. if (isInstructionTriviallyDead(Inst, TLI)) { DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); Inst->eraseFromParent(); Changed = true; ++NumSimplify; continue; } // If the instruction can be simplified (e.g. X+0 = X) then replace it with // its simpler value. if (Value *V = SimplifyInstruction(Inst, TD, TLI, DT)) { DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); Inst->replaceAllUsesWith(V); Inst->eraseFromParent(); Changed = true; ++NumSimplify; continue; } // If this is a simple instruction that we can value number, process it. if (SimpleValue::canHandle(Inst)) { // See if the instruction has an available value. If so, use it. if (Value *V = AvailableValues->lookup(Inst)) { DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); Inst->replaceAllUsesWith(V); Inst->eraseFromParent(); Changed = true; ++NumCSE; continue; } // Otherwise, just remember that this value is available. AvailableValues->insert(Inst, Inst); continue; } // If this is a non-volatile load, process it. if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { // Ignore volatile loads. if (!LI->isSimple()) { LastStore = 0; continue; } // If we have an available version of this load, and if it is the right // generation, replace this instruction. std::pair<Value*, unsigned> InVal = AvailableLoads->lookup(Inst->getOperand(0)); if (InVal.first != 0 && InVal.second == CurrentGeneration) { DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: " << *InVal.first << '\n'); if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first); Inst->eraseFromParent(); Changed = true; ++NumCSELoad; continue; } // Otherwise, remember that we have this instruction. AvailableLoads->insert(Inst->getOperand(0), std::pair<Value*, unsigned>(Inst, CurrentGeneration)); LastStore = 0; continue; } // If this instruction may read from memory, forget LastStore. if (Inst->mayReadFromMemory()) LastStore = 0; // If this is a read-only call, process it. if (CallValue::canHandle(Inst)) { // If we have an available version of this call, and if it is the right // generation, replace this instruction. std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst); if (InVal.first != 0 && InVal.second == CurrentGeneration) { DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: " << *InVal.first << '\n'); if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first); Inst->eraseFromParent(); Changed = true; ++NumCSECall; continue; } // Otherwise, remember that we have this instruction. AvailableCalls->insert(Inst, std::pair<Value*, unsigned>(Inst, CurrentGeneration)); continue; } // Okay, this isn't something we can CSE at all. Check to see if it is // something that could modify memory. If so, our available memory values // cannot be used so bump the generation count. if (Inst->mayWriteToMemory()) { ++CurrentGeneration; if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { // We do a trivial form of DSE if there are two stores to the same // location with no intervening loads. Delete the earlier store. if (LastStore && LastStore->getPointerOperand() == SI->getPointerOperand()) { DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << " due to: " << *Inst << '\n'); LastStore->eraseFromParent(); Changed = true; ++NumDSE; LastStore = 0; continue; } // Okay, we just invalidated anything we knew about loaded values. Try // to salvage *something* by remembering that the stored value is a live // version of the pointer. It is safe to forward from volatile stores // to non-volatile loads, so we don't have to check for volatility of // the store. AvailableLoads->insert(SI->getPointerOperand(), std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration)); // Remember that this was the last store we saw for DSE. if (SI->isSimple()) LastStore = SI; } } } return Changed; } bool EarlyCSE::runOnFunction(Function &F) { std::deque<StackNode *> nodesToProcess; TD = getAnalysisIfAvailable<DataLayout>(); TLI = &getAnalysis<TargetLibraryInfo>(); DT = &getAnalysis<DominatorTree>(); // Tables that the pass uses when walking the domtree. ScopedHTType AVTable; AvailableValues = &AVTable; LoadHTType LoadTable; AvailableLoads = &LoadTable; CallHTType CallTable; AvailableCalls = &CallTable; CurrentGeneration = 0; bool Changed = false; // Process the root node. nodesToProcess.push_front( new StackNode(AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, DT->getRootNode(), DT->getRootNode()->begin(), DT->getRootNode()->end())); // Save the current generation. unsigned LiveOutGeneration = CurrentGeneration; // Process the stack. while (!nodesToProcess.empty()) { // Grab the first item off the stack. Set the current generation, remove // the node from the stack, and process it. StackNode *NodeToProcess = nodesToProcess.front(); // Initialize class members. CurrentGeneration = NodeToProcess->currentGeneration(); // Check if the node needs to be processed. if (!NodeToProcess->isProcessed()) { // Process the node. Changed |= processNode(NodeToProcess->node()); NodeToProcess->childGeneration(CurrentGeneration); NodeToProcess->process(); } else if (NodeToProcess->childIter() != NodeToProcess->end()) { // Push the next child onto the stack. DomTreeNode *child = NodeToProcess->nextChild(); nodesToProcess.push_front( new StackNode(AvailableValues, AvailableLoads, AvailableCalls, NodeToProcess->childGeneration(), child, child->begin(), child->end())); } else { // It has been processed, and there are no more children to process, // so delete it and pop it off the stack. delete NodeToProcess; nodesToProcess.pop_front(); } } // while (!nodes...) // Reset the current generation. CurrentGeneration = LiveOutGeneration; return Changed; }