//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Class definitions. //===----------------------------------------------------------------------===// class SystemZReg<string n> : Register<n> { let Namespace = "SystemZ"; } class SystemZRegWithSubregs<string n, list<Register> subregs> : RegisterWithSubRegs<n, subregs> { let Namespace = "SystemZ"; } let Namespace = "SystemZ" in { def subreg_32bit : SubRegIndex<32>; // could also be named "subreg_high32" // Indices are used in a variety of ways, so don't set an Offset. def subreg_high : SubRegIndex<64, -1>; def subreg_low : SubRegIndex<64, -1>; def subreg_low32 : ComposedSubRegIndex<subreg_low, subreg_32bit>; } // Define a register class that contains values of type TYPE and an // associated operand called NAME. SIZE is the size and alignment // of the registers and REGLIST is the list of individual registers. multiclass SystemZRegClass<string name, ValueType type, int size, dag regList> { def AsmOperand : AsmOperandClass { let Name = name; let ParserMethod = "parse"##name; let RenderMethod = "addRegOperands"; } def Bit : RegisterClass<"SystemZ", [type], size, regList> { let Size = size; } def "" : RegisterOperand<!cast<RegisterClass>(name##"Bit")> { let ParserMatchClass = !cast<AsmOperandClass>(name##"AsmOperand"); } } //===----------------------------------------------------------------------===// // General-purpose registers //===----------------------------------------------------------------------===// // Lower 32 bits of one of the 16 64-bit general-purpose registers class GPR32<bits<16> num, string n> : SystemZReg<n> { let HWEncoding = num; } // One of the 16 64-bit general-purpose registers. class GPR64<bits<16> num, string n, GPR32 low> : SystemZRegWithSubregs<n, [low]> { let HWEncoding = num; let SubRegIndices = [subreg_32bit]; } // 8 even-odd pairs of GPR64s. class GPR128<bits<16> num, string n, GPR64 high, GPR64 low> : SystemZRegWithSubregs<n, [high, low]> { let HWEncoding = num; let SubRegIndices = [subreg_high, subreg_low]; } // General-purpose registers foreach I = 0-15 in { def R#I#W : GPR32<I, "r"#I>; def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"W")>, DwarfRegNum<[I]>; } foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in { def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#I#"D"), !cast<GPR64>("R"#!add(I, 1)#"D")>; } /// Allocate the callee-saved R6-R13 backwards. That way they can be saved /// together with R14 and R15 in one prolog instruction. defm GR32 : SystemZRegClass<"GR32", i32, 32, (add (sequence "R%uW", 0, 5), (sequence "R%uW", 15, 6))>; defm GR64 : SystemZRegClass<"GR64", i64, 64, (add (sequence "R%uD", 0, 5), (sequence "R%uD", 15, 6))>; // The architecture doesn't really have any i128 support, so model the // register pairs as untyped instead. defm GR128 : SystemZRegClass<"GR128", untyped, 128, (add R0Q, R2Q, R4Q, R12Q, R10Q, R8Q, R6Q, R14Q)>; // Base and index registers. Everything except R0, which in an address // context evaluates as 0. defm ADDR32 : SystemZRegClass<"ADDR32", i32, 32, (sub GR32Bit, R0W)>; defm ADDR64 : SystemZRegClass<"ADDR64", i64, 64, (sub GR64Bit, R0D)>; // Not used directly, but needs to exist for ADDR32 and ADDR64 subregs // of a GR128. defm ADDR128 : SystemZRegClass<"ADDR128", untyped, 128, (sub GR128Bit, R0Q)>; //===----------------------------------------------------------------------===// // Floating-point registers //===----------------------------------------------------------------------===// // Lower 32 bits of one of the 16 64-bit floating-point registers class FPR32<bits<16> num, string n> : SystemZReg<n> { let HWEncoding = num; } // One of the 16 64-bit floating-point registers class FPR64<bits<16> num, string n, FPR32 low> : SystemZRegWithSubregs<n, [low]> { let HWEncoding = num; let SubRegIndices = [subreg_32bit]; } // 8 pairs of FPR64s, with a one-register gap inbetween. class FPR128<bits<16> num, string n, FPR64 high, FPR64 low> : SystemZRegWithSubregs<n, [high, low]> { let HWEncoding = num; let SubRegIndices = [subreg_high, subreg_low]; } // Floating-point registers foreach I = 0-15 in { def F#I#S : FPR32<I, "f"#I>; def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>, DwarfRegNum<[!add(I, 16)]>; } foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in { def F#I#Q : FPR128<I, "f"#I, !cast<FPR64>("F"#I#"D"), !cast<FPR64>("F"#!add(I, 2)#"D")>; } // There's no store-multiple instruction for FPRs, so we're not fussy // about the order in which call-saved registers are allocated. defm FP32 : SystemZRegClass<"FP32", f32, 32, (sequence "F%uS", 0, 15)>; defm FP64 : SystemZRegClass<"FP64", f64, 64, (sequence "F%uD", 0, 15)>; defm FP128 : SystemZRegClass<"FP128", f128, 128, (add F0Q, F1Q, F4Q, F5Q, F8Q, F9Q, F12Q, F13Q)>; //===----------------------------------------------------------------------===// // Other registers //===----------------------------------------------------------------------===// // The 2-bit condition code field of the PSW. Every register named in an // inline asm needs a class associated with it. def CC : SystemZReg<"cc">; def CCRegs : RegisterClass<"SystemZ", [i32], 32, (add CC)>;