//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the SystemZ implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "SystemZInstrInfo.h" #include "SystemZTargetMachine.h" #include "SystemZInstrBuilder.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #define GET_INSTRINFO_CTOR #define GET_INSTRMAP_INFO #include "SystemZGenInstrInfo.inc" using namespace llvm; // Return a mask with Count low bits set. static uint64_t allOnes(unsigned int Count) { return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; } SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm) : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), RI(tm), TM(tm) { } // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, // each having the opcode given by NewOpcode. void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, unsigned NewOpcode) const { MachineBasicBlock *MBB = MI->getParent(); MachineFunction &MF = *MBB->getParent(); // Get two load or store instructions. Use the original instruction for one // of them (arbitarily the second here) and create a clone for the other. MachineInstr *EarlierMI = MF.CloneMachineInstr(MI); MBB->insert(MI, EarlierMI); // Set up the two 64-bit registers. MachineOperand &HighRegOp = EarlierMI->getOperand(0); MachineOperand &LowRegOp = MI->getOperand(0); HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_high)); LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_low)); // The address in the first (high) instruction is already correct. // Adjust the offset in the second (low) instruction. MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); MachineOperand &LowOffsetOp = MI->getOperand(2); LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); // Set the opcodes. unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); assert(HighOpcode && LowOpcode && "Both offsets should be in range"); EarlierMI->setDesc(get(HighOpcode)); MI->setDesc(get(LowOpcode)); } // Split ADJDYNALLOC instruction MI. void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { MachineBasicBlock *MBB = MI->getParent(); MachineFunction &MF = *MBB->getParent(); MachineFrameInfo *MFFrame = MF.getFrameInfo(); MachineOperand &OffsetMO = MI->getOperand(2); uint64_t Offset = (MFFrame->getMaxCallFrameSize() + SystemZMC::CallFrameSize + OffsetMO.getImm()); unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); assert(NewOpcode && "No support for huge argument lists yet"); MI->setDesc(get(NewOpcode)); OffsetMO.setImm(Offset); } // If MI is a simple load or store for a frame object, return the register // it loads or stores and set FrameIndex to the index of the frame object. // Return 0 otherwise. // // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. static int isSimpleMove(const MachineInstr *MI, int &FrameIndex, unsigned Flag) { const MCInstrDesc &MCID = MI->getDesc(); if ((MCID.TSFlags & Flag) && MI->getOperand(1).isFI() && MI->getOperand(2).getImm() == 0 && MI->getOperand(3).getReg() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } return 0; } unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); } unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); } bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex, int &SrcFrameIndex) const { // Check for MVC 0(Length,FI1),0(FI2) const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo(); if (MI->getOpcode() != SystemZ::MVC || !MI->getOperand(0).isFI() || MI->getOperand(1).getImm() != 0 || !MI->getOperand(3).isFI() || MI->getOperand(4).getImm() != 0) return false; // Check that Length covers the full slots. int64_t Length = MI->getOperand(2).getImm(); unsigned FI1 = MI->getOperand(0).getIndex(); unsigned FI2 = MI->getOperand(3).getIndex(); if (MFI->getObjectSize(FI1) != Length || MFI->getObjectSize(FI2) != Length) return false; DestFrameIndex = FI1; SrcFrameIndex = FI2; return true; } bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const { // Most of the code and comments here are boilerplate. // Start from the bottom of the block and work up, examining the // terminator instructions. MachineBasicBlock::iterator I = MBB.end(); while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; // Working from the bottom, when we see a non-terminator instruction, we're // done. if (!isUnpredicatedTerminator(I)) break; // A terminator that isn't a branch can't easily be handled by this // analysis. if (!I->isBranch()) return true; // Can't handle indirect branches. SystemZII::Branch Branch(getBranchInfo(I)); if (!Branch.Target->isMBB()) return true; // Punt on compound branches. if (Branch.Type != SystemZII::BranchNormal) return true; if (Branch.CCMask == SystemZ::CCMASK_ANY) { // Handle unconditional branches. if (!AllowModify) { TBB = Branch.Target->getMBB(); continue; } // If the block has any instructions after a JMP, delete them. while (llvm::next(I) != MBB.end()) llvm::next(I)->eraseFromParent(); Cond.clear(); FBB = 0; // Delete the JMP if it's equivalent to a fall-through. if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { TBB = 0; I->eraseFromParent(); I = MBB.end(); continue; } // TBB is used to indicate the unconditinal destination. TBB = Branch.Target->getMBB(); continue; } // Working from the bottom, handle the first conditional branch. if (Cond.empty()) { // FIXME: add X86-style branch swap FBB = TBB; TBB = Branch.Target->getMBB(); Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); continue; } // Handle subsequent conditional branches. assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); // Only handle the case where all conditional branches branch to the same // destination. if (TBB != Branch.Target->getMBB()) return true; // If the conditions are the same, we can leave them alone. unsigned OldCCValid = Cond[0].getImm(); unsigned OldCCMask = Cond[1].getImm(); if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) continue; // FIXME: Try combining conditions like X86 does. Should be easy on Z! return false; } return false; } unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { // Most of the code and comments here are boilerplate. MachineBasicBlock::iterator I = MBB.end(); unsigned Count = 0; while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; if (!I->isBranch()) break; if (!getBranchInfo(I).Target->isMBB()) break; // Remove the branch. I->eraseFromParent(); I = MBB.end(); ++Count; } return Count; } bool SystemZInstrInfo:: ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { assert(Cond.size() == 2 && "Invalid condition"); Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); return false; } unsigned SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const { // In this function we output 32-bit branches, which should always // have enough range. They can be shortened and relaxed by later code // in the pipeline, if desired. // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 2 || Cond.size() == 0) && "SystemZ branch conditions have one component!"); if (Cond.empty()) { // Unconditional branch? assert(!FBB && "Unconditional branch with multiple successors!"); BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); return 1; } // Conditional branch. unsigned Count = 0; unsigned CCValid = Cond[0].getImm(); unsigned CCMask = Cond[1].getImm(); BuildMI(&MBB, DL, get(SystemZ::BRC)) .addImm(CCValid).addImm(CCMask).addMBB(TBB); ++Count; if (FBB) { // Two-way Conditional branch. Insert the second branch. BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); ++Count; } return Count; } // If Opcode is a move that has a conditional variant, return that variant, // otherwise return 0. static unsigned getConditionalMove(unsigned Opcode) { switch (Opcode) { case SystemZ::LR: return SystemZ::LOCR; case SystemZ::LGR: return SystemZ::LOCGR; default: return 0; } } bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const { unsigned Opcode = MI->getOpcode(); if (TM.getSubtargetImpl()->hasLoadStoreOnCond() && getConditionalMove(Opcode)) return true; return false; } bool SystemZInstrInfo:: isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, const BranchProbability &Probability) const { // For now only convert single instructions. return NumCycles == 1; } bool SystemZInstrInfo:: isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumCyclesT, unsigned ExtraPredCyclesT, MachineBasicBlock &FMBB, unsigned NumCyclesF, unsigned ExtraPredCyclesF, const BranchProbability &Probability) const { // For now avoid converting mutually-exclusive cases. return false; } bool SystemZInstrInfo:: PredicateInstruction(MachineInstr *MI, const SmallVectorImpl<MachineOperand> &Pred) const { assert(Pred.size() == 2 && "Invalid condition"); unsigned CCValid = Pred[0].getImm(); unsigned CCMask = Pred[1].getImm(); assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); unsigned Opcode = MI->getOpcode(); if (TM.getSubtargetImpl()->hasLoadStoreOnCond()) { if (unsigned CondOpcode = getConditionalMove(Opcode)) { MI->setDesc(get(CondOpcode)); MachineInstrBuilder(*MI->getParent()->getParent(), MI) .addImm(CCValid).addImm(CCMask) .addReg(SystemZ::CC, RegState::Implicit);; return true; } } return false; } void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_high), RI.getSubReg(SrcReg, SystemZ::subreg_high), KillSrc); copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_low), RI.getSubReg(SrcReg, SystemZ::subreg_low), KillSrc); return; } // Everything else needs only one instruction. unsigned Opcode; if (SystemZ::GR32BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LR; else if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LGR; else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LER; else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LDR; else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LXR; else llvm_unreachable("Impossible reg-to-reg copy"); BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); } void SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); // Callers may expect a single instruction, so keep 128-bit moves // together for now and lower them after register allocation. unsigned LoadOpcode, StoreOpcode; getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx); } void SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); // Callers may expect a single instruction, so keep 128-bit moves // together for now and lower them after register allocation. unsigned LoadOpcode, StoreOpcode; getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), FrameIdx); } // Return true if MI is a simple load or store with a 12-bit displacement // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { const MCInstrDesc &MCID = MI->getDesc(); return ((MCID.TSFlags & Flag) && isUInt<12>(MI->getOperand(2).getImm()) && MI->getOperand(3).getReg() == 0); } namespace { struct LogicOp { LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {} LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} operator bool() const { return RegSize; } unsigned RegSize, ImmLSB, ImmSize; }; } static LogicOp interpretAndImmediate(unsigned Opcode) { switch (Opcode) { case SystemZ::NILL32: return LogicOp(32, 0, 16); case SystemZ::NILH32: return LogicOp(32, 16, 16); case SystemZ::NILL: return LogicOp(64, 0, 16); case SystemZ::NILH: return LogicOp(64, 16, 16); case SystemZ::NIHL: return LogicOp(64, 32, 16); case SystemZ::NIHH: return LogicOp(64, 48, 16); case SystemZ::NILF32: return LogicOp(32, 0, 32); case SystemZ::NILF: return LogicOp(64, 0, 32); case SystemZ::NIHF: return LogicOp(64, 32, 32); default: return LogicOp(); } } // Used to return from convertToThreeAddress after replacing two-address // instruction OldMI with three-address instruction NewMI. static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, MachineInstr *NewMI, LiveVariables *LV) { if (LV) { unsigned NumOps = OldMI->getNumOperands(); for (unsigned I = 1; I < NumOps; ++I) { MachineOperand &Op = OldMI->getOperand(I); if (Op.isReg() && Op.isKill()) LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI); } } return NewMI; } MachineInstr * SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const { MachineInstr *MI = MBBI; MachineBasicBlock *MBB = MI->getParent(); unsigned Opcode = MI->getOpcode(); unsigned NumOps = MI->getNumOperands(); // Try to convert something like SLL into SLLK, if supported. // We prefer to keep the two-operand form where possible both // because it tends to be shorter and because some instructions // have memory forms that can be used during spilling. if (TM.getSubtargetImpl()->hasDistinctOps()) { int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); if (ThreeOperandOpcode >= 0) { MachineOperand &Dest = MI->getOperand(0); MachineOperand &Src = MI->getOperand(1); MachineInstrBuilder MIB = BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode)) .addOperand(Dest); // Keep the kill state, but drop the tied flag. MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); // Keep the remaining operands as-is. for (unsigned I = 2; I < NumOps; ++I) MIB.addOperand(MI->getOperand(I)); return finishConvertToThreeAddress(MI, MIB, LV); } } // Try to convert an AND into an RISBG-type instruction. if (LogicOp And = interpretAndImmediate(Opcode)) { unsigned NewOpcode; if (And.RegSize == 64) NewOpcode = SystemZ::RISBG; else if (TM.getSubtargetImpl()->hasHighWord()) NewOpcode = SystemZ::RISBLG32; else // We can't use RISBG for 32-bit operations because it clobbers the // high word of the destination too. NewOpcode = 0; if (NewOpcode) { uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB; // AND IMMEDIATE leaves the other bits of the register unchanged. Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); unsigned Start, End; if (isRxSBGMask(Imm, And.RegSize, Start, End)) { if (NewOpcode == SystemZ::RISBLG32) { Start &= 31; End &= 31; } MachineOperand &Dest = MI->getOperand(0); MachineOperand &Src = MI->getOperand(1); MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode)) .addOperand(Dest).addReg(0) .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()) .addImm(Start).addImm(End + 128).addImm(0); return finishConvertToThreeAddress(MI, MIB, LV); } } } return 0; } MachineInstr * SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, const SmallVectorImpl<unsigned> &Ops, int FrameIndex) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned Size = MFI->getObjectSize(FrameIndex); // Eary exit for cases we don't care about if (Ops.size() != 1) return 0; unsigned OpNum = Ops[0]; assert(Size == MF.getRegInfo() .getRegClass(MI->getOperand(OpNum).getReg())->getSize() && "Invalid size combination"); unsigned Opcode = MI->getOpcode(); if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { bool Op0IsGPR = (Opcode == SystemZ::LGDR); bool Op1IsGPR = (Opcode == SystemZ::LDGR); // If we're spilling the destination of an LDGR or LGDR, store the // source register instead. if (OpNum == 0) { unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; return BuildMI(MF, MI->getDebugLoc(), get(StoreOpcode)) .addOperand(MI->getOperand(1)).addFrameIndex(FrameIndex) .addImm(0).addReg(0); } // If we're spilling the source of an LDGR or LGDR, load the // destination register instead. if (OpNum == 1) { unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; unsigned Dest = MI->getOperand(0).getReg(); return BuildMI(MF, MI->getDebugLoc(), get(LoadOpcode), Dest) .addFrameIndex(FrameIndex).addImm(0).addReg(0); } } // Look for cases where the source of a simple store or the destination // of a simple load is being spilled. Try to use MVC instead. // // Although MVC is in practice a fast choice in these cases, it is still // logically a bytewise copy. This means that we cannot use it if the // load or store is volatile. It also means that the transformation is // not valid in cases where the two memories partially overlap; however, // that is not a problem here, because we know that one of the memories // is a full frame index. if (OpNum == 0 && MI->hasOneMemOperand()) { MachineMemOperand *MMO = *MI->memoperands_begin(); if (MMO->getSize() == Size && !MMO->isVolatile()) { // Handle conversion of loads. if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) { return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC)) .addFrameIndex(FrameIndex).addImm(0).addImm(Size) .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm()) .addMemOperand(MMO); } // Handle conversion of stores. if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) { return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC)) .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm()) .addImm(Size).addFrameIndex(FrameIndex).addImm(0) .addMemOperand(MMO); } } } // If the spilled operand is the final one, try to change <INSN>R // into <INSN>. int MemOpcode = SystemZ::getMemOpcode(Opcode); if (MemOpcode >= 0) { unsigned NumOps = MI->getNumExplicitOperands(); if (OpNum == NumOps - 1) { const MCInstrDesc &MemDesc = get(MemOpcode); uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); assert(AccessBytes != 0 && "Size of access should be known"); assert(AccessBytes <= Size && "Access outside the frame index"); uint64_t Offset = Size - AccessBytes; MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode)); for (unsigned I = 0; I < OpNum; ++I) MIB.addOperand(MI->getOperand(I)); MIB.addFrameIndex(FrameIndex).addImm(Offset); if (MemDesc.TSFlags & SystemZII::HasIndex) MIB.addReg(0); return MIB; } } return 0; } MachineInstr * SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl<unsigned> &Ops, MachineInstr* LoadMI) const { return 0; } bool SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { switch (MI->getOpcode()) { case SystemZ::L128: splitMove(MI, SystemZ::LG); return true; case SystemZ::ST128: splitMove(MI, SystemZ::STG); return true; case SystemZ::LX: splitMove(MI, SystemZ::LD); return true; case SystemZ::STX: splitMove(MI, SystemZ::STD); return true; case SystemZ::ADJDYNALLOC: splitAdjDynAlloc(MI); return true; default: return false; } } uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const { if (MI->getOpcode() == TargetOpcode::INLINEASM) { const MachineFunction *MF = MI->getParent()->getParent(); const char *AsmStr = MI->getOperand(0).getSymbolName(); return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); } return MI->getDesc().getSize(); } SystemZII::Branch SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const { switch (MI->getOpcode()) { case SystemZ::BR: case SystemZ::J: case SystemZ::JG: return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, SystemZ::CCMASK_ANY, &MI->getOperand(0)); case SystemZ::BRC: case SystemZ::BRCL: return SystemZII::Branch(SystemZII::BranchNormal, MI->getOperand(0).getImm(), MI->getOperand(1).getImm(), &MI->getOperand(2)); case SystemZ::BRCT: return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); case SystemZ::BRCTG: return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); case SystemZ::CIJ: case SystemZ::CRJ: return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, MI->getOperand(2).getImm(), &MI->getOperand(3)); case SystemZ::CGIJ: case SystemZ::CGRJ: return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, MI->getOperand(2).getImm(), &MI->getOperand(3)); default: llvm_unreachable("Unrecognized branch opcode"); } } void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, unsigned &LoadOpcode, unsigned &StoreOpcode) const { if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { LoadOpcode = SystemZ::L; StoreOpcode = SystemZ::ST32; } else if (RC == &SystemZ::GR64BitRegClass || RC == &SystemZ::ADDR64BitRegClass) { LoadOpcode = SystemZ::LG; StoreOpcode = SystemZ::STG; } else if (RC == &SystemZ::GR128BitRegClass || RC == &SystemZ::ADDR128BitRegClass) { LoadOpcode = SystemZ::L128; StoreOpcode = SystemZ::ST128; } else if (RC == &SystemZ::FP32BitRegClass) { LoadOpcode = SystemZ::LE; StoreOpcode = SystemZ::STE; } else if (RC == &SystemZ::FP64BitRegClass) { LoadOpcode = SystemZ::LD; StoreOpcode = SystemZ::STD; } else if (RC == &SystemZ::FP128BitRegClass) { LoadOpcode = SystemZ::LX; StoreOpcode = SystemZ::STX; } else llvm_unreachable("Unsupported regclass to load or store"); } unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, int64_t Offset) const { const MCInstrDesc &MCID = get(Opcode); int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { // Get the instruction to use for unsigned 12-bit displacements. int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); if (Disp12Opcode >= 0) return Disp12Opcode; // All address-related instructions can use unsigned 12-bit // displacements. return Opcode; } if (isInt<20>(Offset) && isInt<20>(Offset2)) { // Get the instruction to use for signed 20-bit displacements. int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); if (Disp20Opcode >= 0) return Disp20Opcode; // Check whether Opcode allows signed 20-bit displacements. if (MCID.TSFlags & SystemZII::Has20BitOffset) return Opcode; } return 0; } unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { switch (Opcode) { case SystemZ::L: return SystemZ::LT; case SystemZ::LY: return SystemZ::LT; case SystemZ::LG: return SystemZ::LTG; case SystemZ::LGF: return SystemZ::LTGF; case SystemZ::LR: return SystemZ::LTR; case SystemZ::LGFR: return SystemZ::LTGFR; case SystemZ::LGR: return SystemZ::LTGR; case SystemZ::LER: return SystemZ::LTEBR; case SystemZ::LDR: return SystemZ::LTDBR; case SystemZ::LXR: return SystemZ::LTXBR; default: return 0; } } // Return true if Mask matches the regexp 0*1+0*, given that zero masks // have already been filtered out. Store the first set bit in LSB and // the number of set bits in Length if so. static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { unsigned First = findFirstSet(Mask); uint64_t Top = (Mask >> First) + 1; if ((Top & -Top) == Top) { LSB = First; Length = findFirstSet(Top); return true; } return false; } bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, unsigned &Start, unsigned &End) const { // Reject trivial all-zero masks. if (Mask == 0) return false; // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of // the msb and End specifies the index of the lsb. unsigned LSB, Length; if (isStringOfOnes(Mask, LSB, Length)) { Start = 63 - (LSB + Length - 1); End = 63 - LSB; return true; } // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb // of the low 1s and End specifies the lsb of the high 1s. if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { assert(LSB > 0 && "Bottom bit must be set"); assert(LSB + Length < BitSize && "Top bit must be set"); Start = 63 - (LSB - 1); End = 63 - (LSB + Length); return true; } return false; } unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode, const MachineInstr *MI) const { switch (Opcode) { case SystemZ::CR: return SystemZ::CRJ; case SystemZ::CGR: return SystemZ::CGRJ; case SystemZ::CHI: return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0; case SystemZ::CGHI: return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0; default: return 0; } } void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned Reg, uint64_t Value) const { DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); unsigned Opcode; if (isInt<16>(Value)) Opcode = SystemZ::LGHI; else if (SystemZ::isImmLL(Value)) Opcode = SystemZ::LLILL; else if (SystemZ::isImmLH(Value)) { Opcode = SystemZ::LLILH; Value >>= 16; } else { assert(isInt<32>(Value) && "Huge values not handled yet"); Opcode = SystemZ::LGFI; } BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); }