//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Sparc instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "SparcInstrFormats.td" //===----------------------------------------------------------------------===// // Feature predicates. //===----------------------------------------------------------------------===// // True when generating 32-bit code. def Is32Bit : Predicate<"!Subtarget.is64Bit()">; // True when generating 64-bit code. This also implies HasV9. def Is64Bit : Predicate<"Subtarget.is64Bit()">; // HasV9 - This predicate is true when the target processor supports V9 // instructions. Note that the machine may be running in 32-bit mode. def HasV9 : Predicate<"Subtarget.isV9()">; // HasNoV9 - This predicate is true when the target doesn't have V9 // instructions. Use of this is just a hack for the isel not having proper // costs for V8 instructions that are more expensive than their V9 ones. def HasNoV9 : Predicate<"!Subtarget.isV9()">; // HasVIS - This is true when the target processor has VIS extensions. def HasVIS : Predicate<"Subtarget.isVIS()">; // UseDeprecatedInsts - This predicate is true when the target processor is a // V8, or when it is V9 but the V8 deprecated instructions are efficient enough // to use when appropriate. In either of these cases, the instruction selector // will pick deprecated instructions. def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">; //===----------------------------------------------------------------------===// // Instruction Pattern Stuff //===----------------------------------------------------------------------===// def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>; def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>; def LO10 : SDNodeXForm<imm, [{ return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, MVT::i32); }]>; def HI22 : SDNodeXForm<imm, [{ // Transformation function: shift the immediate value down into the low bits. return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32); }]>; def SETHIimm : PatLeaf<(imm), [{ return isShiftedUInt<22, 10>(N->getZExtValue()); }], HI22>; // Addressing modes. def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>; def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>; // Address operands def MEMrr : Operand<iPTR> { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops ptr_rc, ptr_rc); } def MEMri : Operand<iPTR> { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops ptr_rc, i32imm); } // Branch targets have OtherVT type. def brtarget : Operand<OtherVT>; def calltarget : Operand<i32>; // Operand for printing out a condition code. let PrintMethod = "printCCOperand" in def CCOp : Operand<i32>; def SDTSPcmpicc : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>; def SDTSPcmpfcc : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; def SDTSPbrcc : SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; def SDTSPselectcc : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>; def SDTSPFTOI : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>; def SDTSPITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>; def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>; def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>; def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>; def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>; def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>; def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>; def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>; def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>; // These are target-independent nodes, but have target-specific formats. def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>; def call : SDNode<"SPISD::CALL", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def flushw : SDNode<"SPISD::FLUSHW", SDTNone, [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>; def getPCX : Operand<i32> { let PrintMethod = "printGetPCX"; } //===----------------------------------------------------------------------===// // SPARC Flag Conditions //===----------------------------------------------------------------------===// // Note that these values must be kept in sync with the CCOp::CondCode enum // values. class ICC_VAL<int N> : PatLeaf<(i32 N)>; def ICC_NE : ICC_VAL< 9>; // Not Equal def ICC_E : ICC_VAL< 1>; // Equal def ICC_G : ICC_VAL<10>; // Greater def ICC_LE : ICC_VAL< 2>; // Less or Equal def ICC_GE : ICC_VAL<11>; // Greater or Equal def ICC_L : ICC_VAL< 3>; // Less def ICC_GU : ICC_VAL<12>; // Greater Unsigned def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned def ICC_POS : ICC_VAL<14>; // Positive def ICC_NEG : ICC_VAL< 6>; // Negative def ICC_VC : ICC_VAL<15>; // Overflow Clear def ICC_VS : ICC_VAL< 7>; // Overflow Set class FCC_VAL<int N> : PatLeaf<(i32 N)>; def FCC_U : FCC_VAL<23>; // Unordered def FCC_G : FCC_VAL<22>; // Greater def FCC_UG : FCC_VAL<21>; // Unordered or Greater def FCC_L : FCC_VAL<20>; // Less def FCC_UL : FCC_VAL<19>; // Unordered or Less def FCC_LG : FCC_VAL<18>; // Less or Greater def FCC_NE : FCC_VAL<17>; // Not Equal def FCC_E : FCC_VAL<25>; // Equal def FCC_UE : FCC_VAL<24>; // Unordered or Equal def FCC_GE : FCC_VAL<25>; // Greater or Equal def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal def FCC_LE : FCC_VAL<27>; // Less or Equal def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal def FCC_O : FCC_VAL<29>; // Ordered //===----------------------------------------------------------------------===// // Instruction Class Templates //===----------------------------------------------------------------------===// /// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot. multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> { def rr : F3_1<2, Op3Val, (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), !strconcat(OpcStr, " $b, $c, $dst"), [(set i32:$dst, (OpNode i32:$b, i32:$c))]>; def ri : F3_2<2, Op3Val, (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), !strconcat(OpcStr, " $b, $c, $dst"), [(set i32:$dst, (OpNode i32:$b, (i32 simm13:$c)))]>; } /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no /// pattern. multiclass F3_12np<string OpcStr, bits<6> Op3Val> { def rr : F3_1<2, Op3Val, (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), !strconcat(OpcStr, " $b, $c, $dst"), []>; def ri : F3_2<2, Op3Val, (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), !strconcat(OpcStr, " $b, $c, $dst"), []>; } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// // Pseudo instructions. class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> : InstSP<outs, ins, asmstr, pattern>; // GETPCX for PIC let Defs = [O7] in { def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >; } let Defs = [O6], Uses = [O6] in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), "!ADJCALLSTACKDOWN $amt", [(callseq_start timm:$amt)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), "!ADJCALLSTACKUP $amt1", [(callseq_end timm:$amt1, timm:$amt2)]>; } let hasSideEffects = 1, mayStore = 1 in { let rd = 0, rs1 = 0, rs2 = 0 in def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins), "flushw", [(flushw)]>, Requires<[HasV9]>; let rd = 0, rs1 = 1, simm13 = 3 in def TA3 : F3_2<0b10, 0b111010, (outs), (ins), "ta 3", [(flushw)]>; } def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val), "unimp $val", []>; // SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after // instruction selection into a branch sequence. This has to handle all // permutations of selection between i32/f32/f64 on ICC and FCC. // Expanded after instruction selection. let Uses = [ICC], usesCustomInserter = 1 in { def SELECT_CC_Int_ICC : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), "; SELECT_CC_Int_ICC PSEUDO!", [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>; def SELECT_CC_FP_ICC : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), "; SELECT_CC_FP_ICC PSEUDO!", [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>; def SELECT_CC_DFP_ICC : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), "; SELECT_CC_DFP_ICC PSEUDO!", [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>; } let usesCustomInserter = 1, Uses = [FCC] in { def SELECT_CC_Int_FCC : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), "; SELECT_CC_Int_FCC PSEUDO!", [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>; def SELECT_CC_FP_FCC : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), "; SELECT_CC_FP_FCC PSEUDO!", [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>; def SELECT_CC_DFP_FCC : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), "; SELECT_CC_DFP_FCC PSEUDO!", [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>; } // Section A.3 - Synthetic Instructions, p. 85 // special cases of JMPL: let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { let rd = O7.Num, rs1 = G0.Num in def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val), "jmp %o7+$val", [(retflag simm13:$val)]>; let rd = I7.Num, rs1 = G0.Num in def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val), "jmp %i7+$val", []>; } // Section B.1 - Load Integer Instructions, p. 90 def LDSBrr : F3_1<3, 0b001001, (outs IntRegs:$dst), (ins MEMrr:$addr), "ldsb [$addr], $dst", [(set i32:$dst, (sextloadi8 ADDRrr:$addr))]>; def LDSBri : F3_2<3, 0b001001, (outs IntRegs:$dst), (ins MEMri:$addr), "ldsb [$addr], $dst", [(set i32:$dst, (sextloadi8 ADDRri:$addr))]>; def LDSHrr : F3_1<3, 0b001010, (outs IntRegs:$dst), (ins MEMrr:$addr), "ldsh [$addr], $dst", [(set i32:$dst, (sextloadi16 ADDRrr:$addr))]>; def LDSHri : F3_2<3, 0b001010, (outs IntRegs:$dst), (ins MEMri:$addr), "ldsh [$addr], $dst", [(set i32:$dst, (sextloadi16 ADDRri:$addr))]>; def LDUBrr : F3_1<3, 0b000001, (outs IntRegs:$dst), (ins MEMrr:$addr), "ldub [$addr], $dst", [(set i32:$dst, (zextloadi8 ADDRrr:$addr))]>; def LDUBri : F3_2<3, 0b000001, (outs IntRegs:$dst), (ins MEMri:$addr), "ldub [$addr], $dst", [(set i32:$dst, (zextloadi8 ADDRri:$addr))]>; def LDUHrr : F3_1<3, 0b000010, (outs IntRegs:$dst), (ins MEMrr:$addr), "lduh [$addr], $dst", [(set i32:$dst, (zextloadi16 ADDRrr:$addr))]>; def LDUHri : F3_2<3, 0b000010, (outs IntRegs:$dst), (ins MEMri:$addr), "lduh [$addr], $dst", [(set i32:$dst, (zextloadi16 ADDRri:$addr))]>; def LDrr : F3_1<3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr), "ld [$addr], $dst", [(set i32:$dst, (load ADDRrr:$addr))]>; def LDri : F3_2<3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), "ld [$addr], $dst", [(set i32:$dst, (load ADDRri:$addr))]>; // Section B.2 - Load Floating-point Instructions, p. 92 def LDFrr : F3_1<3, 0b100000, (outs FPRegs:$dst), (ins MEMrr:$addr), "ld [$addr], $dst", [(set f32:$dst, (load ADDRrr:$addr))]>; def LDFri : F3_2<3, 0b100000, (outs FPRegs:$dst), (ins MEMri:$addr), "ld [$addr], $dst", [(set f32:$dst, (load ADDRri:$addr))]>; def LDDFrr : F3_1<3, 0b100011, (outs DFPRegs:$dst), (ins MEMrr:$addr), "ldd [$addr], $dst", [(set f64:$dst, (load ADDRrr:$addr))]>; def LDDFri : F3_2<3, 0b100011, (outs DFPRegs:$dst), (ins MEMri:$addr), "ldd [$addr], $dst", [(set f64:$dst, (load ADDRri:$addr))]>; // Section B.4 - Store Integer Instructions, p. 95 def STBrr : F3_1<3, 0b000101, (outs), (ins MEMrr:$addr, IntRegs:$src), "stb $src, [$addr]", [(truncstorei8 i32:$src, ADDRrr:$addr)]>; def STBri : F3_2<3, 0b000101, (outs), (ins MEMri:$addr, IntRegs:$src), "stb $src, [$addr]", [(truncstorei8 i32:$src, ADDRri:$addr)]>; def STHrr : F3_1<3, 0b000110, (outs), (ins MEMrr:$addr, IntRegs:$src), "sth $src, [$addr]", [(truncstorei16 i32:$src, ADDRrr:$addr)]>; def STHri : F3_2<3, 0b000110, (outs), (ins MEMri:$addr, IntRegs:$src), "sth $src, [$addr]", [(truncstorei16 i32:$src, ADDRri:$addr)]>; def STrr : F3_1<3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src), "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>; def STri : F3_2<3, 0b000100, (outs), (ins MEMri:$addr, IntRegs:$src), "st $src, [$addr]", [(store i32:$src, ADDRri:$addr)]>; // Section B.5 - Store Floating-point Instructions, p. 97 def STFrr : F3_1<3, 0b100100, (outs), (ins MEMrr:$addr, FPRegs:$src), "st $src, [$addr]", [(store f32:$src, ADDRrr:$addr)]>; def STFri : F3_2<3, 0b100100, (outs), (ins MEMri:$addr, FPRegs:$src), "st $src, [$addr]", [(store f32:$src, ADDRri:$addr)]>; def STDFrr : F3_1<3, 0b100111, (outs), (ins MEMrr:$addr, DFPRegs:$src), "std $src, [$addr]", [(store f64:$src, ADDRrr:$addr)]>; def STDFri : F3_2<3, 0b100111, (outs), (ins MEMri:$addr, DFPRegs:$src), "std $src, [$addr]", [(store f64:$src, ADDRri:$addr)]>; // Section B.9 - SETHI Instruction, p. 104 def SETHIi: F2_1<0b100, (outs IntRegs:$dst), (ins i32imm:$src), "sethi $src, $dst", [(set i32:$dst, SETHIimm:$src)]>; // Section B.10 - NOP Instruction, p. 105 // (It's a special case of SETHI) let rd = 0, imm22 = 0 in def NOP : F2_1<0b100, (outs), (ins), "nop", []>; // Section B.11 - Logical Instructions, p. 106 defm AND : F3_12<"and", 0b000001, and>; def ANDNrr : F3_1<2, 0b000101, (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), "andn $b, $c, $dst", [(set i32:$dst, (and i32:$b, (not i32:$c)))]>; def ANDNri : F3_2<2, 0b000101, (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), "andn $b, $c, $dst", []>; defm OR : F3_12<"or", 0b000010, or>; def ORNrr : F3_1<2, 0b000110, (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), "orn $b, $c, $dst", [(set i32:$dst, (or i32:$b, (not i32:$c)))]>; def ORNri : F3_2<2, 0b000110, (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), "orn $b, $c, $dst", []>; defm XOR : F3_12<"xor", 0b000011, xor>; def XNORrr : F3_1<2, 0b000111, (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), "xnor $b, $c, $dst", [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>; def XNORri : F3_2<2, 0b000111, (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), "xnor $b, $c, $dst", []>; // Section B.12 - Shift Instructions, p. 107 defm SLL : F3_12<"sll", 0b100101, shl>; defm SRL : F3_12<"srl", 0b100110, srl>; defm SRA : F3_12<"sra", 0b100111, sra>; // Section B.13 - Add Instructions, p. 108 defm ADD : F3_12<"add", 0b000000, add>; // "LEA" forms of add (patterns to make tblgen happy) def LEA_ADDri : F3_2<2, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), "add ${addr:arith}, $dst", [(set iPTR:$dst, ADDRri:$addr)]>; let Defs = [ICC] in defm ADDCC : F3_12<"addcc", 0b010000, addc>; let Uses = [ICC] in defm ADDX : F3_12<"addx", 0b001000, adde>; // Section B.15 - Subtract Instructions, p. 110 defm SUB : F3_12 <"sub" , 0b000100, sub>; let Uses = [ICC] in defm SUBX : F3_12 <"subx" , 0b001100, sube>; let Defs = [ICC] in { defm SUBCC : F3_12 <"subcc", 0b010100, subc>; def CMPrr : F3_1<2, 0b010100, (outs), (ins IntRegs:$b, IntRegs:$c), "cmp $b, $c", [(SPcmpicc i32:$b, i32:$c)]>; def CMPri : F3_1<2, 0b010100, (outs), (ins IntRegs:$b, i32imm:$c), "cmp $b, $c", [(SPcmpicc i32:$b, (i32 simm13:$c))]>; } let Uses = [ICC], Defs = [ICC] in def SUBXCCrr: F3_1<2, 0b011100, (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), "subxcc $b, $c, $dst", []>; // Section B.18 - Multiply Instructions, p. 113 let Defs = [Y] in { defm UMUL : F3_12np<"umul", 0b001010>; defm SMUL : F3_12 <"smul", 0b001011, mul>; } // Section B.19 - Divide Instructions, p. 115 let Defs = [Y] in { defm UDIV : F3_12np<"udiv", 0b001110>; defm SDIV : F3_12np<"sdiv", 0b001111>; } // Section B.20 - SAVE and RESTORE, p. 117 defm SAVE : F3_12np<"save" , 0b111100>; defm RESTORE : F3_12np<"restore", 0b111101>; // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 // conditional branch class: class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern> : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> { let isBranch = 1; let isTerminator = 1; let hasDelaySlot = 1; } let isBarrier = 1 in def BA : BranchSP<0b1000, (ins brtarget:$dst), "ba $dst", [(br bb:$dst)]>; // Indirect branch instructions. let isTerminator = 1, isBarrier = 1, hasDelaySlot = 1, isBranch =1, isIndirectBranch = 1 in { def BINDrr : F3_1<2, 0b111000, (outs), (ins MEMrr:$ptr), "jmp $ptr", [(brind ADDRrr:$ptr)]>; def BINDri : F3_2<2, 0b111000, (outs), (ins MEMri:$ptr), "jmp $ptr", [(brind ADDRri:$ptr)]>; } // FIXME: the encoding for the JIT should look at the condition field. let Uses = [ICC] in def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc), "b$cc $dst", [(SPbricc bb:$dst, imm:$cc)]>; // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121 // floating-point conditional branch class: class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern> : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> { let isBranch = 1; let isTerminator = 1; let hasDelaySlot = 1; } // FIXME: the encoding for the JIT should look at the condition field. let Uses = [FCC] in def FBCOND : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc), "fb$cc $dst", [(SPbrfcc bb:$dst, imm:$cc)]>; // Section B.24 - Call and Link Instruction, p. 125 // This is the only Format 1 instruction let Uses = [O6], hasDelaySlot = 1, isCall = 1, Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, ICC, FCC, Y] in { def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops), "call $dst", []> { bits<30> disp; let op = 1; let Inst{29-0} = disp; } // indirect calls def JMPLrr : F3_1<2, 0b111000, (outs), (ins MEMrr:$ptr, variable_ops), "call $ptr", [(call ADDRrr:$ptr)]>; def JMPLri : F3_2<2, 0b111000, (outs), (ins MEMri:$ptr, variable_ops), "call $ptr", [(call ADDRri:$ptr)]>; } // Section B.28 - Read State Register Instructions let Uses = [Y] in def RDY : F3_1<2, 0b101000, (outs IntRegs:$dst), (ins), "rd %y, $dst", []>; // Section B.29 - Write State Register Instructions let Defs = [Y] in { def WRYrr : F3_1<2, 0b110000, (outs), (ins IntRegs:$b, IntRegs:$c), "wr $b, $c, %y", []>; def WRYri : F3_2<2, 0b110000, (outs), (ins IntRegs:$b, i32imm:$c), "wr $b, $c, %y", []>; } // Convert Integer to Floating-point Instructions, p. 141 def FITOS : F3_3<2, 0b110100, 0b011000100, (outs FPRegs:$dst), (ins FPRegs:$src), "fitos $src, $dst", [(set FPRegs:$dst, (SPitof FPRegs:$src))]>; def FITOD : F3_3<2, 0b110100, 0b011001000, (outs DFPRegs:$dst), (ins FPRegs:$src), "fitod $src, $dst", [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>; // Convert Floating-point to Integer Instructions, p. 142 def FSTOI : F3_3<2, 0b110100, 0b011010001, (outs FPRegs:$dst), (ins FPRegs:$src), "fstoi $src, $dst", [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>; def FDTOI : F3_3<2, 0b110100, 0b011010010, (outs FPRegs:$dst), (ins DFPRegs:$src), "fdtoi $src, $dst", [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>; // Convert between Floating-point Formats Instructions, p. 143 def FSTOD : F3_3<2, 0b110100, 0b011001001, (outs DFPRegs:$dst), (ins FPRegs:$src), "fstod $src, $dst", [(set f64:$dst, (fextend f32:$src))]>; def FDTOS : F3_3<2, 0b110100, 0b011000110, (outs FPRegs:$dst), (ins DFPRegs:$src), "fdtos $src, $dst", [(set f32:$dst, (fround f64:$src))]>; // Floating-point Move Instructions, p. 144 def FMOVS : F3_3<2, 0b110100, 0b000000001, (outs FPRegs:$dst), (ins FPRegs:$src), "fmovs $src, $dst", []>; def FNEGS : F3_3<2, 0b110100, 0b000000101, (outs FPRegs:$dst), (ins FPRegs:$src), "fnegs $src, $dst", [(set f32:$dst, (fneg f32:$src))]>; def FABSS : F3_3<2, 0b110100, 0b000001001, (outs FPRegs:$dst), (ins FPRegs:$src), "fabss $src, $dst", [(set f32:$dst, (fabs f32:$src))]>; // Floating-point Square Root Instructions, p.145 def FSQRTS : F3_3<2, 0b110100, 0b000101001, (outs FPRegs:$dst), (ins FPRegs:$src), "fsqrts $src, $dst", [(set f32:$dst, (fsqrt f32:$src))]>; def FSQRTD : F3_3<2, 0b110100, 0b000101010, (outs DFPRegs:$dst), (ins DFPRegs:$src), "fsqrtd $src, $dst", [(set f64:$dst, (fsqrt f64:$src))]>; // Floating-point Add and Subtract Instructions, p. 146 def FADDS : F3_3<2, 0b110100, 0b001000001, (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), "fadds $src1, $src2, $dst", [(set f32:$dst, (fadd f32:$src1, f32:$src2))]>; def FADDD : F3_3<2, 0b110100, 0b001000010, (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), "faddd $src1, $src2, $dst", [(set f64:$dst, (fadd f64:$src1, f64:$src2))]>; def FSUBS : F3_3<2, 0b110100, 0b001000101, (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), "fsubs $src1, $src2, $dst", [(set f32:$dst, (fsub f32:$src1, f32:$src2))]>; def FSUBD : F3_3<2, 0b110100, 0b001000110, (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), "fsubd $src1, $src2, $dst", [(set f64:$dst, (fsub f64:$src1, f64:$src2))]>; // Floating-point Multiply and Divide Instructions, p. 147 def FMULS : F3_3<2, 0b110100, 0b001001001, (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), "fmuls $src1, $src2, $dst", [(set f32:$dst, (fmul f32:$src1, f32:$src2))]>; def FMULD : F3_3<2, 0b110100, 0b001001010, (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), "fmuld $src1, $src2, $dst", [(set f64:$dst, (fmul f64:$src1, f64:$src2))]>; def FSMULD : F3_3<2, 0b110100, 0b001101001, (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), "fsmuld $src1, $src2, $dst", [(set f64:$dst, (fmul (fextend f32:$src1), (fextend f32:$src2)))]>; def FDIVS : F3_3<2, 0b110100, 0b001001101, (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), "fdivs $src1, $src2, $dst", [(set f32:$dst, (fdiv f32:$src1, f32:$src2))]>; def FDIVD : F3_3<2, 0b110100, 0b001001110, (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), "fdivd $src1, $src2, $dst", [(set f64:$dst, (fdiv f64:$src1, f64:$src2))]>; // Floating-point Compare Instructions, p. 148 // Note: the 2nd template arg is different for these guys. // Note 2: the result of a FCMP is not available until the 2nd cycle // after the instr is retired, but there is no interlock. This behavior // is modelled with a forced noop after the instruction. let Defs = [FCC] in { def FCMPS : F3_3<2, 0b110101, 0b001010001, (outs), (ins FPRegs:$src1, FPRegs:$src2), "fcmps $src1, $src2\n\tnop", [(SPcmpfcc f32:$src1, f32:$src2)]>; def FCMPD : F3_3<2, 0b110101, 0b001010010, (outs), (ins DFPRegs:$src1, DFPRegs:$src2), "fcmpd $src1, $src2\n\tnop", [(SPcmpfcc f64:$src1, f64:$src2)]>; } //===----------------------------------------------------------------------===// // V9 Instructions //===----------------------------------------------------------------------===// // V9 Conditional Moves. let Predicates = [HasV9], Constraints = "$f = $rd" in { // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual. // FIXME: Add instruction encodings for the JIT some day. let Uses = [ICC] in { def MOVICCrr : Pseudo<(outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cc), "mov$cc %icc, $rs2, $rd", [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cc))]>; def MOVICCri : Pseudo<(outs IntRegs:$rd), (ins i32imm:$i, IntRegs:$f, CCOp:$cc), "mov$cc %icc, $i, $rd", [(set i32:$rd, (SPselecticc simm11:$i, i32:$f, imm:$cc))]>; } let Uses = [FCC] in { def MOVFCCrr : Pseudo<(outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cc), "mov$cc %fcc0, $rs2, $rd", [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cc))]>; def MOVFCCri : Pseudo<(outs IntRegs:$rd), (ins i32imm:$i, IntRegs:$f, CCOp:$cc), "mov$cc %fcc0, $i, $rd", [(set i32:$rd, (SPselectfcc simm11:$i, i32:$f, imm:$cc))]>; } let Uses = [ICC] in { def FMOVS_ICC : Pseudo<(outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cc), "fmovs$cc %icc, $rs2, $rd", [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cc))]>; def FMOVD_ICC : Pseudo<(outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cc), "fmovd$cc %icc, $rs2, $rd", [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cc))]>; } let Uses = [FCC] in { def FMOVS_FCC : Pseudo<(outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cc), "fmovs$cc %fcc0, $rs2, $rd", [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cc))]>; def FMOVD_FCC : Pseudo<(outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cc), "fmovd$cc %fcc0, $rs2, $rd", [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cc))]>; } } // Floating-Point Move Instructions, p. 164 of the V9 manual. let Predicates = [HasV9] in { def FMOVD : F3_3<2, 0b110100, 0b000000010, (outs DFPRegs:$dst), (ins DFPRegs:$src), "fmovd $src, $dst", []>; def FNEGD : F3_3<2, 0b110100, 0b000000110, (outs DFPRegs:$dst), (ins DFPRegs:$src), "fnegd $src, $dst", [(set f64:$dst, (fneg f64:$src))]>; def FABSD : F3_3<2, 0b110100, 0b000001010, (outs DFPRegs:$dst), (ins DFPRegs:$src), "fabsd $src, $dst", [(set f64:$dst, (fabs f64:$src))]>; } // POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear // the top 32-bits before using it. To do this clearing, we use a SLLri X,0. def POPCrr : F3_1<2, 0b101110, (outs IntRegs:$dst), (ins IntRegs:$src), "popc $src, $dst", []>, Requires<[HasV9]>; def : Pat<(ctpop i32:$src), (POPCrr (SLLri $src, 0))>; //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===// // Small immediates. def : Pat<(i32 simm13:$val), (ORri (i32 G0), imm:$val)>; // Arbitrary immediates. def : Pat<(i32 imm:$val), (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>; // Global addresses, constant pool entries def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>; def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>; // Blockaddress def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>; def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>; // Add reg, lo. This is used when taking the addr of a global/constpool entry. def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>; def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDri $r, tconstpool:$in)>; def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)), (ADDri $r, tblockaddress:$in)>; // Calls: def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>; def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>; // Map integer extload's to zextloads. def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>; def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>; // zextload bool -> zextload byte def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; // store 0, addr -> store %g0, addr def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>; def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>; include "SparcInstr64Bit.td"