//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes Mips64 instructions. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Mips Operand, Complex Patterns and Transformations Definitions. //===----------------------------------------------------------------------===// // Instruction operand types def shamt_64 : Operand<i64>; // Unsigned Operand def uimm16_64 : Operand<i64> { let PrintMethod = "printUnsignedImm"; } // Transformation Function - get Imm - 32. def Subtract32 : SDNodeXForm<imm, [{ return getImm(N, (unsigned)N->getZExtValue() - 32); }]>; // shamt must fit in 6 bits. def immZExt6 : ImmLeaf<i32, [{return Imm == (Imm & 0x3f);}]>; //===----------------------------------------------------------------------===// // Instructions specific format //===----------------------------------------------------------------------===// let DecoderNamespace = "Mips64" in { multiclass Atomic2Ops64<PatFrag Op> { def NAME : Atomic2Ops<Op, GPR64, GPR32>, Requires<[NotN64, HasStdEnc]>; def _P8 : Atomic2Ops<Op, GPR64, GPR64>, Requires<[IsN64, HasStdEnc]>; } multiclass AtomicCmpSwap64<PatFrag Op> { def NAME : AtomicCmpSwap<Op, GPR64, GPR32>, Requires<[NotN64, HasStdEnc]>; def _P8 : AtomicCmpSwap<Op, GPR64, GPR64>, Requires<[IsN64, HasStdEnc]>; } } let usesCustomInserter = 1, Predicates = [HasStdEnc], DecoderNamespace = "Mips64" in { defm ATOMIC_LOAD_ADD_I64 : Atomic2Ops64<atomic_load_add_64>; defm ATOMIC_LOAD_SUB_I64 : Atomic2Ops64<atomic_load_sub_64>; defm ATOMIC_LOAD_AND_I64 : Atomic2Ops64<atomic_load_and_64>; defm ATOMIC_LOAD_OR_I64 : Atomic2Ops64<atomic_load_or_64>; defm ATOMIC_LOAD_XOR_I64 : Atomic2Ops64<atomic_load_xor_64>; defm ATOMIC_LOAD_NAND_I64 : Atomic2Ops64<atomic_load_nand_64>; defm ATOMIC_SWAP_I64 : Atomic2Ops64<atomic_swap_64>; defm ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap64<atomic_cmp_swap_64>; } /// Pseudo instructions for loading and storing accumulator registers. let isPseudo = 1, isCodeGenOnly = 1 in { defm LOAD_AC128 : LoadM<"", ACRegs128>; defm STORE_AC128 : StoreM<"", ACRegs128>; } //===----------------------------------------------------------------------===// // Instruction definition //===----------------------------------------------------------------------===// let DecoderNamespace = "Mips64" in { /// Arithmetic Instructions (ALU Immediate) def DADDi : ArithLogicI<"daddi", simm16_64, GPR64Opnd>, ADDI_FM<0x18>; def DADDiu : ArithLogicI<"daddiu", simm16_64, GPR64Opnd, IIArith, immSExt16, add>, ADDI_FM<0x19>, IsAsCheapAsAMove; let isCodeGenOnly = 1 in { def SLTi64 : SetCC_I<"slti", setlt, simm16_64, immSExt16, GPR64Opnd>, SLTI_FM<0xa>; def SLTiu64 : SetCC_I<"sltiu", setult, simm16_64, immSExt16, GPR64Opnd>, SLTI_FM<0xb>; def ANDi64 : ArithLogicI<"andi", uimm16_64, GPR64Opnd, IILogic, immZExt16, and>, ADDI_FM<0xc>; def ORi64 : ArithLogicI<"ori", uimm16_64, GPR64Opnd, IILogic, immZExt16, or>, ADDI_FM<0xd>; def XORi64 : ArithLogicI<"xori", uimm16_64, GPR64Opnd, IILogic, immZExt16, xor>, ADDI_FM<0xe>; def LUi64 : LoadUpper<"lui", GPR64Opnd, uimm16_64>, LUI_FM; } /// Arithmetic Instructions (3-Operand, R-Type) def DADD : ArithLogicR<"dadd", GPR64Opnd>, ADD_FM<0, 0x2c>; def DADDu : ArithLogicR<"daddu", GPR64Opnd, 1, IIArith, add>, ADD_FM<0, 0x2d>; def DSUBu : ArithLogicR<"dsubu", GPR64Opnd, 0, IIArith, sub>, ADD_FM<0, 0x2f>; let isCodeGenOnly = 1 in { def SLT64 : SetCC_R<"slt", setlt, GPR64Opnd>, ADD_FM<0, 0x2a>; def SLTu64 : SetCC_R<"sltu", setult, GPR64Opnd>, ADD_FM<0, 0x2b>; def AND64 : ArithLogicR<"and", GPR64Opnd, 1, IIArith, and>, ADD_FM<0, 0x24>; def OR64 : ArithLogicR<"or", GPR64Opnd, 1, IIArith, or>, ADD_FM<0, 0x25>; def XOR64 : ArithLogicR<"xor", GPR64Opnd, 1, IIArith, xor>, ADD_FM<0, 0x26>; def NOR64 : LogicNOR<"nor", GPR64Opnd>, ADD_FM<0, 0x27>; } /// Shift Instructions def DSLL : shift_rotate_imm<"dsll", shamt, GPR64Opnd, shl, immZExt6>, SRA_FM<0x38, 0>; def DSRL : shift_rotate_imm<"dsrl", shamt, GPR64Opnd, srl, immZExt6>, SRA_FM<0x3a, 0>; def DSRA : shift_rotate_imm<"dsra", shamt, GPR64Opnd, sra, immZExt6>, SRA_FM<0x3b, 0>; def DSLLV : shift_rotate_reg<"dsllv", GPR64Opnd, shl>, SRLV_FM<0x14, 0>; def DSRLV : shift_rotate_reg<"dsrlv", GPR64Opnd, srl>, SRLV_FM<0x16, 0>; def DSRAV : shift_rotate_reg<"dsrav", GPR64Opnd, sra>, SRLV_FM<0x17, 0>; def DSLL32 : shift_rotate_imm<"dsll32", shamt, GPR64Opnd>, SRA_FM<0x3c, 0>; def DSRL32 : shift_rotate_imm<"dsrl32", shamt, GPR64Opnd>, SRA_FM<0x3e, 0>; def DSRA32 : shift_rotate_imm<"dsra32", shamt, GPR64Opnd>, SRA_FM<0x3f, 0>; // Rotate Instructions let Predicates = [HasMips64r2, HasStdEnc] in { def DROTR : shift_rotate_imm<"drotr", shamt, GPR64Opnd, rotr, immZExt6>, SRA_FM<0x3a, 1>; def DROTRV : shift_rotate_reg<"drotrv", GPR64Opnd, rotr>, SRLV_FM<0x16, 1>; } /// Load and Store Instructions /// aligned let isCodeGenOnly = 1 in { defm LB64 : LoadM<"lb", GPR64Opnd, sextloadi8, IILoad>, LW_FM<0x20>; defm LBu64 : LoadM<"lbu", GPR64Opnd, zextloadi8, IILoad>, LW_FM<0x24>; defm LH64 : LoadM<"lh", GPR64Opnd, sextloadi16, IILoad>, LW_FM<0x21>; defm LHu64 : LoadM<"lhu", GPR64Opnd, zextloadi16, IILoad>, LW_FM<0x25>; defm LW64 : LoadM<"lw", GPR64Opnd, sextloadi32, IILoad>, LW_FM<0x23>; defm SB64 : StoreM<"sb", GPR64Opnd, truncstorei8, IIStore>, LW_FM<0x28>; defm SH64 : StoreM<"sh", GPR64Opnd, truncstorei16, IIStore>, LW_FM<0x29>; defm SW64 : StoreM<"sw", GPR64Opnd, truncstorei32, IIStore>, LW_FM<0x2b>; } defm LWu : LoadM<"lwu", GPR64Opnd, zextloadi32, IILoad>, LW_FM<0x27>; defm LD : LoadM<"ld", GPR64Opnd, load, IILoad>, LW_FM<0x37>; defm SD : StoreM<"sd", GPR64Opnd, store, IIStore>, LW_FM<0x3f>; /// load/store left/right let isCodeGenOnly = 1 in { defm LWL64 : LoadLeftRightM<"lwl", MipsLWL, GPR64Opnd>, LW_FM<0x22>; defm LWR64 : LoadLeftRightM<"lwr", MipsLWR, GPR64Opnd>, LW_FM<0x26>; defm SWL64 : StoreLeftRightM<"swl", MipsSWL, GPR64Opnd>, LW_FM<0x2a>; defm SWR64 : StoreLeftRightM<"swr", MipsSWR, GPR64Opnd>, LW_FM<0x2e>; } defm LDL : LoadLeftRightM<"ldl", MipsLDL, GPR64Opnd>, LW_FM<0x1a>; defm LDR : LoadLeftRightM<"ldr", MipsLDR, GPR64Opnd>, LW_FM<0x1b>; defm SDL : StoreLeftRightM<"sdl", MipsSDL, GPR64Opnd>, LW_FM<0x2c>; defm SDR : StoreLeftRightM<"sdr", MipsSDR, GPR64Opnd>, LW_FM<0x2d>; /// Load-linked, Store-conditional let Predicates = [NotN64, HasStdEnc] in { def LLD : LLBase<"lld", GPR64Opnd, mem>, LW_FM<0x34>; def SCD : SCBase<"scd", GPR64Opnd, mem>, LW_FM<0x3c>; } let Predicates = [IsN64, HasStdEnc], isCodeGenOnly = 1 in { def LLD_P8 : LLBase<"lld", GPR64Opnd, mem64>, LW_FM<0x34>; def SCD_P8 : SCBase<"scd", GPR64Opnd, mem64>, LW_FM<0x3c>; } /// Jump and Branch Instructions let isCodeGenOnly = 1 in { def JR64 : IndirectBranch<GPR64Opnd>, MTLO_FM<8>; def BEQ64 : CBranch<"beq", seteq, GPR64Opnd>, BEQ_FM<4>; def BNE64 : CBranch<"bne", setne, GPR64Opnd>, BEQ_FM<5>; def BGEZ64 : CBranchZero<"bgez", setge, GPR64Opnd>, BGEZ_FM<1, 1>; def BGTZ64 : CBranchZero<"bgtz", setgt, GPR64Opnd>, BGEZ_FM<7, 0>; def BLEZ64 : CBranchZero<"blez", setle, GPR64Opnd>, BGEZ_FM<6, 0>; def BLTZ64 : CBranchZero<"bltz", setlt, GPR64Opnd>, BGEZ_FM<1, 0>; def JALR64 : JumpLinkReg<"jalr", GPR64Opnd>, JALR_FM; def JALR64Pseudo : JumpLinkRegPseudo<GPR64Opnd, JALR, RA, GPR32Opnd>; def TAILCALL64_R : JumpFR<GPR64Opnd, MipsTailCall>, MTLO_FM<8>, IsTailCall; } /// Multiply and Divide Instructions. def DMULT : Mult<"dmult", IIImult, GPR64Opnd, [HI64, LO64]>, MULT_FM<0, 0x1c>; def DMULTu : Mult<"dmultu", IIImult, GPR64Opnd, [HI64, LO64]>, MULT_FM<0, 0x1d>; def PseudoDMULT : MultDivPseudo<DMULT, ACRegs128, GPR64Opnd, MipsMult, IIImult>; def PseudoDMULTu : MultDivPseudo<DMULTu, ACRegs128, GPR64Opnd, MipsMultu, IIImult>; def DSDIV : Div<"ddiv", IIIdiv, GPR64Opnd, [HI64, LO64]>, MULT_FM<0, 0x1e>; def DUDIV : Div<"ddivu", IIIdiv, GPR64Opnd, [HI64, LO64]>, MULT_FM<0, 0x1f>; def PseudoDSDIV : MultDivPseudo<DSDIV, ACRegs128, GPR64Opnd, MipsDivRem, IIIdiv, 0, 1, 1>; def PseudoDUDIV : MultDivPseudo<DUDIV, ACRegs128, GPR64Opnd, MipsDivRemU, IIIdiv, 0, 1, 1>; let isCodeGenOnly = 1 in { def MTHI64 : MoveToLOHI<"mthi", GPR64Opnd, [HI64]>, MTLO_FM<0x11>; def MTLO64 : MoveToLOHI<"mtlo", GPR64Opnd, [LO64]>, MTLO_FM<0x13>; def MFHI64 : MoveFromLOHI<"mfhi", GPR64Opnd, [HI64]>, MFLO_FM<0x10>; def MFLO64 : MoveFromLOHI<"mflo", GPR64Opnd, [LO64]>, MFLO_FM<0x12>; /// Sign Ext In Register Instructions. def SEB64 : SignExtInReg<"seb", i8, GPR64Opnd>, SEB_FM<0x10, 0x20>; def SEH64 : SignExtInReg<"seh", i16, GPR64Opnd>, SEB_FM<0x18, 0x20>; } /// Count Leading def DCLZ : CountLeading0<"dclz", GPR64Opnd>, CLO_FM<0x24>; def DCLO : CountLeading1<"dclo", GPR64Opnd>, CLO_FM<0x25>; /// Double Word Swap Bytes/HalfWords def DSBH : SubwordSwap<"dsbh", GPR64Opnd>, SEB_FM<2, 0x24>; def DSHD : SubwordSwap<"dshd", GPR64Opnd>, SEB_FM<5, 0x24>; def LEA_ADDiu64 : EffectiveAddress<"daddiu", GPR64Opnd, mem_ea_64>, LW_FM<0x19>; let isCodeGenOnly = 1 in def RDHWR64 : ReadHardware<GPR64Opnd, HW64RegsOpnd>, RDHWR_FM; def DEXT : ExtBase<"dext", GPR64Opnd>, EXT_FM<3>; let Pattern = []<dag> in { def DEXTU : ExtBase<"dextu", GPR64Opnd>, EXT_FM<2>; def DEXTM : ExtBase<"dextm", GPR64Opnd>, EXT_FM<1>; } def DINS : InsBase<"dins", GPR64Opnd>, EXT_FM<7>; let Pattern = []<dag> in { def DINSU : InsBase<"dinsu", GPR64Opnd>, EXT_FM<6>; def DINSM : InsBase<"dinsm", GPR64Opnd>, EXT_FM<5>; } let isCodeGenOnly = 1, rs = 0, shamt = 0 in { def DSLL64_32 : FR<0x00, 0x3c, (outs GPR64:$rd), (ins GPR32:$rt), "dsll\t$rd, $rt, 32", [], IIArith>; def SLL64_32 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR32:$rt), "sll\t$rd, $rt, 0", [], IIArith>; def SLL64_64 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR64:$rt), "sll\t$rd, $rt, 0", [], IIArith>; } } //===----------------------------------------------------------------------===// // Arbitrary patterns that map to one or more instructions //===----------------------------------------------------------------------===// // extended loads let Predicates = [NotN64, HasStdEnc] in { def : MipsPat<(i64 (extloadi1 addr:$src)), (LB64 addr:$src)>; def : MipsPat<(i64 (extloadi8 addr:$src)), (LB64 addr:$src)>; def : MipsPat<(i64 (extloadi16 addr:$src)), (LH64 addr:$src)>; def : MipsPat<(i64 (extloadi32 addr:$src)), (LW64 addr:$src)>; } let Predicates = [IsN64, HasStdEnc] in { def : MipsPat<(i64 (extloadi1 addr:$src)), (LB64_P8 addr:$src)>; def : MipsPat<(i64 (extloadi8 addr:$src)), (LB64_P8 addr:$src)>; def : MipsPat<(i64 (extloadi16 addr:$src)), (LH64_P8 addr:$src)>; def : MipsPat<(i64 (extloadi32 addr:$src)), (LW64_P8 addr:$src)>; } // hi/lo relocs def : MipsPat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>; def : MipsPat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>; def : MipsPat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>; def : MipsPat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>; def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>; def : MipsPat<(MipsHi texternalsym:$in), (LUi64 texternalsym:$in)>; def : MipsPat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>; def : MipsPat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>; def : MipsPat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>; def : MipsPat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>; def : MipsPat<(MipsLo tglobaltlsaddr:$in), (DADDiu ZERO_64, tglobaltlsaddr:$in)>; def : MipsPat<(MipsLo texternalsym:$in), (DADDiu ZERO_64, texternalsym:$in)>; def : MipsPat<(add GPR64:$hi, (MipsLo tglobaladdr:$lo)), (DADDiu GPR64:$hi, tglobaladdr:$lo)>; def : MipsPat<(add GPR64:$hi, (MipsLo tblockaddress:$lo)), (DADDiu GPR64:$hi, tblockaddress:$lo)>; def : MipsPat<(add GPR64:$hi, (MipsLo tjumptable:$lo)), (DADDiu GPR64:$hi, tjumptable:$lo)>; def : MipsPat<(add GPR64:$hi, (MipsLo tconstpool:$lo)), (DADDiu GPR64:$hi, tconstpool:$lo)>; def : MipsPat<(add GPR64:$hi, (MipsLo tglobaltlsaddr:$lo)), (DADDiu GPR64:$hi, tglobaltlsaddr:$lo)>; def : WrapperPat<tglobaladdr, DADDiu, GPR64>; def : WrapperPat<tconstpool, DADDiu, GPR64>; def : WrapperPat<texternalsym, DADDiu, GPR64>; def : WrapperPat<tblockaddress, DADDiu, GPR64>; def : WrapperPat<tjumptable, DADDiu, GPR64>; def : WrapperPat<tglobaltlsaddr, DADDiu, GPR64>; defm : BrcondPats<GPR64, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64, ZERO_64>; def : MipsPat<(brcond (i32 (setlt i64:$lhs, 1)), bb:$dst), (BLEZ64 i64:$lhs, bb:$dst)>; def : MipsPat<(brcond (i32 (setgt i64:$lhs, -1)), bb:$dst), (BGEZ64 i64:$lhs, bb:$dst)>; // setcc patterns defm : SeteqPats<GPR64, SLTiu64, XOR64, SLTu64, ZERO_64>; defm : SetlePats<GPR64, SLT64, SLTu64>; defm : SetgtPats<GPR64, SLT64, SLTu64>; defm : SetgePats<GPR64, SLT64, SLTu64>; defm : SetgeImmPats<GPR64, SLTi64, SLTiu64>; // truncate def : MipsPat<(i32 (trunc GPR64:$src)), (SLL (EXTRACT_SUBREG GPR64:$src, sub_32), 0)>, Requires<[IsN64, HasStdEnc]>; // 32-to-64-bit extension def : MipsPat<(i64 (anyext GPR32:$src)), (SLL64_32 GPR32:$src)>; def : MipsPat<(i64 (zext GPR32:$src)), (DSRL (DSLL64_32 GPR32:$src), 32)>; def : MipsPat<(i64 (sext GPR32:$src)), (SLL64_32 GPR32:$src)>; // Sign extend in register def : MipsPat<(i64 (sext_inreg GPR64:$src, i32)), (SLL64_64 GPR64:$src)>; // bswap MipsPattern def : MipsPat<(bswap GPR64:$rt), (DSHD (DSBH GPR64:$rt))>; // mflo/hi patterns. def : MipsPat<(i64 (ExtractLOHI ACRegs128:$ac, imm:$lohi_idx)), (EXTRACT_SUBREG ACRegs128:$ac, imm:$lohi_idx)>; //===----------------------------------------------------------------------===// // Instruction aliases //===----------------------------------------------------------------------===// def : InstAlias<"move $dst, $src", (DADDu GPR64Opnd:$dst, GPR64Opnd:$src, ZERO_64), 1>, Requires<[HasMips64]>; def : InstAlias<"daddu $rs, $rt, $imm", (DADDiu GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm), 0>; def : InstAlias<"dadd $rs, $rt, $imm", (DADDi GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm), 0>; /// Move between CPU and coprocessor registers let DecoderNamespace = "Mips64" in { def DMFC0_3OP64 : MFC3OP<(outs GPR64Opnd:$rt), (ins GPR64Opnd:$rd, uimm16:$sel), "dmfc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 1>; def DMTC0_3OP64 : MFC3OP<(outs GPR64Opnd:$rd, uimm16:$sel), (ins GPR64Opnd:$rt), "dmtc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 5>; def DMFC2_3OP64 : MFC3OP<(outs GPR64Opnd:$rt), (ins GPR64Opnd:$rd, uimm16:$sel), "dmfc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 1>; def DMTC2_3OP64 : MFC3OP<(outs GPR64Opnd:$rd, uimm16:$sel), (ins GPR64Opnd:$rt), "dmtc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 5>; } // Two operand (implicit 0 selector) versions: def : InstAlias<"dmfc0 $rt, $rd", (DMFC0_3OP64 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>; def : InstAlias<"dmtc0 $rt, $rd", (DMTC0_3OP64 GPR64Opnd:$rd, 0, GPR64Opnd:$rt), 0>; def : InstAlias<"dmfc2 $rt, $rd", (DMFC2_3OP64 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>; def : InstAlias<"dmtc2 $rt, $rd", (DMTC2_3OP64 GPR64Opnd:$rd, 0, GPR64Opnd:$rt), 0>;