//===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the Hexagon target. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "hexagon-isel" #include "Hexagon.h" #include "HexagonISelLowering.h" #include "HexagonTargetMachine.h" #include "llvm/ADT/DenseMap.h" #include "llvm/IR/Intrinsics.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" using namespace llvm; static cl::opt<unsigned> MaxNumOfUsesForConstExtenders("ga-max-num-uses-for-constant-extenders", cl::Hidden, cl::init(2), cl::desc("Maximum number of uses of a global address such that we still us a" "constant extended instruction")); //===----------------------------------------------------------------------===// // Instruction Selector Implementation //===----------------------------------------------------------------------===// namespace llvm { void initializeHexagonDAGToDAGISelPass(PassRegistry&); } //===--------------------------------------------------------------------===// /// HexagonDAGToDAGISel - Hexagon specific code to select Hexagon machine /// instructions for SelectionDAG operations. /// namespace { class HexagonDAGToDAGISel : public SelectionDAGISel { /// Subtarget - Keep a pointer to the Hexagon Subtarget around so that we can /// make the right decision when generating code for different targets. const HexagonSubtarget &Subtarget; // Keep a reference to HexagonTargetMachine. const HexagonTargetMachine& TM; DenseMap<const GlobalValue *, unsigned> GlobalAddressUseCountMap; public: explicit HexagonDAGToDAGISel(HexagonTargetMachine &targetmachine, CodeGenOpt::Level OptLevel) : SelectionDAGISel(targetmachine, OptLevel), Subtarget(targetmachine.getSubtarget<HexagonSubtarget>()), TM(targetmachine) { initializeHexagonDAGToDAGISelPass(*PassRegistry::getPassRegistry()); } bool hasNumUsesBelowThresGA(SDNode *N) const; SDNode *Select(SDNode *N); // Complex Pattern Selectors. inline bool foldGlobalAddress(SDValue &N, SDValue &R); inline bool foldGlobalAddressGP(SDValue &N, SDValue &R); bool foldGlobalAddressImpl(SDValue &N, SDValue &R, bool ShouldLookForGP); bool SelectADDRri(SDValue& N, SDValue &R1, SDValue &R2); bool SelectADDRriS11_0(SDValue& N, SDValue &R1, SDValue &R2); bool SelectADDRriS11_1(SDValue& N, SDValue &R1, SDValue &R2); bool SelectADDRriS11_2(SDValue& N, SDValue &R1, SDValue &R2); bool SelectMEMriS11_2(SDValue& Addr, SDValue &Base, SDValue &Offset); bool SelectADDRriS11_3(SDValue& N, SDValue &R1, SDValue &R2); bool SelectADDRrr(SDValue &Addr, SDValue &Base, SDValue &Offset); bool SelectADDRriU6_0(SDValue& N, SDValue &R1, SDValue &R2); bool SelectADDRriU6_1(SDValue& N, SDValue &R1, SDValue &R2); bool SelectADDRriU6_2(SDValue& N, SDValue &R1, SDValue &R2); virtual const char *getPassName() const { return "Hexagon DAG->DAG Pattern Instruction Selection"; } /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for /// inline asm expressions. virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector<SDValue> &OutOps); bool SelectAddr(SDNode *Op, SDValue Addr, SDValue &Base, SDValue &Offset); SDNode *SelectLoad(SDNode *N); SDNode *SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl); SDNode *SelectIndexedLoad(LoadSDNode *LD, SDLoc dl); SDNode *SelectIndexedLoadZeroExtend64(LoadSDNode *LD, unsigned Opcode, SDLoc dl); SDNode *SelectIndexedLoadSignExtend64(LoadSDNode *LD, unsigned Opcode, SDLoc dl); SDNode *SelectBaseOffsetStore(StoreSDNode *ST, SDLoc dl); SDNode *SelectIndexedStore(StoreSDNode *ST, SDLoc dl); SDNode *SelectStore(SDNode *N); SDNode *SelectSHL(SDNode *N); SDNode *SelectSelect(SDNode *N); SDNode *SelectTruncate(SDNode *N); SDNode *SelectMul(SDNode *N); SDNode *SelectZeroExtend(SDNode *N); SDNode *SelectIntrinsicWOChain(SDNode *N); SDNode *SelectIntrinsicWChain(SDNode *N); SDNode *SelectConstant(SDNode *N); SDNode *SelectConstantFP(SDNode *N); SDNode *SelectAdd(SDNode *N); bool isConstExtProfitable(SDNode *N) const; // XformMskToBitPosU5Imm - Returns the bit position which // the single bit 32 bit mask represents. // Used in Clr and Set bit immediate memops. SDValue XformMskToBitPosU5Imm(uint32_t Imm) { int32_t bitPos; bitPos = Log2_32(Imm); assert(bitPos >= 0 && bitPos < 32 && "Constant out of range for 32 BitPos Memops"); return CurDAG->getTargetConstant(bitPos, MVT::i32); } // XformMskToBitPosU4Imm - Returns the bit position which the single bit 16 bit // mask represents. Used in Clr and Set bit immediate memops. SDValue XformMskToBitPosU4Imm(uint16_t Imm) { return XformMskToBitPosU5Imm(Imm); } // XformMskToBitPosU3Imm - Returns the bit position which the single bit 8 bit // mask represents. Used in Clr and Set bit immediate memops. SDValue XformMskToBitPosU3Imm(uint8_t Imm) { return XformMskToBitPosU5Imm(Imm); } // Return true if there is exactly one bit set in V, i.e., if V is one of the // following integers: 2^0, 2^1, ..., 2^31. bool ImmIsSingleBit(uint32_t v) const { uint32_t c = CountPopulation_64(v); // Only return true if we counted 1 bit. return c == 1; } // XformM5ToU5Imm - Return a target constant with the specified value, of type // i32 where the negative literal is transformed into a positive literal for // use in -= memops. inline SDValue XformM5ToU5Imm(signed Imm) { assert( (Imm >= -31 && Imm <= -1) && "Constant out of range for Memops"); return CurDAG->getTargetConstant( - Imm, MVT::i32); } // XformU7ToU7M1Imm - Return a target constant decremented by 1, in range // [1..128], used in cmpb.gtu instructions. inline SDValue XformU7ToU7M1Imm(signed Imm) { assert((Imm >= 1 && Imm <= 128) && "Constant out of range for cmpb op"); return CurDAG->getTargetConstant(Imm - 1, MVT::i8); } // XformS8ToS8M1Imm - Return a target constant decremented by 1. inline SDValue XformSToSM1Imm(signed Imm) { return CurDAG->getTargetConstant(Imm - 1, MVT::i32); } // XformU8ToU8M1Imm - Return a target constant decremented by 1. inline SDValue XformUToUM1Imm(unsigned Imm) { assert((Imm >= 1) && "Cannot decrement unsigned int less than 1"); return CurDAG->getTargetConstant(Imm - 1, MVT::i32); } // Include the pieces autogenerated from the target description. #include "HexagonGenDAGISel.inc" }; } // end anonymous namespace /// createHexagonISelDag - This pass converts a legalized DAG into a /// Hexagon-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createHexagonISelDag(HexagonTargetMachine &TM, CodeGenOpt::Level OptLevel) { return new HexagonDAGToDAGISel(TM, OptLevel); } static void initializePassOnce(PassRegistry &Registry) { const char *Name = "Hexagon DAG->DAG Pattern Instruction Selection"; PassInfo *PI = new PassInfo(Name, "hexagon-isel", &SelectionDAGISel::ID, 0, false, false); Registry.registerPass(*PI, true); } void llvm::initializeHexagonDAGToDAGISelPass(PassRegistry &Registry) { CALL_ONCE_INITIALIZATION(initializePassOnce) } static bool IsS11_0_Offset(SDNode * S) { ConstantSDNode *N = cast<ConstantSDNode>(S); // immS16 predicate - True if the immediate fits in a 16-bit sign extended // field. int64_t v = (int64_t)N->getSExtValue(); return isInt<11>(v); } static bool IsS11_1_Offset(SDNode * S) { ConstantSDNode *N = cast<ConstantSDNode>(S); // immS16 predicate - True if the immediate fits in a 16-bit sign extended // field. int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<11,1>(v); } static bool IsS11_2_Offset(SDNode * S) { ConstantSDNode *N = cast<ConstantSDNode>(S); // immS16 predicate - True if the immediate fits in a 16-bit sign extended // field. int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<11,2>(v); } static bool IsS11_3_Offset(SDNode * S) { ConstantSDNode *N = cast<ConstantSDNode>(S); // immS16 predicate - True if the immediate fits in a 16-bit sign extended // field. int64_t v = (int64_t)N->getSExtValue(); return isShiftedInt<11,3>(v); } static bool IsU6_0_Offset(SDNode * S) { ConstantSDNode *N = cast<ConstantSDNode>(S); // u6 predicate - True if the immediate fits in a 6-bit unsigned extended // field. int64_t v = (int64_t)N->getSExtValue(); return isUInt<6>(v); } static bool IsU6_1_Offset(SDNode * S) { ConstantSDNode *N = cast<ConstantSDNode>(S); // u6 predicate - True if the immediate fits in a 6-bit unsigned extended // field. int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<6,1>(v); } static bool IsU6_2_Offset(SDNode * S) { ConstantSDNode *N = cast<ConstantSDNode>(S); // u6 predicate - True if the immediate fits in a 6-bit unsigned extended // field. int64_t v = (int64_t)N->getSExtValue(); return isShiftedUInt<6,2>(v); } // Intrinsics that return a a predicate. static unsigned doesIntrinsicReturnPredicate(unsigned ID) { switch (ID) { default: return 0; case Intrinsic::hexagon_C2_cmpeq: case Intrinsic::hexagon_C2_cmpgt: case Intrinsic::hexagon_C2_cmpgtu: case Intrinsic::hexagon_C2_cmpgtup: case Intrinsic::hexagon_C2_cmpgtp: case Intrinsic::hexagon_C2_cmpeqp: case Intrinsic::hexagon_C2_bitsset: case Intrinsic::hexagon_C2_bitsclr: case Intrinsic::hexagon_C2_cmpeqi: case Intrinsic::hexagon_C2_cmpgti: case Intrinsic::hexagon_C2_cmpgtui: case Intrinsic::hexagon_C2_cmpgei: case Intrinsic::hexagon_C2_cmpgeui: case Intrinsic::hexagon_C2_cmplt: case Intrinsic::hexagon_C2_cmpltu: case Intrinsic::hexagon_C2_bitsclri: case Intrinsic::hexagon_C2_and: case Intrinsic::hexagon_C2_or: case Intrinsic::hexagon_C2_xor: case Intrinsic::hexagon_C2_andn: case Intrinsic::hexagon_C2_not: case Intrinsic::hexagon_C2_orn: case Intrinsic::hexagon_C2_pxfer_map: case Intrinsic::hexagon_C2_any8: case Intrinsic::hexagon_C2_all8: case Intrinsic::hexagon_A2_vcmpbeq: case Intrinsic::hexagon_A2_vcmpbgtu: case Intrinsic::hexagon_A2_vcmpheq: case Intrinsic::hexagon_A2_vcmphgt: case Intrinsic::hexagon_A2_vcmphgtu: case Intrinsic::hexagon_A2_vcmpweq: case Intrinsic::hexagon_A2_vcmpwgt: case Intrinsic::hexagon_A2_vcmpwgtu: case Intrinsic::hexagon_C2_tfrrp: case Intrinsic::hexagon_S2_tstbit_i: case Intrinsic::hexagon_S2_tstbit_r: return 1; } } // Intrinsics that have predicate operands. static unsigned doesIntrinsicContainPredicate(unsigned ID) { switch (ID) { default: return 0; case Intrinsic::hexagon_C2_tfrpr: return Hexagon::TFR_RsPd; case Intrinsic::hexagon_C2_and: return Hexagon::AND_pp; case Intrinsic::hexagon_C2_xor: return Hexagon::XOR_pp; case Intrinsic::hexagon_C2_or: return Hexagon::OR_pp; case Intrinsic::hexagon_C2_not: return Hexagon::NOT_p; case Intrinsic::hexagon_C2_any8: return Hexagon::ANY_pp; case Intrinsic::hexagon_C2_all8: return Hexagon::ALL_pp; case Intrinsic::hexagon_C2_vitpack: return Hexagon::VITPACK_pp; case Intrinsic::hexagon_C2_mask: return Hexagon::MASK_p; case Intrinsic::hexagon_C2_mux: return Hexagon::MUX_rr; // Mapping hexagon_C2_muxir to MUX_pri. This is pretty weird - but // that's how it's mapped in q6protos.h. case Intrinsic::hexagon_C2_muxir: return Hexagon::MUX_ri; // Mapping hexagon_C2_muxri to MUX_pir. This is pretty weird - but // that's how it's mapped in q6protos.h. case Intrinsic::hexagon_C2_muxri: return Hexagon::MUX_ir; case Intrinsic::hexagon_C2_muxii: return Hexagon::MUX_ii; case Intrinsic::hexagon_C2_vmux: return Hexagon::VMUX_prr64; case Intrinsic::hexagon_S2_valignrb: return Hexagon::VALIGN_rrp; case Intrinsic::hexagon_S2_vsplicerb: return Hexagon::VSPLICE_rrp; } } static bool OffsetFitsS11(EVT MemType, int64_t Offset) { if (MemType == MVT::i64 && isShiftedInt<11,3>(Offset)) { return true; } if (MemType == MVT::i32 && isShiftedInt<11,2>(Offset)) { return true; } if (MemType == MVT::i16 && isShiftedInt<11,1>(Offset)) { return true; } if (MemType == MVT::i8 && isInt<11>(Offset)) { return true; } return false; } // // Try to lower loads of GlobalAdresses into base+offset loads. Custom // lowering for GlobalAddress nodes has already turned it into a // CONST32. // SDNode *HexagonDAGToDAGISel::SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl) { SDValue Chain = LD->getChain(); SDNode* Const32 = LD->getBasePtr().getNode(); unsigned Opcode = 0; if (Const32->getOpcode() == HexagonISD::CONST32 && ISD::isNormalLoad(LD)) { SDValue Base = Const32->getOperand(0); EVT LoadedVT = LD->getMemoryVT(); int64_t Offset = cast<GlobalAddressSDNode>(Base)->getOffset(); if (Offset != 0 && OffsetFitsS11(LoadedVT, Offset)) { MVT PointerTy = getTargetLowering()->getPointerTy(); const GlobalValue* GV = cast<GlobalAddressSDNode>(Base)->getGlobal(); SDValue TargAddr = CurDAG->getTargetGlobalAddress(GV, dl, PointerTy, 0); SDNode* NewBase = CurDAG->getMachineNode(Hexagon::CONST32_set, dl, PointerTy, TargAddr); // Figure out base + offset opcode if (LoadedVT == MVT::i64) Opcode = Hexagon::LDrid_indexed; else if (LoadedVT == MVT::i32) Opcode = Hexagon::LDriw_indexed; else if (LoadedVT == MVT::i16) Opcode = Hexagon::LDrih_indexed; else if (LoadedVT == MVT::i8) Opcode = Hexagon::LDrib_indexed; else llvm_unreachable("unknown memory type"); // Build indexed load. SDValue TargetConstOff = CurDAG->getTargetConstant(Offset, PointerTy); SDNode* Result = CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), MVT::Other, SDValue(NewBase,0), TargetConstOff, Chain); MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = LD->getMemOperand(); cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); ReplaceUses(LD, Result); return Result; } } return SelectCode(LD); } SDNode *HexagonDAGToDAGISel::SelectIndexedLoadSignExtend64(LoadSDNode *LD, unsigned Opcode, SDLoc dl) { SDValue Chain = LD->getChain(); EVT LoadedVT = LD->getMemoryVT(); SDValue Base = LD->getBasePtr(); SDValue Offset = LD->getOffset(); SDNode *OffsetNode = Offset.getNode(); int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue(); SDValue N1 = LD->getOperand(1); SDValue CPTmpN1_0; SDValue CPTmpN1_1; if (SelectADDRriS11_2(N1, CPTmpN1_0, CPTmpN1_1) && N1.getNode()->getValueType(0) == MVT::i32) { const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo*>(TM.getInstrInfo()); if (TII->isValidAutoIncImm(LoadedVT, Val)) { SDValue TargetConst = CurDAG->getTargetConstant(Val, MVT::i32); SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::i32, MVT::Other, Base, TargetConst, Chain); SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::SXTW, dl, MVT::i64, SDValue(Result_1, 0)); MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = LD->getMemOperand(); cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1); const SDValue Froms[] = { SDValue(LD, 0), SDValue(LD, 1), SDValue(LD, 2) }; const SDValue Tos[] = { SDValue(Result_2, 0), SDValue(Result_1, 1), SDValue(Result_1, 2) }; ReplaceUses(Froms, Tos, 3); return Result_2; } SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32); SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other, Base, TargetConst0, Chain); SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::SXTW, dl, MVT::i64, SDValue(Result_1, 0)); SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32, Base, TargetConstVal, SDValue(Result_1, 1)); MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = LD->getMemOperand(); cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1); const SDValue Froms[] = { SDValue(LD, 0), SDValue(LD, 1), SDValue(LD, 2) }; const SDValue Tos[] = { SDValue(Result_2, 0), SDValue(Result_3, 0), SDValue(Result_1, 1) }; ReplaceUses(Froms, Tos, 3); return Result_2; } return SelectCode(LD); } SDNode *HexagonDAGToDAGISel::SelectIndexedLoadZeroExtend64(LoadSDNode *LD, unsigned Opcode, SDLoc dl) { SDValue Chain = LD->getChain(); EVT LoadedVT = LD->getMemoryVT(); SDValue Base = LD->getBasePtr(); SDValue Offset = LD->getOffset(); SDNode *OffsetNode = Offset.getNode(); int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue(); SDValue N1 = LD->getOperand(1); SDValue CPTmpN1_0; SDValue CPTmpN1_1; if (SelectADDRriS11_2(N1, CPTmpN1_0, CPTmpN1_1) && N1.getNode()->getValueType(0) == MVT::i32) { const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo*>(TM.getInstrInfo()); if (TII->isValidAutoIncImm(LoadedVT, Val)) { SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32); SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::i32, MVT::Other, Base, TargetConstVal, Chain); SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::TFRI, dl, MVT::i32, TargetConst0); SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::COMBINE_rr, dl, MVT::i64, MVT::Other, SDValue(Result_2,0), SDValue(Result_1,0)); MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = LD->getMemOperand(); cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1); const SDValue Froms[] = { SDValue(LD, 0), SDValue(LD, 1), SDValue(LD, 2) }; const SDValue Tos[] = { SDValue(Result_3, 0), SDValue(Result_1, 1), SDValue(Result_1, 2) }; ReplaceUses(Froms, Tos, 3); return Result_3; } // Generate an indirect load. SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32); SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other, Base, TargetConst0, Chain); SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::TFRI, dl, MVT::i32, TargetConst0); SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::COMBINE_rr, dl, MVT::i64, MVT::Other, SDValue(Result_2,0), SDValue(Result_1,0)); // Add offset to base. SDNode* Result_4 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32, Base, TargetConstVal, SDValue(Result_1, 1)); MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = LD->getMemOperand(); cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1); const SDValue Froms[] = { SDValue(LD, 0), SDValue(LD, 1), SDValue(LD, 2) }; const SDValue Tos[] = { SDValue(Result_3, 0), // Load value. SDValue(Result_4, 0), // New address. SDValue(Result_1, 1) }; ReplaceUses(Froms, Tos, 3); return Result_3; } return SelectCode(LD); } SDNode *HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, SDLoc dl) { SDValue Chain = LD->getChain(); SDValue Base = LD->getBasePtr(); SDValue Offset = LD->getOffset(); SDNode *OffsetNode = Offset.getNode(); // Get the constant value. int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue(); EVT LoadedVT = LD->getMemoryVT(); unsigned Opcode = 0; // Check for zero ext loads. bool zextval = (LD->getExtensionType() == ISD::ZEXTLOAD); // Figure out the opcode. const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo*>(TM.getInstrInfo()); if (LoadedVT == MVT::i64) { if (TII->isValidAutoIncImm(LoadedVT, Val)) Opcode = Hexagon::POST_LDrid; else Opcode = Hexagon::LDrid; } else if (LoadedVT == MVT::i32) { if (TII->isValidAutoIncImm(LoadedVT, Val)) Opcode = Hexagon::POST_LDriw; else Opcode = Hexagon::LDriw; } else if (LoadedVT == MVT::i16) { if (TII->isValidAutoIncImm(LoadedVT, Val)) Opcode = zextval ? Hexagon::POST_LDriuh : Hexagon::POST_LDrih; else Opcode = zextval ? Hexagon::LDriuh : Hexagon::LDrih; } else if (LoadedVT == MVT::i8) { if (TII->isValidAutoIncImm(LoadedVT, Val)) Opcode = zextval ? Hexagon::POST_LDriub : Hexagon::POST_LDrib; else Opcode = zextval ? Hexagon::LDriub : Hexagon::LDrib; } else llvm_unreachable("unknown memory type"); // For zero ext i64 loads, we need to add combine instructions. if (LD->getValueType(0) == MVT::i64 && LD->getExtensionType() == ISD::ZEXTLOAD) { return SelectIndexedLoadZeroExtend64(LD, Opcode, dl); } if (LD->getValueType(0) == MVT::i64 && LD->getExtensionType() == ISD::SEXTLOAD) { // Handle sign ext i64 loads. return SelectIndexedLoadSignExtend64(LD, Opcode, dl); } if (TII->isValidAutoIncImm(LoadedVT, Val)) { SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32); SDNode* Result = CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), MVT::i32, MVT::Other, Base, TargetConstVal, Chain); MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = LD->getMemOperand(); cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); const SDValue Froms[] = { SDValue(LD, 0), SDValue(LD, 1), SDValue(LD, 2) }; const SDValue Tos[] = { SDValue(Result, 0), SDValue(Result, 1), SDValue(Result, 2) }; ReplaceUses(Froms, Tos, 3); return Result; } else { SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32); SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), MVT::Other, Base, TargetConst0, Chain); SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32, Base, TargetConstVal, SDValue(Result_1, 1)); MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = LD->getMemOperand(); cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1); const SDValue Froms[] = { SDValue(LD, 0), SDValue(LD, 1), SDValue(LD, 2) }; const SDValue Tos[] = { SDValue(Result_1, 0), SDValue(Result_2, 0), SDValue(Result_1, 1) }; ReplaceUses(Froms, Tos, 3); return Result_1; } } SDNode *HexagonDAGToDAGISel::SelectLoad(SDNode *N) { SDNode *result; SDLoc dl(N); LoadSDNode *LD = cast<LoadSDNode>(N); ISD::MemIndexedMode AM = LD->getAddressingMode(); // Handle indexed loads. if (AM != ISD::UNINDEXED) { result = SelectIndexedLoad(LD, dl); } else { result = SelectBaseOffsetLoad(LD, dl); } return result; } SDNode *HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, SDLoc dl) { SDValue Chain = ST->getChain(); SDValue Base = ST->getBasePtr(); SDValue Offset = ST->getOffset(); SDValue Value = ST->getValue(); SDNode *OffsetNode = Offset.getNode(); // Get the constant value. int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue(); EVT StoredVT = ST->getMemoryVT(); // Offset value must be within representable range // and must have correct alignment properties. const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo*>(TM.getInstrInfo()); if (TII->isValidAutoIncImm(StoredVT, Val)) { SDValue Ops[] = {Base, CurDAG->getTargetConstant(Val, MVT::i32), Value, Chain}; unsigned Opcode = 0; // Figure out the post inc version of opcode. if (StoredVT == MVT::i64) Opcode = Hexagon::POST_STdri; else if (StoredVT == MVT::i32) Opcode = Hexagon::POST_STwri; else if (StoredVT == MVT::i16) Opcode = Hexagon::POST_SThri; else if (StoredVT == MVT::i8) Opcode = Hexagon::POST_STbri; else llvm_unreachable("unknown memory type"); // Build post increment store. SDNode* Result = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other, Ops); MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = ST->getMemOperand(); cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); ReplaceUses(ST, Result); ReplaceUses(SDValue(ST,1), SDValue(Result,1)); return Result; } // Note: Order of operands matches the def of instruction: // def STrid : STInst<(outs), (ins MEMri:$addr, DoubleRegs:$src1), ... // and it differs for POST_ST* for instance. SDValue Ops[] = { Base, CurDAG->getTargetConstant(0, MVT::i32), Value, Chain}; unsigned Opcode = 0; // Figure out the opcode. if (StoredVT == MVT::i64) Opcode = Hexagon::STrid; else if (StoredVT == MVT::i32) Opcode = Hexagon::STriw_indexed; else if (StoredVT == MVT::i16) Opcode = Hexagon::STrih; else if (StoredVT == MVT::i8) Opcode = Hexagon::STrib; else llvm_unreachable("unknown memory type"); // Build regular store. SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32); SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops); // Build splitted incriment instruction. SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32, Base, TargetConstVal, SDValue(Result_1, 0)); MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = ST->getMemOperand(); cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1); ReplaceUses(SDValue(ST,0), SDValue(Result_2,0)); ReplaceUses(SDValue(ST,1), SDValue(Result_1,0)); return Result_2; } SDNode *HexagonDAGToDAGISel::SelectBaseOffsetStore(StoreSDNode *ST, SDLoc dl) { SDValue Chain = ST->getChain(); SDNode* Const32 = ST->getBasePtr().getNode(); SDValue Value = ST->getValue(); unsigned Opcode = 0; // Try to lower stores of GlobalAdresses into indexed stores. Custom // lowering for GlobalAddress nodes has already turned it into a // CONST32. Avoid truncating stores for the moment. Post-inc stores // do the same. Don't think there's a reason for it, so will file a // bug to fix. if ((Const32->getOpcode() == HexagonISD::CONST32) && !(Value.getValueType() == MVT::i64 && ST->isTruncatingStore())) { SDValue Base = Const32->getOperand(0); if (Base.getOpcode() == ISD::TargetGlobalAddress) { EVT StoredVT = ST->getMemoryVT(); int64_t Offset = cast<GlobalAddressSDNode>(Base)->getOffset(); if (Offset != 0 && OffsetFitsS11(StoredVT, Offset)) { MVT PointerTy = getTargetLowering()->getPointerTy(); const GlobalValue* GV = cast<GlobalAddressSDNode>(Base)->getGlobal(); SDValue TargAddr = CurDAG->getTargetGlobalAddress(GV, dl, PointerTy, 0); SDNode* NewBase = CurDAG->getMachineNode(Hexagon::CONST32_set, dl, PointerTy, TargAddr); // Figure out base + offset opcode if (StoredVT == MVT::i64) Opcode = Hexagon::STrid_indexed; else if (StoredVT == MVT::i32) Opcode = Hexagon::STriw_indexed; else if (StoredVT == MVT::i16) Opcode = Hexagon::STrih_indexed; else if (StoredVT == MVT::i8) Opcode = Hexagon::STrib_indexed; else llvm_unreachable("unknown memory type"); SDValue Ops[] = {SDValue(NewBase,0), CurDAG->getTargetConstant(Offset,PointerTy), Value, Chain}; // build indexed store SDNode* Result = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops); MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = ST->getMemOperand(); cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); ReplaceUses(ST, Result); return Result; } } } return SelectCode(ST); } SDNode *HexagonDAGToDAGISel::SelectStore(SDNode *N) { SDLoc dl(N); StoreSDNode *ST = cast<StoreSDNode>(N); ISD::MemIndexedMode AM = ST->getAddressingMode(); // Handle indexed stores. if (AM != ISD::UNINDEXED) { return SelectIndexedStore(ST, dl); } return SelectBaseOffsetStore(ST, dl); } SDNode *HexagonDAGToDAGISel::SelectMul(SDNode *N) { SDLoc dl(N); // // %conv.i = sext i32 %tmp1 to i64 // %conv2.i = sext i32 %add to i64 // %mul.i = mul nsw i64 %conv2.i, %conv.i // // --- match with the following --- // // %mul.i = mpy (%tmp1, %add) // if (N->getValueType(0) == MVT::i64) { // Shifting a i64 signed multiply. SDValue MulOp0 = N->getOperand(0); SDValue MulOp1 = N->getOperand(1); SDValue OP0; SDValue OP1; // Handle sign_extend and sextload. if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) { SDValue Sext0 = MulOp0.getOperand(0); if (Sext0.getNode()->getValueType(0) != MVT::i32) { return SelectCode(N); } OP0 = Sext0; } else if (MulOp0.getOpcode() == ISD::LOAD) { LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode()); if (LD->getMemoryVT() != MVT::i32 || LD->getExtensionType() != ISD::SEXTLOAD || LD->getAddressingMode() != ISD::UNINDEXED) { return SelectCode(N); } SDValue Chain = LD->getChain(); SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); OP0 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32, MVT::Other, LD->getBasePtr(), TargetConst0, Chain), 0); } else { return SelectCode(N); } // Same goes for the second operand. if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) { SDValue Sext1 = MulOp1.getOperand(0); if (Sext1.getNode()->getValueType(0) != MVT::i32) { return SelectCode(N); } OP1 = Sext1; } else if (MulOp1.getOpcode() == ISD::LOAD) { LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode()); if (LD->getMemoryVT() != MVT::i32 || LD->getExtensionType() != ISD::SEXTLOAD || LD->getAddressingMode() != ISD::UNINDEXED) { return SelectCode(N); } SDValue Chain = LD->getChain(); SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); OP1 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32, MVT::Other, LD->getBasePtr(), TargetConst0, Chain), 0); } else { return SelectCode(N); } // Generate a mpy instruction. SDNode *Result = CurDAG->getMachineNode(Hexagon::MPY64, dl, MVT::i64, OP0, OP1); ReplaceUses(N, Result); return Result; } return SelectCode(N); } SDNode *HexagonDAGToDAGISel::SelectSelect(SDNode *N) { SDLoc dl(N); SDValue N0 = N->getOperand(0); if (N0.getOpcode() == ISD::SETCC) { SDValue N00 = N0.getOperand(0); if (N00.getOpcode() == ISD::SIGN_EXTEND_INREG) { SDValue N000 = N00.getOperand(0); SDValue N001 = N00.getOperand(1); if (cast<VTSDNode>(N001)->getVT() == MVT::i16) { SDValue N01 = N0.getOperand(1); SDValue N02 = N0.getOperand(2); // Pattern: (select:i32 (setcc:i1 (sext_inreg:i32 IntRegs:i32:$src2, // i16:Other),IntRegs:i32:$src1, SETLT:Other),IntRegs:i32:$src1, // IntRegs:i32:$src2) // Emits: (MAXh_rr:i32 IntRegs:i32:$src1, IntRegs:i32:$src2) // Pattern complexity = 9 cost = 1 size = 0. if (cast<CondCodeSDNode>(N02)->get() == ISD::SETLT) { SDValue N1 = N->getOperand(1); if (N01 == N1) { SDValue N2 = N->getOperand(2); if (N000 == N2 && N0.getNode()->getValueType(N0.getResNo()) == MVT::i1 && N00.getNode()->getValueType(N00.getResNo()) == MVT::i32) { SDNode *SextNode = CurDAG->getMachineNode(Hexagon::SXTH, dl, MVT::i32, N000); SDNode *Result = CurDAG->getMachineNode(Hexagon::MAXw_rr, dl, MVT::i32, SDValue(SextNode, 0), N1); ReplaceUses(N, Result); return Result; } } } // Pattern: (select:i32 (setcc:i1 (sext_inreg:i32 IntRegs:i32:$src2, // i16:Other), IntRegs:i32:$src1, SETGT:Other), IntRegs:i32:$src1, // IntRegs:i32:$src2) // Emits: (MINh_rr:i32 IntRegs:i32:$src1, IntRegs:i32:$src2) // Pattern complexity = 9 cost = 1 size = 0. if (cast<CondCodeSDNode>(N02)->get() == ISD::SETGT) { SDValue N1 = N->getOperand(1); if (N01 == N1) { SDValue N2 = N->getOperand(2); if (N000 == N2 && N0.getNode()->getValueType(N0.getResNo()) == MVT::i1 && N00.getNode()->getValueType(N00.getResNo()) == MVT::i32) { SDNode *SextNode = CurDAG->getMachineNode(Hexagon::SXTH, dl, MVT::i32, N000); SDNode *Result = CurDAG->getMachineNode(Hexagon::MINw_rr, dl, MVT::i32, SDValue(SextNode, 0), N1); ReplaceUses(N, Result); return Result; } } } } } } return SelectCode(N); } SDNode *HexagonDAGToDAGISel::SelectTruncate(SDNode *N) { SDLoc dl(N); SDValue Shift = N->getOperand(0); // // %conv.i = sext i32 %tmp1 to i64 // %conv2.i = sext i32 %add to i64 // %mul.i = mul nsw i64 %conv2.i, %conv.i // %shr5.i = lshr i64 %mul.i, 32 // %conv3.i = trunc i64 %shr5.i to i32 // // --- match with the following --- // // %conv3.i = mpy (%tmp1, %add) // // Trunc to i32. if (N->getValueType(0) == MVT::i32) { // Trunc from i64. if (Shift.getNode()->getValueType(0) == MVT::i64) { // Trunc child is logical shift right. if (Shift.getOpcode() != ISD::SRL) { return SelectCode(N); } SDValue ShiftOp0 = Shift.getOperand(0); SDValue ShiftOp1 = Shift.getOperand(1); // Shift by const 32 if (ShiftOp1.getOpcode() != ISD::Constant) { return SelectCode(N); } int32_t ShiftConst = cast<ConstantSDNode>(ShiftOp1.getNode())->getSExtValue(); if (ShiftConst != 32) { return SelectCode(N); } // Shifting a i64 signed multiply SDValue Mul = ShiftOp0; if (Mul.getOpcode() != ISD::MUL) { return SelectCode(N); } SDValue MulOp0 = Mul.getOperand(0); SDValue MulOp1 = Mul.getOperand(1); SDValue OP0; SDValue OP1; // Handle sign_extend and sextload if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) { SDValue Sext0 = MulOp0.getOperand(0); if (Sext0.getNode()->getValueType(0) != MVT::i32) { return SelectCode(N); } OP0 = Sext0; } else if (MulOp0.getOpcode() == ISD::LOAD) { LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode()); if (LD->getMemoryVT() != MVT::i32 || LD->getExtensionType() != ISD::SEXTLOAD || LD->getAddressingMode() != ISD::UNINDEXED) { return SelectCode(N); } SDValue Chain = LD->getChain(); SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); OP0 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32, MVT::Other, LD->getBasePtr(), TargetConst0, Chain), 0); } else { return SelectCode(N); } // Same goes for the second operand. if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) { SDValue Sext1 = MulOp1.getOperand(0); if (Sext1.getNode()->getValueType(0) != MVT::i32) return SelectCode(N); OP1 = Sext1; } else if (MulOp1.getOpcode() == ISD::LOAD) { LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode()); if (LD->getMemoryVT() != MVT::i32 || LD->getExtensionType() != ISD::SEXTLOAD || LD->getAddressingMode() != ISD::UNINDEXED) { return SelectCode(N); } SDValue Chain = LD->getChain(); SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); OP1 = SDValue (CurDAG->getMachineNode(Hexagon::LDriw, dl, MVT::i32, MVT::Other, LD->getBasePtr(), TargetConst0, Chain), 0); } else { return SelectCode(N); } // Generate a mpy instruction. SDNode *Result = CurDAG->getMachineNode(Hexagon::MPY, dl, MVT::i32, OP0, OP1); ReplaceUses(N, Result); return Result; } } return SelectCode(N); } SDNode *HexagonDAGToDAGISel::SelectSHL(SDNode *N) { SDLoc dl(N); if (N->getValueType(0) == MVT::i32) { SDValue Shl_0 = N->getOperand(0); SDValue Shl_1 = N->getOperand(1); // RHS is const. if (Shl_1.getOpcode() == ISD::Constant) { if (Shl_0.getOpcode() == ISD::MUL) { SDValue Mul_0 = Shl_0.getOperand(0); // Val SDValue Mul_1 = Shl_0.getOperand(1); // Const // RHS of mul is const. if (Mul_1.getOpcode() == ISD::Constant) { int32_t ShlConst = cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue(); int32_t MulConst = cast<ConstantSDNode>(Mul_1.getNode())->getSExtValue(); int32_t ValConst = MulConst << ShlConst; SDValue Val = CurDAG->getTargetConstant(ValConst, MVT::i32); if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode())) if (isInt<9>(CN->getSExtValue())) { SDNode* Result = CurDAG->getMachineNode(Hexagon::MPYI_ri, dl, MVT::i32, Mul_0, Val); ReplaceUses(N, Result); return Result; } } } else if (Shl_0.getOpcode() == ISD::SUB) { SDValue Sub_0 = Shl_0.getOperand(0); // Const 0 SDValue Sub_1 = Shl_0.getOperand(1); // Val if (Sub_0.getOpcode() == ISD::Constant) { int32_t SubConst = cast<ConstantSDNode>(Sub_0.getNode())->getSExtValue(); if (SubConst == 0) { if (Sub_1.getOpcode() == ISD::SHL) { SDValue Shl2_0 = Sub_1.getOperand(0); // Val SDValue Shl2_1 = Sub_1.getOperand(1); // Const if (Shl2_1.getOpcode() == ISD::Constant) { int32_t ShlConst = cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue(); int32_t Shl2Const = cast<ConstantSDNode>(Shl2_1.getNode())->getSExtValue(); int32_t ValConst = 1 << (ShlConst+Shl2Const); SDValue Val = CurDAG->getTargetConstant(-ValConst, MVT::i32); if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode())) if (isInt<9>(CN->getSExtValue())) { SDNode* Result = CurDAG->getMachineNode(Hexagon::MPYI_ri, dl, MVT::i32, Shl2_0, Val); ReplaceUses(N, Result); return Result; } } } } } } } } return SelectCode(N); } // // If there is an zero_extend followed an intrinsic in DAG (this means - the // result of the intrinsic is predicate); convert the zero_extend to // transfer instruction. // // Zero extend -> transfer is lowered here. Otherwise, zero_extend will be // converted into a MUX as predicate registers defined as 1 bit in the // compiler. Architecture defines them as 8-bit registers. // We want to preserve all the lower 8-bits and, not just 1 LSB bit. // SDNode *HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) { SDLoc dl(N); SDNode *IsIntrinsic = N->getOperand(0).getNode(); if ((IsIntrinsic->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) { unsigned ID = cast<ConstantSDNode>(IsIntrinsic->getOperand(0))->getZExtValue(); if (doesIntrinsicReturnPredicate(ID)) { // Now we need to differentiate target data types. if (N->getValueType(0) == MVT::i64) { // Convert the zero_extend to Rs = Pd followed by COMBINE_rr(0,Rs). SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32); SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::TFR_RsPd, dl, MVT::i32, SDValue(IsIntrinsic, 0)); SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::TFRI, dl, MVT::i32, TargetConst0); SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::COMBINE_rr, dl, MVT::i64, MVT::Other, SDValue(Result_2, 0), SDValue(Result_1, 0)); ReplaceUses(N, Result_3); return Result_3; } if (N->getValueType(0) == MVT::i32) { // Convert the zero_extend to Rs = Pd SDNode* RsPd = CurDAG->getMachineNode(Hexagon::TFR_RsPd, dl, MVT::i32, SDValue(IsIntrinsic, 0)); ReplaceUses(N, RsPd); return RsPd; } llvm_unreachable("Unexpected value type"); } } return SelectCode(N); } // // Checking for intrinsics which have predicate registers as operand(s) // and lowering to the actual intrinsic. // SDNode *HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) { SDLoc dl(N); unsigned ID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); unsigned IntrinsicWithPred = doesIntrinsicContainPredicate(ID); // We are concerned with only those intrinsics that have predicate registers // as at least one of the operands. if (IntrinsicWithPred) { SmallVector<SDValue, 8> Ops; const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo*>(TM.getInstrInfo()); const MCInstrDesc &MCID = TII->get(IntrinsicWithPred); const TargetRegisterInfo *TRI = TM.getRegisterInfo(); // Iterate over all the operands of the intrinsics. // For PredRegs, do the transfer. // For Double/Int Regs, just preserve the value // For immediates, lower it. for (unsigned i = 1; i < N->getNumOperands(); ++i) { SDNode *Arg = N->getOperand(i).getNode(); const TargetRegisterClass *RC = TII->getRegClass(MCID, i, TRI, *MF); if (RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass) { Ops.push_back(SDValue(Arg, 0)); } else if (RC == &Hexagon::PredRegsRegClass) { // Do the transfer. SDNode *PdRs = CurDAG->getMachineNode(Hexagon::TFR_PdRs, dl, MVT::i1, SDValue(Arg, 0)); Ops.push_back(SDValue(PdRs,0)); } else if (RC == NULL && (dyn_cast<ConstantSDNode>(Arg) != NULL)) { // This is immediate operand. Lower it here making sure that we DO have // const SDNode for immediate value. int32_t Val = cast<ConstantSDNode>(Arg)->getSExtValue(); SDValue SDVal = CurDAG->getTargetConstant(Val, MVT::i32); Ops.push_back(SDVal); } else { llvm_unreachable("Unimplemented"); } } EVT ReturnValueVT = N->getValueType(0); SDNode *Result = CurDAG->getMachineNode(IntrinsicWithPred, dl, ReturnValueVT, Ops); ReplaceUses(N, Result); return Result; } return SelectCode(N); } // // Map floating point constant values. // SDNode *HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) { SDLoc dl(N); ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N); APFloat APF = CN->getValueAPF(); if (N->getValueType(0) == MVT::f32) { return CurDAG->getMachineNode(Hexagon::TFRI_f, dl, MVT::f32, CurDAG->getTargetConstantFP(APF.convertToFloat(), MVT::f32)); } else if (N->getValueType(0) == MVT::f64) { return CurDAG->getMachineNode(Hexagon::CONST64_Float_Real, dl, MVT::f64, CurDAG->getTargetConstantFP(APF.convertToDouble(), MVT::f64)); } return SelectCode(N); } // // Map predicate true (encoded as -1 in LLVM) to a XOR. // SDNode *HexagonDAGToDAGISel::SelectConstant(SDNode *N) { SDLoc dl(N); if (N->getValueType(0) == MVT::i1) { SDNode* Result; int32_t Val = cast<ConstantSDNode>(N)->getSExtValue(); if (Val == -1) { // Create the IntReg = 1 node. SDNode* IntRegTFR = CurDAG->getMachineNode(Hexagon::TFRI, dl, MVT::i32, CurDAG->getTargetConstant(0, MVT::i32)); // Pd = IntReg SDNode* Pd = CurDAG->getMachineNode(Hexagon::TFR_PdRs, dl, MVT::i1, SDValue(IntRegTFR, 0)); // not(Pd) SDNode* NotPd = CurDAG->getMachineNode(Hexagon::NOT_p, dl, MVT::i1, SDValue(Pd, 0)); // xor(not(Pd)) Result = CurDAG->getMachineNode(Hexagon::XOR_pp, dl, MVT::i1, SDValue(Pd, 0), SDValue(NotPd, 0)); // We have just built: // Rs = Pd // Pd = xor(not(Pd), Pd) ReplaceUses(N, Result); return Result; } } return SelectCode(N); } // // Map add followed by a asr -> asr +=. // SDNode *HexagonDAGToDAGISel::SelectAdd(SDNode *N) { SDLoc dl(N); if (N->getValueType(0) != MVT::i32) { return SelectCode(N); } // Identify nodes of the form: add(asr(...)). SDNode* Src1 = N->getOperand(0).getNode(); if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse() || Src1->getValueType(0) != MVT::i32) { return SelectCode(N); } // Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that // Rd and Rd' are assigned to the same register SDNode* Result = CurDAG->getMachineNode(Hexagon::ASR_ADD_rr, dl, MVT::i32, N->getOperand(1), Src1->getOperand(0), Src1->getOperand(1)); ReplaceUses(N, Result); return Result; } SDNode *HexagonDAGToDAGISel::Select(SDNode *N) { if (N->isMachineOpcode()) return NULL; // Already selected. switch (N->getOpcode()) { case ISD::Constant: return SelectConstant(N); case ISD::ConstantFP: return SelectConstantFP(N); case ISD::ADD: return SelectAdd(N); case ISD::SHL: return SelectSHL(N); case ISD::LOAD: return SelectLoad(N); case ISD::STORE: return SelectStore(N); case ISD::SELECT: return SelectSelect(N); case ISD::TRUNCATE: return SelectTruncate(N); case ISD::MUL: return SelectMul(N); case ISD::ZERO_EXTEND: return SelectZeroExtend(N); case ISD::INTRINSIC_WO_CHAIN: return SelectIntrinsicWOChain(N); } return SelectCode(N); } // // Hexagon_TODO: Five functions for ADDRri?! Surely there must be a better way // to define these instructions. // bool HexagonDAGToDAGISel::SelectADDRri(SDValue& Addr, SDValue &Base, SDValue &Offset) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) return false; // Direct calls. if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); Offset = CurDAG->getTargetConstant(0, MVT::i32); return true; } Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool HexagonDAGToDAGISel::SelectADDRriS11_0(SDValue& Addr, SDValue &Base, SDValue &Offset) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) return false; // Direct calls. if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsS11_0_Offset(Offset.getNode())); } Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsS11_0_Offset(Offset.getNode())); } bool HexagonDAGToDAGISel::SelectADDRriS11_1(SDValue& Addr, SDValue &Base, SDValue &Offset) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) return false; // Direct calls. if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsS11_1_Offset(Offset.getNode())); } Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsS11_1_Offset(Offset.getNode())); } bool HexagonDAGToDAGISel::SelectADDRriS11_2(SDValue& Addr, SDValue &Base, SDValue &Offset) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) return false; // Direct calls. if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsS11_2_Offset(Offset.getNode())); } Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsS11_2_Offset(Offset.getNode())); } bool HexagonDAGToDAGISel::SelectADDRriU6_0(SDValue& Addr, SDValue &Base, SDValue &Offset) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) return false; // Direct calls. if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsU6_0_Offset(Offset.getNode())); } Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsU6_0_Offset(Offset.getNode())); } bool HexagonDAGToDAGISel::SelectADDRriU6_1(SDValue& Addr, SDValue &Base, SDValue &Offset) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) return false; // Direct calls. if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsU6_1_Offset(Offset.getNode())); } Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsU6_1_Offset(Offset.getNode())); } bool HexagonDAGToDAGISel::SelectADDRriU6_2(SDValue& Addr, SDValue &Base, SDValue &Offset) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) return false; // Direct calls. if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsU6_2_Offset(Offset.getNode())); } Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsU6_2_Offset(Offset.getNode())); } bool HexagonDAGToDAGISel::SelectMEMriS11_2(SDValue& Addr, SDValue &Base, SDValue &Offset) { if (Addr.getOpcode() != ISD::ADD) { return(SelectADDRriS11_2(Addr, Base, Offset)); } return SelectADDRriS11_2(Addr, Base, Offset); } bool HexagonDAGToDAGISel::SelectADDRriS11_3(SDValue& Addr, SDValue &Base, SDValue &Offset) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) return false; // Direct calls. if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsS11_3_Offset(Offset.getNode())); } Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return (IsS11_3_Offset(Offset.getNode())); } bool HexagonDAGToDAGISel::SelectADDRrr(SDValue &Addr, SDValue &R1, SDValue &R2) { if (Addr.getOpcode() == ISD::FrameIndex) return false; if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) return false; // Direct calls. if (Addr.getOpcode() == ISD::ADD) { if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) if (isInt<13>(CN->getSExtValue())) return false; // Let the reg+imm pattern catch this! R1 = Addr.getOperand(0); R2 = Addr.getOperand(1); return true; } R1 = Addr; return true; } // Handle generic address case. It is accessed from inlined asm =m constraints, // which could have any kind of pointer. bool HexagonDAGToDAGISel::SelectAddr(SDNode *Op, SDValue Addr, SDValue &Base, SDValue &Offset) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) return false; // Direct calls. if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); Offset = CurDAG->getTargetConstant(0, MVT::i32); return true; } if (Addr.getOpcode() == ISD::ADD) { Base = Addr.getOperand(0); Offset = Addr.getOperand(1); return true; } Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool HexagonDAGToDAGISel:: SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector<SDValue> &OutOps) { SDValue Op0, Op1; switch (ConstraintCode) { case 'o': // Offsetable. case 'v': // Not offsetable. default: return true; case 'm': // Memory. if (!SelectAddr(Op.getNode(), Op, Op0, Op1)) return true; break; } OutOps.push_back(Op0); OutOps.push_back(Op1); return false; } bool HexagonDAGToDAGISel::isConstExtProfitable(SDNode *N) const { unsigned UseCount = 0; for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { UseCount++; } return (UseCount <= 1); } //===--------------------------------------------------------------------===// // Return 'true' if use count of the global address is below threshold. //===--------------------------------------------------------------------===// bool HexagonDAGToDAGISel::hasNumUsesBelowThresGA(SDNode *N) const { assert(N->getOpcode() == ISD::TargetGlobalAddress && "Expecting a target global address"); // Always try to fold the address. if (TM.getOptLevel() == CodeGenOpt::Aggressive) return true; GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); DenseMap<const GlobalValue *, unsigned>::const_iterator GI = GlobalAddressUseCountMap.find(GA->getGlobal()); if (GI == GlobalAddressUseCountMap.end()) return false; return GI->second <= MaxNumOfUsesForConstExtenders; } //===--------------------------------------------------------------------===// // Return true if the non GP-relative global address can be folded. //===--------------------------------------------------------------------===// inline bool HexagonDAGToDAGISel::foldGlobalAddress(SDValue &N, SDValue &R) { return foldGlobalAddressImpl(N, R, false); } //===--------------------------------------------------------------------===// // Return true if the GP-relative global address can be folded. //===--------------------------------------------------------------------===// inline bool HexagonDAGToDAGISel::foldGlobalAddressGP(SDValue &N, SDValue &R) { return foldGlobalAddressImpl(N, R, true); } //===--------------------------------------------------------------------===// // Fold offset of the global address if number of uses are below threshold. //===--------------------------------------------------------------------===// bool HexagonDAGToDAGISel::foldGlobalAddressImpl(SDValue &N, SDValue &R, bool ShouldLookForGP) { if (N.getOpcode() == ISD::ADD) { SDValue N0 = N.getOperand(0); SDValue N1 = N.getOperand(1); if ((ShouldLookForGP && (N0.getOpcode() == HexagonISD::CONST32_GP)) || (!ShouldLookForGP && (N0.getOpcode() == HexagonISD::CONST32))) { ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1); GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0.getOperand(0)); if (Const && GA && (GA->getOpcode() == ISD::TargetGlobalAddress)) { if ((N0.getOpcode() == HexagonISD::CONST32) && !hasNumUsesBelowThresGA(GA)) return false; R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const), N.getValueType(), GA->getOffset() + (uint64_t)Const->getSExtValue()); return true; } } } return false; }