//===-- X86CodeEmitter.cpp - Convert X86 code to machine code -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the pass that transforms the X86 machine instructions into // relocatable machine code. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "x86-emitter" #include "X86.h" #include "X86InstrInfo.h" #include "X86JITInfo.h" #include "X86Relocations.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/JITCodeEmitter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/PassManager.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; STATISTIC(NumEmitted, "Number of machine instructions emitted"); namespace { template<class CodeEmitter> class Emitter : public MachineFunctionPass { const X86InstrInfo *II; const DataLayout *TD; X86TargetMachine &TM; CodeEmitter &MCE; MachineModuleInfo *MMI; intptr_t PICBaseOffset; bool Is64BitMode; bool IsPIC; public: static char ID; explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce) : MachineFunctionPass(ID), II(0), TD(0), TM(tm), MCE(mce), PICBaseOffset(0), Is64BitMode(false), IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "X86 Machine Code Emitter"; } void emitOpcodePrefix(uint64_t TSFlags, int MemOperand, const MachineInstr &MI, const MCInstrDesc *Desc) const; void emitVEXOpcodePrefix(uint64_t TSFlags, int MemOperand, const MachineInstr &MI, const MCInstrDesc *Desc) const; void emitSegmentOverridePrefix(uint64_t TSFlags, int MemOperand, const MachineInstr &MI) const; void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc); void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired<MachineModuleInfo>(); MachineFunctionPass::getAnalysisUsage(AU); } private: void emitPCRelativeBlockAddress(MachineBasicBlock *MBB); void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, intptr_t Disp = 0, intptr_t PCAdj = 0, bool Indirect = false); void emitExternalSymbolAddress(const char *ES, unsigned Reloc); void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0, intptr_t PCAdj = 0); void emitJumpTableAddress(unsigned JTI, unsigned Reloc, intptr_t PCAdj = 0); void emitDisplacementField(const MachineOperand *RelocOp, int DispVal, intptr_t Adj = 0, bool IsPCRel = true); void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); void emitRegModRMByte(unsigned RegOpcodeField); void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); void emitConstant(uint64_t Val, unsigned Size); void emitMemModRMByte(const MachineInstr &MI, unsigned Op, unsigned RegOpcodeField, intptr_t PCAdj = 0); unsigned getX86RegNum(unsigned RegNo) const { const TargetRegisterInfo *TRI = TM.getRegisterInfo(); return TRI->getEncodingValue(RegNo) & 0x7; } unsigned char getVEXRegisterEncoding(const MachineInstr &MI, unsigned OpNum) const; }; template<class CodeEmitter> char Emitter<CodeEmitter>::ID = 0; } // end anonymous namespace. /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code /// to the specified JITCodeEmitter object. FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM, JITCodeEmitter &JCE) { return new Emitter<JITCodeEmitter>(TM, JCE); } template<class CodeEmitter> bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) { MMI = &getAnalysis<MachineModuleInfo>(); MCE.setModuleInfo(MMI); II = TM.getInstrInfo(); TD = TM.getDataLayout(); Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit(); IsPIC = TM.getRelocationModel() == Reloc::PIC_; do { DEBUG(dbgs() << "JITTing function '" << MF.getName() << "'\n"); MCE.startFunction(MF); for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB) { MCE.StartMachineBasicBlock(MBB); for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { const MCInstrDesc &Desc = I->getDesc(); emitInstruction(*I, &Desc); // MOVPC32r is basically a call plus a pop instruction. if (Desc.getOpcode() == X86::MOVPC32r) emitInstruction(*I, &II->get(X86::POP32r)); ++NumEmitted; // Keep track of the # of mi's emitted } } } while (MCE.finishFunction(MF)); return false; } /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand /// size, and 3) use of X86-64 extended registers. static unsigned determineREX(const MachineInstr &MI) { unsigned REX = 0; const MCInstrDesc &Desc = MI.getDesc(); // Pseudo instructions do not need REX prefix byte. if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo) return 0; if (Desc.TSFlags & X86II::REX_W) REX |= 1 << 3; unsigned NumOps = Desc.getNumOperands(); if (NumOps) { bool isTwoAddr = NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1; // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. unsigned i = isTwoAddr ? 1 : 0; for (unsigned e = NumOps; i != e; ++i) { const MachineOperand& MO = MI.getOperand(i); if (MO.isReg()) { unsigned Reg = MO.getReg(); if (X86II::isX86_64NonExtLowByteReg(Reg)) REX |= 0x40; } } switch (Desc.TSFlags & X86II::FormMask) { case X86II::MRMInitReg: if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) REX |= (1 << 0) | (1 << 2); break; case X86II::MRMSrcReg: { if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) REX |= 1 << 2; i = isTwoAddr ? 2 : 1; for (unsigned e = NumOps; i != e; ++i) { const MachineOperand& MO = MI.getOperand(i); if (X86InstrInfo::isX86_64ExtendedReg(MO)) REX |= 1 << 0; } break; } case X86II::MRMSrcMem: { if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) REX |= 1 << 2; unsigned Bit = 0; i = isTwoAddr ? 2 : 1; for (; i != NumOps; ++i) { const MachineOperand& MO = MI.getOperand(i); if (MO.isReg()) { if (X86InstrInfo::isX86_64ExtendedReg(MO)) REX |= 1 << Bit; Bit++; } } break; } case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: case X86II::MRMDestMem: { unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands); i = isTwoAddr ? 1 : 0; if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e))) REX |= 1 << 2; unsigned Bit = 0; for (; i != e; ++i) { const MachineOperand& MO = MI.getOperand(i); if (MO.isReg()) { if (X86InstrInfo::isX86_64ExtendedReg(MO)) REX |= 1 << Bit; Bit++; } } break; } default: { if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) REX |= 1 << 0; i = isTwoAddr ? 2 : 1; for (unsigned e = NumOps; i != e; ++i) { const MachineOperand& MO = MI.getOperand(i); if (X86InstrInfo::isX86_64ExtendedReg(MO)) REX |= 1 << 2; } break; } } } return REX; } /// emitPCRelativeBlockAddress - This method keeps track of the information /// necessary to resolve the address of this block later and emits a dummy /// value. /// template<class CodeEmitter> void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) { // Remember where this reference was and where it is to so we can // deal with it later. MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), X86::reloc_pcrel_word, MBB)); MCE.emitWordLE(0); } /// emitGlobalAddress - Emit the specified address to the code stream assuming /// this is part of a "take the address of a global" instruction. /// template<class CodeEmitter> void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, intptr_t Disp /* = 0 */, intptr_t PCAdj /* = 0 */, bool Indirect /* = false */) { intptr_t RelocCST = Disp; if (Reloc == X86::reloc_picrel_word) RelocCST = PICBaseOffset; else if (Reloc == X86::reloc_pcrel_word) RelocCST = PCAdj; MachineRelocation MR = Indirect ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc, const_cast<GlobalValue *>(GV), RelocCST, false) : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, const_cast<GlobalValue *>(GV), RelocCST, false); MCE.addRelocation(MR); // The relocated value will be added to the displacement if (Reloc == X86::reloc_absolute_dword) MCE.emitDWordLE(Disp); else MCE.emitWordLE((int32_t)Disp); } /// emitExternalSymbolAddress - Arrange for the address of an external symbol to /// be emitted to the current location in the function, and allow it to be PC /// relative. template<class CodeEmitter> void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES, unsigned Reloc) { intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0; // X86 never needs stubs because instruction selection will always pick // an instruction sequence that is large enough to hold any address // to a symbol. // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall) bool NeedStub = false; MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), Reloc, ES, RelocCST, 0, NeedStub)); if (Reloc == X86::reloc_absolute_dword) MCE.emitDWordLE(0); else MCE.emitWordLE(0); } /// emitConstPoolAddress - Arrange for the address of an constant pool /// to be emitted to the current location in the function, and allow it to be PC /// relative. template<class CodeEmitter> void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp /* = 0 */, intptr_t PCAdj /* = 0 */) { intptr_t RelocCST = 0; if (Reloc == X86::reloc_picrel_word) RelocCST = PICBaseOffset; else if (Reloc == X86::reloc_pcrel_word) RelocCST = PCAdj; MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), Reloc, CPI, RelocCST)); // The relocated value will be added to the displacement if (Reloc == X86::reloc_absolute_dword) MCE.emitDWordLE(Disp); else MCE.emitWordLE((int32_t)Disp); } /// emitJumpTableAddress - Arrange for the address of a jump table to /// be emitted to the current location in the function, and allow it to be PC /// relative. template<class CodeEmitter> void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc, intptr_t PCAdj /* = 0 */) { intptr_t RelocCST = 0; if (Reloc == X86::reloc_picrel_word) RelocCST = PICBaseOffset; else if (Reloc == X86::reloc_pcrel_word) RelocCST = PCAdj; MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), Reloc, JTI, RelocCST)); // The relocated value will be added to the displacement if (Reloc == X86::reloc_absolute_dword) MCE.emitDWordLE(0); else MCE.emitWordLE(0); } inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); return RM | (RegOpcode << 3) | (Mod << 6); } template<class CodeEmitter> void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){ MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); } template<class CodeEmitter> void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) { MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0)); } template<class CodeEmitter> void Emitter<CodeEmitter>::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) { // SIB byte is in the same format as the ModRMByte... MCE.emitByte(ModRMByte(SS, Index, Base)); } template<class CodeEmitter> void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) { // Output the constant in little endian byte order... for (unsigned i = 0; i != Size; ++i) { MCE.emitByte(Val & 255); Val >>= 8; } } /// isDisp8 - Return true if this signed displacement fits in a 8-bit /// sign-extended field. static bool isDisp8(int Value) { return Value == (signed char)Value; } static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp, const TargetMachine &TM) { // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer // mechanism as 32-bit mode. if (TM.getSubtarget<X86Subtarget>().is64Bit() && !TM.getSubtarget<X86Subtarget>().isTargetDarwin()) return false; // Return true if this is a reference to a stub containing the address of the // global, not the global itself. return isGlobalStubReference(GVOp.getTargetFlags()); } template<class CodeEmitter> void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp, int DispVal, intptr_t Adj /* = 0 */, bool IsPCRel /* = true */) { // If this is a simple integer displacement that doesn't require a relocation, // emit it now. if (!RelocOp) { emitConstant(DispVal, 4); return; } // Otherwise, this is something that requires a relocation. Emit it as such // now. unsigned RelocType = Is64BitMode ? (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext) : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (RelocOp->isGlobal()) { // In 64-bit static small code model, we could potentially emit absolute. // But it's probably not beneficial. If the MCE supports using RIP directly // do it, otherwise fallback to absolute (this is determined by IsPCRel). // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM); emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(), Adj, Indirect); } else if (RelocOp->isSymbol()) { emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType); } else if (RelocOp->isCPI()) { emitConstPoolAddress(RelocOp->getIndex(), RelocType, RelocOp->getOffset(), Adj); } else { assert(RelocOp->isJTI() && "Unexpected machine operand!"); emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj); } } template<class CodeEmitter> void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI, unsigned Op,unsigned RegOpcodeField, intptr_t PCAdj) { const MachineOperand &Op3 = MI.getOperand(Op+3); int DispVal = 0; const MachineOperand *DispForReloc = 0; // Figure out what sort of displacement we have to handle here. if (Op3.isGlobal()) { DispForReloc = &Op3; } else if (Op3.isSymbol()) { DispForReloc = &Op3; } else if (Op3.isCPI()) { if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { DispForReloc = &Op3; } else { DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex()); DispVal += Op3.getOffset(); } } else if (Op3.isJTI()) { if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { DispForReloc = &Op3; } else { DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex()); } } else { DispVal = Op3.getImm(); } const MachineOperand &Base = MI.getOperand(Op); const MachineOperand &Scale = MI.getOperand(Op+1); const MachineOperand &IndexReg = MI.getOperand(Op+2); unsigned BaseReg = Base.getReg(); // Handle %rip relative addressing. if (BaseReg == X86::RIP || (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode assert(IndexReg.getReg() == 0 && Is64BitMode && "Invalid rip-relative address"); MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); emitDisplacementField(DispForReloc, DispVal, PCAdj, true); return; } // Indicate that the displacement will use an pcrel or absolute reference // by default. MCEs able to resolve addresses on-the-fly use pcrel by default // while others, unless explicit asked to use RIP, use absolute references. bool IsPCRel = MCE.earlyResolveAddresses() ? true : false; // Is a SIB byte needed? // If no BaseReg, issue a RIP relative instruction only if the MCE can // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table // 2-7) and absolute references. unsigned BaseRegNo = -1U; if (BaseReg != 0 && BaseReg != X86::RIP) BaseRegNo = getX86RegNum(BaseReg); if (// The SIB byte must be used if there is an index register. IndexReg.getReg() == 0 && // The SIB byte must be used if the base is ESP/RSP/R12, all of which // encode to an R/M value of 4, which indicates that a SIB byte is // present. BaseRegNo != N86::ESP && // If there is no base register and we're in 64-bit mode, we need a SIB // byte to emit an addr that is just 'disp32' (the non-RIP relative form). (!Is64BitMode || BaseReg != 0)) { if (BaseReg == 0 || // [disp32] in X86-32 mode BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); emitDisplacementField(DispForReloc, DispVal, PCAdj, true); return; } // If the base is not EBP/ESP and there is no displacement, use simple // indirect register encoding, this handles addresses like [EAX]. The // encoding for [EBP] with no displacement means [disp32] so we handle it // by emitting a displacement of 0 below. if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); return; } // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. if (!DispForReloc && isDisp8(DispVal)) { MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); emitConstant(DispVal, 1); return; } // Otherwise, emit the most general non-SIB encoding: [REG+disp32] MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); return; } // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first. assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); bool ForceDisp32 = false; bool ForceDisp8 = false; if (BaseReg == 0) { // If there is no base register, we emit the special case SIB byte with // MOD=0, BASE=4, to JUST get the index, scale, and displacement. MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); ForceDisp32 = true; } else if (DispForReloc) { // Emit the normal disp32 encoding. MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); ForceDisp32 = true; } else if (DispVal == 0 && BaseRegNo != N86::EBP) { // Emit no displacement ModR/M byte MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); } else if (isDisp8(DispVal)) { // Emit the disp8 encoding... MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP } else { // Emit the normal disp32 encoding... MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); } // Calculate what the SS field value should be... static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 }; unsigned SS = SSTable[Scale.getImm()]; if (BaseReg == 0) { // Handle the SIB byte for the case where there is no base, see Intel // Manual 2A, table 2-7. The displacement has already been output. unsigned IndexRegNo; if (IndexReg.getReg()) IndexRegNo = getX86RegNum(IndexReg.getReg()); else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) IndexRegNo = 4; emitSIBByte(SS, IndexRegNo, 5); } else { unsigned BaseRegNo = getX86RegNum(BaseReg); unsigned IndexRegNo; if (IndexReg.getReg()) IndexRegNo = getX86RegNum(IndexReg.getReg()); else IndexRegNo = 4; // For example [ESP+1*<noreg>+4] emitSIBByte(SS, IndexRegNo, BaseRegNo); } // Do we need to output a displacement? if (ForceDisp8) { emitConstant(DispVal, 1); } else if (DispVal != 0 || ForceDisp32) { emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); } } static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II, unsigned Opcode) { const MCInstrDesc *Desc = &II->get(Opcode); MI.setDesc(*Desc); return Desc; } /// Is16BitMemOperand - Return true if the specified instruction has /// a 16-bit memory operand. Op specifies the operand # of the memoperand. static bool Is16BitMemOperand(const MachineInstr &MI, unsigned Op) { const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); if ((BaseReg.getReg() != 0 && X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) || (IndexReg.getReg() != 0 && X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg()))) return true; return false; } /// Is32BitMemOperand - Return true if the specified instruction has /// a 32-bit memory operand. Op specifies the operand # of the memoperand. static bool Is32BitMemOperand(const MachineInstr &MI, unsigned Op) { const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); if ((BaseReg.getReg() != 0 && X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) || (IndexReg.getReg() != 0 && X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg()))) return true; return false; } /// Is64BitMemOperand - Return true if the specified instruction has /// a 64-bit memory operand. Op specifies the operand # of the memoperand. #ifndef NDEBUG static bool Is64BitMemOperand(const MachineInstr &MI, unsigned Op) { const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); if ((BaseReg.getReg() != 0 && X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) || (IndexReg.getReg() != 0 && X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg()))) return true; return false; } #endif template<class CodeEmitter> void Emitter<CodeEmitter>::emitOpcodePrefix(uint64_t TSFlags, int MemOperand, const MachineInstr &MI, const MCInstrDesc *Desc) const { // Emit the lock opcode prefix as needed. if (Desc->TSFlags & X86II::LOCK) MCE.emitByte(0xF0); // Emit segment override opcode prefix as needed. emitSegmentOverridePrefix(TSFlags, MemOperand, MI); // Emit the repeat opcode prefix as needed. if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3); // Emit the address size opcode prefix as needed. bool need_address_override; if (TSFlags & X86II::AdSize) { need_address_override = true; } else if (MemOperand == -1) { need_address_override = false; } else if (Is64BitMode) { assert(!Is16BitMemOperand(MI, MemOperand)); need_address_override = Is32BitMemOperand(MI, MemOperand); } else { assert(!Is64BitMemOperand(MI, MemOperand)); need_address_override = Is16BitMemOperand(MI, MemOperand); } if (need_address_override) MCE.emitByte(0x67); // Emit the operand size opcode prefix as needed. if (TSFlags & X86II::OpSize) MCE.emitByte(0x66); bool Need0FPrefix = false; switch (Desc->TSFlags & X86II::Op0Mask) { case X86II::TB: // Two-byte opcode prefix case X86II::T8: // 0F 38 case X86II::TA: // 0F 3A case X86II::A6: // 0F A6 case X86II::A7: // 0F A7 Need0FPrefix = true; break; case X86II::REP: break; // already handled. case X86II::T8XS: // F3 0F 38 case X86II::XS: // F3 0F MCE.emitByte(0xF3); Need0FPrefix = true; break; case X86II::T8XD: // F2 0F 38 case X86II::TAXD: // F2 0F 3A case X86II::XD: // F2 0F MCE.emitByte(0xF2); Need0FPrefix = true; break; case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: MCE.emitByte(0xD8+ (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8) >> X86II::Op0Shift)); break; // Two-byte opcode prefix default: llvm_unreachable("Invalid prefix!"); case 0: break; // No prefix! } // Handle REX prefix. if (Is64BitMode) { if (unsigned REX = determineREX(MI)) MCE.emitByte(0x40 | REX); } // 0x0F escape code must be emitted just before the opcode. if (Need0FPrefix) MCE.emitByte(0x0F); switch (Desc->TSFlags & X86II::Op0Mask) { case X86II::T8XD: // F2 0F 38 case X86II::T8XS: // F3 0F 38 case X86II::T8: // 0F 38 MCE.emitByte(0x38); break; case X86II::TAXD: // F2 0F 38 case X86II::TA: // 0F 3A MCE.emitByte(0x3A); break; case X86II::A6: // 0F A6 MCE.emitByte(0xA6); break; case X86II::A7: // 0F A7 MCE.emitByte(0xA7); break; } } // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range // 0-7 and the difference between the 2 groups is given by the REX prefix. // In the VEX prefix, registers are seen sequencially from 0-15 and encoded // in 1's complement form, example: // // ModRM field => XMM9 => 1 // VEX.VVVV => XMM9 => ~9 // // See table 4-35 of Intel AVX Programming Reference for details. template<class CodeEmitter> unsigned char Emitter<CodeEmitter>::getVEXRegisterEncoding(const MachineInstr &MI, unsigned OpNum) const { unsigned SrcReg = MI.getOperand(OpNum).getReg(); unsigned SrcRegNum = getX86RegNum(MI.getOperand(OpNum).getReg()); if (X86II::isX86_64ExtendedReg(SrcReg)) SrcRegNum |= 8; // The registers represented through VEX_VVVV should // be encoded in 1's complement form. return (~SrcRegNum) & 0xf; } /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed template<class CodeEmitter> void Emitter<CodeEmitter>::emitSegmentOverridePrefix(uint64_t TSFlags, int MemOperand, const MachineInstr &MI) const { switch (TSFlags & X86II::SegOvrMask) { default: llvm_unreachable("Invalid segment!"); case 0: // No segment override, check for explicit one on memory operand. if (MemOperand != -1) { // If the instruction has a memory operand. switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) { default: llvm_unreachable("Unknown segment register!"); case 0: break; case X86::CS: MCE.emitByte(0x2E); break; case X86::SS: MCE.emitByte(0x36); break; case X86::DS: MCE.emitByte(0x3E); break; case X86::ES: MCE.emitByte(0x26); break; case X86::FS: MCE.emitByte(0x64); break; case X86::GS: MCE.emitByte(0x65); break; } } break; case X86II::FS: MCE.emitByte(0x64); break; case X86II::GS: MCE.emitByte(0x65); break; } } template<class CodeEmitter> void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags, int MemOperand, const MachineInstr &MI, const MCInstrDesc *Desc) const { bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3; bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4; // VEX_R: opcode externsion equivalent to REX.R in // 1's complement (inverted) form // // 1: Same as REX_R=0 (must be 1 in 32-bit mode) // 0: Same as REX_R=1 (64 bit mode only) // unsigned char VEX_R = 0x1; // VEX_X: equivalent to REX.X, only used when a // register is used for index in SIB Byte. // // 1: Same as REX.X=0 (must be 1 in 32-bit mode) // 0: Same as REX.X=1 (64-bit mode only) unsigned char VEX_X = 0x1; // VEX_B: // // 1: Same as REX_B=0 (ignored in 32-bit mode) // 0: Same as REX_B=1 (64 bit mode only) // unsigned char VEX_B = 0x1; // VEX_W: opcode specific (use like REX.W, or used for // opcode extension, or ignored, depending on the opcode byte) unsigned char VEX_W = 0; // XOP: Use XOP prefix byte 0x8f instead of VEX. unsigned char XOP = 0; // VEX_5M (VEX m-mmmmm field): // // 0b00000: Reserved for future use // 0b00001: implied 0F leading opcode // 0b00010: implied 0F 38 leading opcode bytes // 0b00011: implied 0F 3A leading opcode bytes // 0b00100-0b11111: Reserved for future use // 0b01000: XOP map select - 08h instructions with imm byte // 0b10001: XOP map select - 09h instructions with no imm byte unsigned char VEX_5M = 0x1; // VEX_4V (VEX vvvv field): a register specifier // (in 1's complement form) or 1111 if unused. unsigned char VEX_4V = 0xf; // VEX_L (Vector Length): // // 0: scalar or 128-bit vector // 1: 256-bit vector // unsigned char VEX_L = 0; // VEX_PP: opcode extension providing equivalent // functionality of a SIMD prefix // // 0b00: None // 0b01: 66 // 0b10: F3 // 0b11: F2 // unsigned char VEX_PP = 0; // Encode the operand size opcode prefix as needed. if (TSFlags & X86II::OpSize) VEX_PP = 0x01; if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W) VEX_W = 1; if ((TSFlags >> X86II::VEXShift) & X86II::XOP) XOP = 1; if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) VEX_L = 1; switch (TSFlags & X86II::Op0Mask) { default: llvm_unreachable("Invalid prefix!"); case X86II::T8: // 0F 38 VEX_5M = 0x2; break; case X86II::TA: // 0F 3A VEX_5M = 0x3; break; case X86II::T8XS: // F3 0F 38 VEX_PP = 0x2; VEX_5M = 0x2; break; case X86II::T8XD: // F2 0F 38 VEX_PP = 0x3; VEX_5M = 0x2; break; case X86II::TAXD: // F2 0F 3A VEX_PP = 0x3; VEX_5M = 0x3; break; case X86II::XS: // F3 0F VEX_PP = 0x2; break; case X86II::XD: // F2 0F VEX_PP = 0x3; break; case X86II::XOP8: VEX_5M = 0x8; break; case X86II::XOP9: VEX_5M = 0x9; break; case X86II::A6: // Bypass: Not used by VEX case X86II::A7: // Bypass: Not used by VEX case X86II::TB: // Bypass: Not used by VEX case 0: break; // No prefix! } // Classify VEX_B, VEX_4V, VEX_R, VEX_X unsigned NumOps = Desc->getNumOperands(); unsigned CurOp = 0; if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0) ++CurOp; else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) { assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1); // Special case for GATHER with 2 TIED_TO operands // Skip the first 2 operands: dst, mask_wb CurOp += 2; } switch (TSFlags & X86II::FormMask) { case X86II::MRMInitReg: // Duplicate register. if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_R = 0x0; if (HasVEX_4V) VEX_4V = getVEXRegisterEncoding(MI, CurOp); if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_B = 0x0; if (HasVEX_4VOp3) VEX_4V = getVEXRegisterEncoding(MI, CurOp); break; case X86II::MRMDestMem: { // MRMDestMem instructions forms: // MemAddr, src1(ModR/M) // MemAddr, src1(VEX_4V), src2(ModR/M) // MemAddr, src1(ModR/M), imm8 // if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg())) VEX_B = 0x0; if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg())) VEX_X = 0x0; CurOp = X86::AddrNumOperands; if (HasVEX_4V) VEX_4V = getVEXRegisterEncoding(MI, CurOp++); const MachineOperand &MO = MI.getOperand(CurOp); if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg())) VEX_R = 0x0; break; } case X86II::MRMSrcMem: // MRMSrcMem instructions forms: // src1(ModR/M), MemAddr // src1(ModR/M), src2(VEX_4V), MemAddr // src1(ModR/M), MemAddr, imm8 // src1(ModR/M), MemAddr, src2(VEX_I8IMM) // // FMA4: // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM) // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M), if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg())) VEX_R = 0x0; if (HasVEX_4V) VEX_4V = getVEXRegisterEncoding(MI, 1); if (X86II::isX86_64ExtendedReg( MI.getOperand(MemOperand+X86::AddrBaseReg).getReg())) VEX_B = 0x0; if (X86II::isX86_64ExtendedReg( MI.getOperand(MemOperand+X86::AddrIndexReg).getReg())) VEX_X = 0x0; if (HasVEX_4VOp3) VEX_4V = getVEXRegisterEncoding(MI, X86::AddrNumOperands+1); break; case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: { // MRM[0-9]m instructions forms: // MemAddr // src1(VEX_4V), MemAddr if (HasVEX_4V) VEX_4V = getVEXRegisterEncoding(MI, 0); if (X86II::isX86_64ExtendedReg( MI.getOperand(MemOperand+X86::AddrBaseReg).getReg())) VEX_B = 0x0; if (X86II::isX86_64ExtendedReg( MI.getOperand(MemOperand+X86::AddrIndexReg).getReg())) VEX_X = 0x0; break; } case X86II::MRMSrcReg: // MRMSrcReg instructions forms: // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM) // dst(ModR/M), src1(ModR/M) // dst(ModR/M), src1(ModR/M), imm8 // if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_R = 0x0; CurOp++; if (HasVEX_4V) VEX_4V = getVEXRegisterEncoding(MI, CurOp++); if (HasMemOp4) // Skip second register source (encoded in I8IMM) CurOp++; if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_B = 0x0; CurOp++; if (HasVEX_4VOp3) VEX_4V = getVEXRegisterEncoding(MI, CurOp); break; case X86II::MRMDestReg: // MRMDestReg instructions forms: // dst(ModR/M), src(ModR/M) // dst(ModR/M), src(ModR/M), imm8 // dst(ModR/M), src1(VEX_4V), src2(ModR/M) if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_B = 0x0; CurOp++; if (HasVEX_4V) VEX_4V = getVEXRegisterEncoding(MI, CurOp++); if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_R = 0x0; break; case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: // MRM0r-MRM7r instructions forms: // dst(VEX_4V), src(ModR/M), imm8 VEX_4V = getVEXRegisterEncoding(MI, 0); if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg())) VEX_B = 0x0; break; default: // RawFrm break; } // Emit segment override opcode prefix as needed. emitSegmentOverridePrefix(TSFlags, MemOperand, MI); // VEX opcode prefix can have 2 or 3 bytes // // 3 bytes: // +-----+ +--------------+ +-------------------+ // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | // +-----+ +--------------+ +-------------------+ // 2 bytes: // +-----+ +-------------------+ // | C5h | | R | vvvv | L | pp | // +-----+ +-------------------+ // unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3); if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix MCE.emitByte(0xC5); MCE.emitByte(LastByte | (VEX_R << 7)); return; } // 3 byte VEX prefix MCE.emitByte(XOP ? 0x8F : 0xC4); MCE.emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M); MCE.emitByte(LastByte | (VEX_W << 7)); } template<class CodeEmitter> void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc) { DEBUG(dbgs() << MI); // If this is a pseudo instruction, lower it. switch (Desc->getOpcode()) { case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break; case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break; case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break; case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break; case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break; case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break; case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break; case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break; case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break; case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break; case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break; case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break; case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break; case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break; case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break; case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break; case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break; } MCE.processDebugLoc(MI.getDebugLoc(), true); unsigned Opcode = Desc->Opcode; // If this is a two-address instruction, skip one of the register operands. unsigned NumOps = Desc->getNumOperands(); unsigned CurOp = 0; if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0) ++CurOp; else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) { assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1); // Special case for GATHER with 2 TIED_TO operands // Skip the first 2 operands: dst, mask_wb CurOp += 2; } uint64_t TSFlags = Desc->TSFlags; // Is this instruction encoded using the AVX VEX prefix? bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX; // It uses the VEX.VVVV field? bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3; bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4; const unsigned MemOp4_I8IMMOperand = 2; // Determine where the memory operand starts, if present. int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode); if (MemoryOperand != -1) MemoryOperand += CurOp; if (!HasVEXPrefix) emitOpcodePrefix(TSFlags, MemoryOperand, MI, Desc); else emitVEXOpcodePrefix(TSFlags, MemoryOperand, MI, Desc); unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags); switch (TSFlags & X86II::FormMask) { default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!"); case X86II::Pseudo: // Remember the current PC offset, this is the PIC relocation // base address. switch (Opcode) { default: llvm_unreachable("pseudo instructions should be removed before code" " emission"); // Do nothing for Int_MemBarrier - it's just a comment. Add a debug // to make it slightly easier to see. case X86::Int_MemBarrier: DEBUG(dbgs() << "#MEMBARRIER\n"); break; case TargetOpcode::INLINEASM: // We allow inline assembler nodes with empty bodies - they can // implicitly define registers, which is ok for JIT. if (MI.getOperand(0).getSymbolName()[0]) report_fatal_error("JIT does not support inline asm!"); break; case TargetOpcode::PROLOG_LABEL: case TargetOpcode::GC_LABEL: case TargetOpcode::EH_LABEL: MCE.emitLabel(MI.getOperand(0).getMCSymbol()); break; case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: break; case X86::MOVPC32r: { // This emits the "call" portion of this pseudo instruction. MCE.emitByte(BaseOpcode); emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags)); // Remember PIC base. PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset(); X86JITInfo *JTI = TM.getJITInfo(); JTI->setPICBase(MCE.getCurrentPCValue()); break; } } CurOp = NumOps; break; case X86II::RawFrm: { MCE.emitByte(BaseOpcode); if (CurOp == NumOps) break; const MachineOperand &MO = MI.getOperand(CurOp++); DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n"); DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n"); DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n"); DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n"); DEBUG(dbgs() << "isImm " << MO.isImm() << "\n"); if (MO.isMBB()) { emitPCRelativeBlockAddress(MO.getMBB()); break; } if (MO.isGlobal()) { emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word, MO.getOffset(), 0); break; } if (MO.isSymbol()) { emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word); break; } // FIXME: Only used by hackish MCCodeEmitter, remove when dead. if (MO.isJTI()) { emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word); break; } assert(MO.isImm() && "Unknown RawFrm operand!"); if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) { // Fix up immediate operand for pc relative calls. intptr_t Imm = (intptr_t)MO.getImm(); Imm = Imm - MCE.getCurrentPCValue() - 4; emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags)); } else emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags)); break; } case X86II::AddRegFrm: { MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); if (CurOp == NumOps) break; const MachineOperand &MO1 = MI.getOperand(CurOp++); unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); if (MO1.isImm()) { emitConstant(MO1.getImm(), Size); break; } unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (Opcode == X86::MOV32ri64) rt = X86::reloc_absolute_word; // FIXME: add X86II flag? // This should not occur on Darwin for relocatable objects. if (Opcode == X86::MOV64ri) rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? if (MO1.isGlobal()) { bool Indirect = gvNeedsNonLazyPtr(MO1, TM); emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, Indirect); } else if (MO1.isSymbol()) emitExternalSymbolAddress(MO1.getSymbolName(), rt); else if (MO1.isCPI()) emitConstPoolAddress(MO1.getIndex(), rt); else if (MO1.isJTI()) emitJumpTableAddress(MO1.getIndex(), rt); break; } case X86II::MRMDestReg: { MCE.emitByte(BaseOpcode); unsigned SrcRegNum = CurOp+1; if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) SrcRegNum++; emitRegModRMByte(MI.getOperand(CurOp).getReg(), getX86RegNum(MI.getOperand(SrcRegNum).getReg())); CurOp = SrcRegNum + 1; break; } case X86II::MRMDestMem: { MCE.emitByte(BaseOpcode); unsigned SrcRegNum = CurOp + X86::AddrNumOperands; if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) SrcRegNum++; emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum).getReg())); CurOp = SrcRegNum + 1; break; } case X86II::MRMSrcReg: { MCE.emitByte(BaseOpcode); unsigned SrcRegNum = CurOp+1; if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) ++SrcRegNum; if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM) ++SrcRegNum; emitRegModRMByte(MI.getOperand(SrcRegNum).getReg(), getX86RegNum(MI.getOperand(CurOp).getReg())); // 2 operands skipped with HasMemOp4, compensate accordingly CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1; if (HasVEX_4VOp3) ++CurOp; break; } case X86II::MRMSrcMem: { int AddrOperands = X86::AddrNumOperands; unsigned FirstMemOp = CurOp+1; if (HasVEX_4V) { ++AddrOperands; ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). } if (HasMemOp4) // Skip second register source (encoded in I8IMM) ++FirstMemOp; MCE.emitByte(BaseOpcode); intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ? X86II::getSizeOfImm(Desc->TSFlags) : 0; emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj); CurOp += AddrOperands + 1; if (HasVEX_4VOp3) ++CurOp; break; } case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: { if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). ++CurOp; MCE.emitByte(BaseOpcode); emitRegModRMByte(MI.getOperand(CurOp++).getReg(), (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r); if (CurOp == NumOps) break; const MachineOperand &MO1 = MI.getOperand(CurOp++); unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); if (MO1.isImm()) { emitConstant(MO1.getImm(), Size); break; } unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (Opcode == X86::MOV64ri32) rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag? if (MO1.isGlobal()) { bool Indirect = gvNeedsNonLazyPtr(MO1, TM); emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, Indirect); } else if (MO1.isSymbol()) emitExternalSymbolAddress(MO1.getSymbolName(), rt); else if (MO1.isCPI()) emitConstPoolAddress(MO1.getIndex(), rt); else if (MO1.isJTI()) emitJumpTableAddress(MO1.getIndex(), rt); break; } case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: { if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). ++CurOp; intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ? (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ? X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0; MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m, PCAdj); CurOp += X86::AddrNumOperands; if (CurOp == NumOps) break; const MachineOperand &MO = MI.getOperand(CurOp++); unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); if (MO.isImm()) { emitConstant(MO.getImm(), Size); break; } unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (Opcode == X86::MOV64mi32) rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag? if (MO.isGlobal()) { bool Indirect = gvNeedsNonLazyPtr(MO, TM); emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0, Indirect); } else if (MO.isSymbol()) emitExternalSymbolAddress(MO.getSymbolName(), rt); else if (MO.isCPI()) emitConstPoolAddress(MO.getIndex(), rt); else if (MO.isJTI()) emitJumpTableAddress(MO.getIndex(), rt); break; } case X86II::MRMInitReg: MCE.emitByte(BaseOpcode); // Duplicate register, used by things like MOV8r0 (aka xor reg,reg). emitRegModRMByte(MI.getOperand(CurOp).getReg(), getX86RegNum(MI.getOperand(CurOp).getReg())); ++CurOp; break; case X86II::MRM_C1: MCE.emitByte(BaseOpcode); MCE.emitByte(0xC1); break; case X86II::MRM_C8: MCE.emitByte(BaseOpcode); MCE.emitByte(0xC8); break; case X86II::MRM_C9: MCE.emitByte(BaseOpcode); MCE.emitByte(0xC9); break; case X86II::MRM_CA: MCE.emitByte(BaseOpcode); MCE.emitByte(0xCA); break; case X86II::MRM_CB: MCE.emitByte(BaseOpcode); MCE.emitByte(0xCB); break; case X86II::MRM_E8: MCE.emitByte(BaseOpcode); MCE.emitByte(0xE8); break; case X86II::MRM_F0: MCE.emitByte(BaseOpcode); MCE.emitByte(0xF0); break; } while (CurOp != NumOps && NumOps - CurOp <= 2) { // The last source register of a 4 operand instruction in AVX is encoded // in bits[7:4] of a immediate byte. if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) { const MachineOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand : CurOp); ++CurOp; unsigned RegNum = getX86RegNum(MO.getReg()) << 4; if (X86II::isX86_64ExtendedReg(MO.getReg())) RegNum |= 1 << 7; // If there is an additional 5th operand it must be an immediate, which // is encoded in bits[3:0] if (CurOp != NumOps) { const MachineOperand &MIMM = MI.getOperand(CurOp++); if (MIMM.isImm()) { unsigned Val = MIMM.getImm(); assert(Val < 16 && "Immediate operand value out of range"); RegNum |= Val; } } emitConstant(RegNum, 1); } else { emitConstant(MI.getOperand(CurOp++).getImm(), X86II::getSizeOfImm(Desc->TSFlags)); } } if (!MI.isVariadic() && CurOp != NumOps) { #ifndef NDEBUG dbgs() << "Cannot encode all operands of: " << MI << "\n"; #endif llvm_unreachable(0); } MCE.processDebugLoc(MI.getDebugLoc(), false); }