//===-- X86Schedule.td - X86 Scheduling Definitions --------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // InstrSchedModel annotations for out-of-order CPUs. // // These annotations are independent of the itinerary classes defined below. // Instructions with folded loads need to read the memory operand immediately, // but other register operands don't have to be read until the load is ready. // These operands are marked with ReadAfterLd. def ReadAfterLd : SchedRead; // Instructions with both a load and a store folded are modeled as a folded // load + WriteRMW. def WriteRMW : SchedWrite; // Most instructions can fold loads, so almost every SchedWrite comes in two // variants: With and without a folded load. // An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite // with a folded load. class X86FoldableSchedWrite : SchedWrite { // The SchedWrite to use when a load is folded into the instruction. SchedWrite Folded; } // Multiclass that produces a linked pair of SchedWrites. multiclass X86SchedWritePair { // Register-Memory operation. def Ld : SchedWrite; // Register-Register operation. def NAME : X86FoldableSchedWrite { let Folded = !cast<SchedWrite>(NAME#"Ld"); } } // Arithmetic. defm WriteALU : X86SchedWritePair; // Simple integer ALU op. defm WriteIMul : X86SchedWritePair; // Integer multiplication. def WriteIMulH : SchedWrite; // Integer multiplication, high part. defm WriteIDiv : X86SchedWritePair; // Integer division. def WriteLEA : SchedWrite; // LEA instructions can't fold loads. // Integer shifts and rotates. defm WriteShift : X86SchedWritePair; // Loads, stores, and moves, not folded with other operations. def WriteLoad : SchedWrite; def WriteStore : SchedWrite; def WriteMove : SchedWrite; // Idioms that clear a register, like xorps %xmm0, %xmm0. // These can often bypass execution ports completely. def WriteZero : SchedWrite; // Branches don't produce values, so they have no latency, but they still // consume resources. Indirect branches can fold loads. defm WriteJump : X86SchedWritePair; // Floating point. This covers both scalar and vector operations. defm WriteFAdd : X86SchedWritePair; // Floating point add/sub/compare. defm WriteFMul : X86SchedWritePair; // Floating point multiplication. defm WriteFDiv : X86SchedWritePair; // Floating point division. defm WriteFSqrt : X86SchedWritePair; // Floating point square root. defm WriteFRcp : X86SchedWritePair; // Floating point reciprocal. defm WriteFMA : X86SchedWritePair; // Fused Multiply Add. // FMA Scheduling helper class. class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; } // Vector integer operations. defm WriteVecALU : X86SchedWritePair; // Vector integer ALU op, no logicals. defm WriteVecShift : X86SchedWritePair; // Vector integer shifts. defm WriteVecIMul : X86SchedWritePair; // Vector integer multiply. // Vector bitwise operations. // These are often used on both floating point and integer vectors. defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor. defm WriteShuffle : X86SchedWritePair; // Vector shuffles and blends. // Conversion between integer and float. defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer. defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float. defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion. // Catch-all for expensive system instructions. def WriteSystem : SchedWrite; // Old microcoded instructions that nobody use. def WriteMicrocoded : SchedWrite; //===----------------------------------------------------------------------===// // Instruction Itinerary classes used for X86 def IIC_ALU_MEM : InstrItinClass; def IIC_ALU_NONMEM : InstrItinClass; def IIC_LEA : InstrItinClass; def IIC_LEA_16 : InstrItinClass; def IIC_MUL8 : InstrItinClass; def IIC_MUL16_MEM : InstrItinClass; def IIC_MUL16_REG : InstrItinClass; def IIC_MUL32_MEM : InstrItinClass; def IIC_MUL32_REG : InstrItinClass; def IIC_MUL64 : InstrItinClass; // imul by al, ax, eax, tax def IIC_IMUL8 : InstrItinClass; def IIC_IMUL16_MEM : InstrItinClass; def IIC_IMUL16_REG : InstrItinClass; def IIC_IMUL32_MEM : InstrItinClass; def IIC_IMUL32_REG : InstrItinClass; def IIC_IMUL64 : InstrItinClass; // imul reg by reg|mem def IIC_IMUL16_RM : InstrItinClass; def IIC_IMUL16_RR : InstrItinClass; def IIC_IMUL32_RM : InstrItinClass; def IIC_IMUL32_RR : InstrItinClass; def IIC_IMUL64_RM : InstrItinClass; def IIC_IMUL64_RR : InstrItinClass; // imul reg = reg/mem * imm def IIC_IMUL16_RMI : InstrItinClass; def IIC_IMUL16_RRI : InstrItinClass; def IIC_IMUL32_RMI : InstrItinClass; def IIC_IMUL32_RRI : InstrItinClass; def IIC_IMUL64_RMI : InstrItinClass; def IIC_IMUL64_RRI : InstrItinClass; // div def IIC_DIV8_MEM : InstrItinClass; def IIC_DIV8_REG : InstrItinClass; def IIC_DIV16 : InstrItinClass; def IIC_DIV32 : InstrItinClass; def IIC_DIV64 : InstrItinClass; // idiv def IIC_IDIV8 : InstrItinClass; def IIC_IDIV16 : InstrItinClass; def IIC_IDIV32 : InstrItinClass; def IIC_IDIV64 : InstrItinClass; // neg/not/inc/dec def IIC_UNARY_REG : InstrItinClass; def IIC_UNARY_MEM : InstrItinClass; // add/sub/and/or/xor/adc/sbc/cmp/test def IIC_BIN_MEM : InstrItinClass; def IIC_BIN_NONMEM : InstrItinClass; // shift/rotate def IIC_SR : InstrItinClass; // shift double def IIC_SHD16_REG_IM : InstrItinClass; def IIC_SHD16_REG_CL : InstrItinClass; def IIC_SHD16_MEM_IM : InstrItinClass; def IIC_SHD16_MEM_CL : InstrItinClass; def IIC_SHD32_REG_IM : InstrItinClass; def IIC_SHD32_REG_CL : InstrItinClass; def IIC_SHD32_MEM_IM : InstrItinClass; def IIC_SHD32_MEM_CL : InstrItinClass; def IIC_SHD64_REG_IM : InstrItinClass; def IIC_SHD64_REG_CL : InstrItinClass; def IIC_SHD64_MEM_IM : InstrItinClass; def IIC_SHD64_MEM_CL : InstrItinClass; // cmov def IIC_CMOV16_RM : InstrItinClass; def IIC_CMOV16_RR : InstrItinClass; def IIC_CMOV32_RM : InstrItinClass; def IIC_CMOV32_RR : InstrItinClass; def IIC_CMOV64_RM : InstrItinClass; def IIC_CMOV64_RR : InstrItinClass; // set def IIC_SET_R : InstrItinClass; def IIC_SET_M : InstrItinClass; // jmp/jcc/jcxz def IIC_Jcc : InstrItinClass; def IIC_JCXZ : InstrItinClass; def IIC_JMP_REL : InstrItinClass; def IIC_JMP_REG : InstrItinClass; def IIC_JMP_MEM : InstrItinClass; def IIC_JMP_FAR_MEM : InstrItinClass; def IIC_JMP_FAR_PTR : InstrItinClass; // loop def IIC_LOOP : InstrItinClass; def IIC_LOOPE : InstrItinClass; def IIC_LOOPNE : InstrItinClass; // call def IIC_CALL_RI : InstrItinClass; def IIC_CALL_MEM : InstrItinClass; def IIC_CALL_FAR_MEM : InstrItinClass; def IIC_CALL_FAR_PTR : InstrItinClass; // ret def IIC_RET : InstrItinClass; def IIC_RET_IMM : InstrItinClass; //sign extension movs def IIC_MOVSX : InstrItinClass; def IIC_MOVSX_R16_R8 : InstrItinClass; def IIC_MOVSX_R16_M8 : InstrItinClass; def IIC_MOVSX_R16_R16 : InstrItinClass; def IIC_MOVSX_R32_R32 : InstrItinClass; //zero extension movs def IIC_MOVZX : InstrItinClass; def IIC_MOVZX_R16_R8 : InstrItinClass; def IIC_MOVZX_R16_M8 : InstrItinClass; def IIC_REP_MOVS : InstrItinClass; def IIC_REP_STOS : InstrItinClass; // SSE scalar/parallel binary operations def IIC_SSE_ALU_F32S_RR : InstrItinClass; def IIC_SSE_ALU_F32S_RM : InstrItinClass; def IIC_SSE_ALU_F64S_RR : InstrItinClass; def IIC_SSE_ALU_F64S_RM : InstrItinClass; def IIC_SSE_MUL_F32S_RR : InstrItinClass; def IIC_SSE_MUL_F32S_RM : InstrItinClass; def IIC_SSE_MUL_F64S_RR : InstrItinClass; def IIC_SSE_MUL_F64S_RM : InstrItinClass; def IIC_SSE_DIV_F32S_RR : InstrItinClass; def IIC_SSE_DIV_F32S_RM : InstrItinClass; def IIC_SSE_DIV_F64S_RR : InstrItinClass; def IIC_SSE_DIV_F64S_RM : InstrItinClass; def IIC_SSE_ALU_F32P_RR : InstrItinClass; def IIC_SSE_ALU_F32P_RM : InstrItinClass; def IIC_SSE_ALU_F64P_RR : InstrItinClass; def IIC_SSE_ALU_F64P_RM : InstrItinClass; def IIC_SSE_MUL_F32P_RR : InstrItinClass; def IIC_SSE_MUL_F32P_RM : InstrItinClass; def IIC_SSE_MUL_F64P_RR : InstrItinClass; def IIC_SSE_MUL_F64P_RM : InstrItinClass; def IIC_SSE_DIV_F32P_RR : InstrItinClass; def IIC_SSE_DIV_F32P_RM : InstrItinClass; def IIC_SSE_DIV_F64P_RR : InstrItinClass; def IIC_SSE_DIV_F64P_RM : InstrItinClass; def IIC_SSE_COMIS_RR : InstrItinClass; def IIC_SSE_COMIS_RM : InstrItinClass; def IIC_SSE_HADDSUB_RR : InstrItinClass; def IIC_SSE_HADDSUB_RM : InstrItinClass; def IIC_SSE_BIT_P_RR : InstrItinClass; def IIC_SSE_BIT_P_RM : InstrItinClass; def IIC_SSE_INTALU_P_RR : InstrItinClass; def IIC_SSE_INTALU_P_RM : InstrItinClass; def IIC_SSE_INTALUQ_P_RR : InstrItinClass; def IIC_SSE_INTALUQ_P_RM : InstrItinClass; def IIC_SSE_INTMUL_P_RR : InstrItinClass; def IIC_SSE_INTMUL_P_RM : InstrItinClass; def IIC_SSE_INTSH_P_RR : InstrItinClass; def IIC_SSE_INTSH_P_RM : InstrItinClass; def IIC_SSE_INTSH_P_RI : InstrItinClass; def IIC_SSE_CMPP_RR : InstrItinClass; def IIC_SSE_CMPP_RM : InstrItinClass; def IIC_SSE_SHUFP : InstrItinClass; def IIC_SSE_PSHUF : InstrItinClass; def IIC_SSE_UNPCK : InstrItinClass; def IIC_SSE_MOVMSK : InstrItinClass; def IIC_SSE_MASKMOV : InstrItinClass; def IIC_SSE_PEXTRW : InstrItinClass; def IIC_SSE_PINSRW : InstrItinClass; def IIC_SSE_PABS_RR : InstrItinClass; def IIC_SSE_PABS_RM : InstrItinClass; def IIC_SSE_SQRTPS_RR : InstrItinClass; def IIC_SSE_SQRTPS_RM : InstrItinClass; def IIC_SSE_SQRTSS_RR : InstrItinClass; def IIC_SSE_SQRTSS_RM : InstrItinClass; def IIC_SSE_SQRTPD_RR : InstrItinClass; def IIC_SSE_SQRTPD_RM : InstrItinClass; def IIC_SSE_SQRTSD_RR : InstrItinClass; def IIC_SSE_SQRTSD_RM : InstrItinClass; def IIC_SSE_RCPP_RR : InstrItinClass; def IIC_SSE_RCPP_RM : InstrItinClass; def IIC_SSE_RCPS_RR : InstrItinClass; def IIC_SSE_RCPS_RM : InstrItinClass; def IIC_SSE_MOV_S_RR : InstrItinClass; def IIC_SSE_MOV_S_RM : InstrItinClass; def IIC_SSE_MOV_S_MR : InstrItinClass; def IIC_SSE_MOVA_P_RR : InstrItinClass; def IIC_SSE_MOVA_P_RM : InstrItinClass; def IIC_SSE_MOVA_P_MR : InstrItinClass; def IIC_SSE_MOVU_P_RR : InstrItinClass; def IIC_SSE_MOVU_P_RM : InstrItinClass; def IIC_SSE_MOVU_P_MR : InstrItinClass; def IIC_SSE_MOVDQ : InstrItinClass; def IIC_SSE_MOVD_ToGP : InstrItinClass; def IIC_SSE_MOVQ_RR : InstrItinClass; def IIC_SSE_MOV_LH : InstrItinClass; def IIC_SSE_LDDQU : InstrItinClass; def IIC_SSE_MOVNT : InstrItinClass; def IIC_SSE_PHADDSUBD_RR : InstrItinClass; def IIC_SSE_PHADDSUBD_RM : InstrItinClass; def IIC_SSE_PHADDSUBSW_RR : InstrItinClass; def IIC_SSE_PHADDSUBSW_RM : InstrItinClass; def IIC_SSE_PHADDSUBW_RR : InstrItinClass; def IIC_SSE_PHADDSUBW_RM : InstrItinClass; def IIC_SSE_PSHUFB_RR : InstrItinClass; def IIC_SSE_PSHUFB_RM : InstrItinClass; def IIC_SSE_PSIGN_RR : InstrItinClass; def IIC_SSE_PSIGN_RM : InstrItinClass; def IIC_SSE_PMADD : InstrItinClass; def IIC_SSE_PMULHRSW : InstrItinClass; def IIC_SSE_PALIGNR : InstrItinClass; def IIC_SSE_MWAIT : InstrItinClass; def IIC_SSE_MONITOR : InstrItinClass; def IIC_SSE_PREFETCH : InstrItinClass; def IIC_SSE_PAUSE : InstrItinClass; def IIC_SSE_LFENCE : InstrItinClass; def IIC_SSE_MFENCE : InstrItinClass; def IIC_SSE_SFENCE : InstrItinClass; def IIC_SSE_LDMXCSR : InstrItinClass; def IIC_SSE_STMXCSR : InstrItinClass; def IIC_SSE_CVT_PD_RR : InstrItinClass; def IIC_SSE_CVT_PD_RM : InstrItinClass; def IIC_SSE_CVT_PS_RR : InstrItinClass; def IIC_SSE_CVT_PS_RM : InstrItinClass; def IIC_SSE_CVT_PI2PS_RR : InstrItinClass; def IIC_SSE_CVT_PI2PS_RM : InstrItinClass; def IIC_SSE_CVT_Scalar_RR : InstrItinClass; def IIC_SSE_CVT_Scalar_RM : InstrItinClass; def IIC_SSE_CVT_SS2SI32_RM : InstrItinClass; def IIC_SSE_CVT_SS2SI32_RR : InstrItinClass; def IIC_SSE_CVT_SS2SI64_RM : InstrItinClass; def IIC_SSE_CVT_SS2SI64_RR : InstrItinClass; def IIC_SSE_CVT_SD2SI_RM : InstrItinClass; def IIC_SSE_CVT_SD2SI_RR : InstrItinClass; // MMX def IIC_MMX_MOV_MM_RM : InstrItinClass; def IIC_MMX_MOV_REG_MM : InstrItinClass; def IIC_MMX_MOVQ_RM : InstrItinClass; def IIC_MMX_MOVQ_RR : InstrItinClass; def IIC_MMX_ALU_RM : InstrItinClass; def IIC_MMX_ALU_RR : InstrItinClass; def IIC_MMX_ALUQ_RM : InstrItinClass; def IIC_MMX_ALUQ_RR : InstrItinClass; def IIC_MMX_PHADDSUBW_RM : InstrItinClass; def IIC_MMX_PHADDSUBW_RR : InstrItinClass; def IIC_MMX_PHADDSUBD_RM : InstrItinClass; def IIC_MMX_PHADDSUBD_RR : InstrItinClass; def IIC_MMX_PMUL : InstrItinClass; def IIC_MMX_MISC_FUNC_MEM : InstrItinClass; def IIC_MMX_MISC_FUNC_REG : InstrItinClass; def IIC_MMX_PSADBW : InstrItinClass; def IIC_MMX_SHIFT_RI : InstrItinClass; def IIC_MMX_SHIFT_RM : InstrItinClass; def IIC_MMX_SHIFT_RR : InstrItinClass; def IIC_MMX_UNPCK_H_RM : InstrItinClass; def IIC_MMX_UNPCK_H_RR : InstrItinClass; def IIC_MMX_UNPCK_L : InstrItinClass; def IIC_MMX_PCK_RM : InstrItinClass; def IIC_MMX_PCK_RR : InstrItinClass; def IIC_MMX_PSHUF : InstrItinClass; def IIC_MMX_PEXTR : InstrItinClass; def IIC_MMX_PINSRW : InstrItinClass; def IIC_MMX_MASKMOV : InstrItinClass; def IIC_MMX_CVT_PD_RR : InstrItinClass; def IIC_MMX_CVT_PD_RM : InstrItinClass; def IIC_MMX_CVT_PS_RR : InstrItinClass; def IIC_MMX_CVT_PS_RM : InstrItinClass; def IIC_CMPX_LOCK : InstrItinClass; def IIC_CMPX_LOCK_8 : InstrItinClass; def IIC_CMPX_LOCK_8B : InstrItinClass; def IIC_CMPX_LOCK_16B : InstrItinClass; def IIC_XADD_LOCK_MEM : InstrItinClass; def IIC_XADD_LOCK_MEM8 : InstrItinClass; def IIC_FILD : InstrItinClass; def IIC_FLD : InstrItinClass; def IIC_FLD80 : InstrItinClass; def IIC_FST : InstrItinClass; def IIC_FST80 : InstrItinClass; def IIC_FIST : InstrItinClass; def IIC_FLDZ : InstrItinClass; def IIC_FUCOM : InstrItinClass; def IIC_FUCOMI : InstrItinClass; def IIC_FCOMI : InstrItinClass; def IIC_FNSTSW : InstrItinClass; def IIC_FNSTCW : InstrItinClass; def IIC_FLDCW : InstrItinClass; def IIC_FNINIT : InstrItinClass; def IIC_FFREE : InstrItinClass; def IIC_FNCLEX : InstrItinClass; def IIC_WAIT : InstrItinClass; def IIC_FXAM : InstrItinClass; def IIC_FNOP : InstrItinClass; def IIC_FLDL : InstrItinClass; def IIC_F2XM1 : InstrItinClass; def IIC_FYL2X : InstrItinClass; def IIC_FPTAN : InstrItinClass; def IIC_FPATAN : InstrItinClass; def IIC_FXTRACT : InstrItinClass; def IIC_FPREM1 : InstrItinClass; def IIC_FPSTP : InstrItinClass; def IIC_FPREM : InstrItinClass; def IIC_FYL2XP1 : InstrItinClass; def IIC_FSINCOS : InstrItinClass; def IIC_FRNDINT : InstrItinClass; def IIC_FSCALE : InstrItinClass; def IIC_FCOMPP : InstrItinClass; def IIC_FXSAVE : InstrItinClass; def IIC_FXRSTOR : InstrItinClass; def IIC_FXCH : InstrItinClass; // System instructions def IIC_CPUID : InstrItinClass; def IIC_INT : InstrItinClass; def IIC_INT3 : InstrItinClass; def IIC_INVD : InstrItinClass; def IIC_INVLPG : InstrItinClass; def IIC_IRET : InstrItinClass; def IIC_HLT : InstrItinClass; def IIC_LXS : InstrItinClass; def IIC_LTR : InstrItinClass; def IIC_RDTSC : InstrItinClass; def IIC_RSM : InstrItinClass; def IIC_SIDT : InstrItinClass; def IIC_SGDT : InstrItinClass; def IIC_SLDT : InstrItinClass; def IIC_STR : InstrItinClass; def IIC_SWAPGS : InstrItinClass; def IIC_SYSCALL : InstrItinClass; def IIC_SYS_ENTER_EXIT : InstrItinClass; def IIC_IN_RR : InstrItinClass; def IIC_IN_RI : InstrItinClass; def IIC_OUT_RR : InstrItinClass; def IIC_OUT_IR : InstrItinClass; def IIC_INS : InstrItinClass; def IIC_MOV_REG_DR : InstrItinClass; def IIC_MOV_DR_REG : InstrItinClass; def IIC_MOV_REG_CR : InstrItinClass; def IIC_MOV_CR_REG : InstrItinClass; def IIC_MOV_REG_SR : InstrItinClass; def IIC_MOV_MEM_SR : InstrItinClass; def IIC_MOV_SR_REG : InstrItinClass; def IIC_MOV_SR_MEM : InstrItinClass; def IIC_LAR_RM : InstrItinClass; def IIC_LAR_RR : InstrItinClass; def IIC_LSL_RM : InstrItinClass; def IIC_LSL_RR : InstrItinClass; def IIC_LGDT : InstrItinClass; def IIC_LIDT : InstrItinClass; def IIC_LLDT_REG : InstrItinClass; def IIC_LLDT_MEM : InstrItinClass; def IIC_PUSH_CS : InstrItinClass; def IIC_PUSH_SR : InstrItinClass; def IIC_POP_SR : InstrItinClass; def IIC_POP_SR_SS : InstrItinClass; def IIC_VERR : InstrItinClass; def IIC_VERW_REG : InstrItinClass; def IIC_VERW_MEM : InstrItinClass; def IIC_WRMSR : InstrItinClass; def IIC_RDMSR : InstrItinClass; def IIC_RDPMC : InstrItinClass; def IIC_SMSW : InstrItinClass; def IIC_LMSW_REG : InstrItinClass; def IIC_LMSW_MEM : InstrItinClass; def IIC_ENTER : InstrItinClass; def IIC_LEAVE : InstrItinClass; def IIC_POP_MEM : InstrItinClass; def IIC_POP_REG16 : InstrItinClass; def IIC_POP_REG : InstrItinClass; def IIC_POP_F : InstrItinClass; def IIC_POP_FD : InstrItinClass; def IIC_POP_A : InstrItinClass; def IIC_PUSH_IMM : InstrItinClass; def IIC_PUSH_MEM : InstrItinClass; def IIC_PUSH_REG : InstrItinClass; def IIC_PUSH_F : InstrItinClass; def IIC_PUSH_A : InstrItinClass; def IIC_BSWAP : InstrItinClass; def IIC_BSF : InstrItinClass; def IIC_BSR : InstrItinClass; def IIC_MOVS : InstrItinClass; def IIC_STOS : InstrItinClass; def IIC_SCAS : InstrItinClass; def IIC_CMPS : InstrItinClass; def IIC_MOV : InstrItinClass; def IIC_MOV_MEM : InstrItinClass; def IIC_AHF : InstrItinClass; def IIC_BT_MI : InstrItinClass; def IIC_BT_MR : InstrItinClass; def IIC_BT_RI : InstrItinClass; def IIC_BT_RR : InstrItinClass; def IIC_BTX_MI : InstrItinClass; def IIC_BTX_MR : InstrItinClass; def IIC_BTX_RI : InstrItinClass; def IIC_BTX_RR : InstrItinClass; def IIC_XCHG_REG : InstrItinClass; def IIC_XCHG_MEM : InstrItinClass; def IIC_XADD_REG : InstrItinClass; def IIC_XADD_MEM : InstrItinClass; def IIC_CMPXCHG_MEM : InstrItinClass; def IIC_CMPXCHG_REG : InstrItinClass; def IIC_CMPXCHG_MEM8 : InstrItinClass; def IIC_CMPXCHG_REG8 : InstrItinClass; def IIC_CMPXCHG_8B : InstrItinClass; def IIC_CMPXCHG_16B : InstrItinClass; def IIC_LODS : InstrItinClass; def IIC_OUTS : InstrItinClass; def IIC_CLC : InstrItinClass; def IIC_CLD : InstrItinClass; def IIC_CLI : InstrItinClass; def IIC_CMC : InstrItinClass; def IIC_CLTS : InstrItinClass; def IIC_STC : InstrItinClass; def IIC_STI : InstrItinClass; def IIC_STD : InstrItinClass; def IIC_XLAT : InstrItinClass; def IIC_AAA : InstrItinClass; def IIC_AAD : InstrItinClass; def IIC_AAM : InstrItinClass; def IIC_AAS : InstrItinClass; def IIC_DAA : InstrItinClass; def IIC_DAS : InstrItinClass; def IIC_BOUND : InstrItinClass; def IIC_ARPL_REG : InstrItinClass; def IIC_ARPL_MEM : InstrItinClass; def IIC_MOVBE : InstrItinClass; def IIC_NOP : InstrItinClass; //===----------------------------------------------------------------------===// // Processor instruction itineraries. // IssueWidth is analagous to the number of decode units. Core and its // descendents, including Nehalem and SandyBridge have 4 decoders. // Resources beyond the decoder operate on micro-ops and are bufferred // so adjacent micro-ops don't directly compete. // // MicroOpBufferSize > 1 indicates that RAW dependencies can be // decoded in the same cycle. The value 32 is a reasonably arbitrary // number of in-flight instructions. // // HighLatency=10 is optimistic. X86InstrInfo::isHighLatencyDef // indicates high latency opcodes. Alternatively, InstrItinData // entries may be included here to define specific operand // latencies. Since these latencies are not used for pipeline hazards, // they do not need to be exact. // // The GenericModel contains no instruciton itineraries. def GenericModel : SchedMachineModel { let IssueWidth = 4; let MicroOpBufferSize = 32; let LoadLatency = 4; let HighLatency = 10; } include "X86ScheduleAtom.td" include "X86SchedSandyBridge.td" include "X86SchedHaswell.td"