//===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the COFFObjectFile class. // //===----------------------------------------------------------------------===// #include "llvm/Object/COFF.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include <ctype.h> using namespace llvm; using namespace object; namespace { using support::ulittle8_t; using support::ulittle16_t; using support::ulittle32_t; using support::little16_t; } namespace { // Returns false if size is greater than the buffer size. And sets ec. bool checkSize(const MemoryBuffer *m, error_code &ec, uint64_t size) { if (m->getBufferSize() < size) { ec = object_error::unexpected_eof; return false; } return true; } // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. // Returns unexpected_eof if error. template<typename T> error_code getObject(const T *&Obj, const MemoryBuffer *M, const uint8_t *Ptr, const size_t Size = sizeof(T)) { uintptr_t Addr = uintptr_t(Ptr); if (Addr + Size < Addr || Addr + Size < Size || Addr + Size > uintptr_t(M->getBufferEnd())) { return object_error::unexpected_eof; } Obj = reinterpret_cast<const T *>(Addr); return object_error::success; } } const coff_symbol *COFFObjectFile::toSymb(DataRefImpl Symb) const { const coff_symbol *addr = reinterpret_cast<const coff_symbol*>(Symb.p); # ifndef NDEBUG // Verify that the symbol points to a valid entry in the symbol table. uintptr_t offset = uintptr_t(addr) - uintptr_t(base()); if (offset < COFFHeader->PointerToSymbolTable || offset >= COFFHeader->PointerToSymbolTable + (COFFHeader->NumberOfSymbols * sizeof(coff_symbol))) report_fatal_error("Symbol was outside of symbol table."); assert((offset - COFFHeader->PointerToSymbolTable) % sizeof(coff_symbol) == 0 && "Symbol did not point to the beginning of a symbol"); # endif return addr; } const coff_section *COFFObjectFile::toSec(DataRefImpl Sec) const { const coff_section *addr = reinterpret_cast<const coff_section*>(Sec.p); # ifndef NDEBUG // Verify that the section points to a valid entry in the section table. if (addr < SectionTable || addr >= (SectionTable + COFFHeader->NumberOfSections)) report_fatal_error("Section was outside of section table."); uintptr_t offset = uintptr_t(addr) - uintptr_t(SectionTable); assert(offset % sizeof(coff_section) == 0 && "Section did not point to the beginning of a section"); # endif return addr; } error_code COFFObjectFile::getSymbolNext(DataRefImpl Symb, SymbolRef &Result) const { const coff_symbol *symb = toSymb(Symb); symb += 1 + symb->NumberOfAuxSymbols; Symb.p = reinterpret_cast<uintptr_t>(symb); Result = SymbolRef(Symb, this); return object_error::success; } error_code COFFObjectFile::getSymbolName(DataRefImpl Symb, StringRef &Result) const { const coff_symbol *symb = toSymb(Symb); return getSymbolName(symb, Result); } error_code COFFObjectFile::getSymbolFileOffset(DataRefImpl Symb, uint64_t &Result) const { const coff_symbol *symb = toSymb(Symb); const coff_section *Section = NULL; if (error_code ec = getSection(symb->SectionNumber, Section)) return ec; char Type; if (error_code ec = getSymbolNMTypeChar(Symb, Type)) return ec; if (Type == 'U' || Type == 'w') Result = UnknownAddressOrSize; else if (Section) Result = Section->PointerToRawData + symb->Value; else Result = symb->Value; return object_error::success; } error_code COFFObjectFile::getSymbolAddress(DataRefImpl Symb, uint64_t &Result) const { const coff_symbol *symb = toSymb(Symb); const coff_section *Section = NULL; if (error_code ec = getSection(symb->SectionNumber, Section)) return ec; char Type; if (error_code ec = getSymbolNMTypeChar(Symb, Type)) return ec; if (Type == 'U' || Type == 'w') Result = UnknownAddressOrSize; else if (Section) Result = Section->VirtualAddress + symb->Value; else Result = symb->Value; return object_error::success; } error_code COFFObjectFile::getSymbolType(DataRefImpl Symb, SymbolRef::Type &Result) const { const coff_symbol *symb = toSymb(Symb); Result = SymbolRef::ST_Other; if (symb->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL && symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED) { Result = SymbolRef::ST_Unknown; } else { if (symb->getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) { Result = SymbolRef::ST_Function; } else { char Type; if (error_code ec = getSymbolNMTypeChar(Symb, Type)) return ec; if (Type == 'r' || Type == 'R') { Result = SymbolRef::ST_Data; } } } return object_error::success; } error_code COFFObjectFile::getSymbolFlags(DataRefImpl Symb, uint32_t &Result) const { const coff_symbol *symb = toSymb(Symb); Result = SymbolRef::SF_None; // TODO: Correctly set SF_FormatSpecific, SF_ThreadLocal, SF_Common if (symb->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL && symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED) Result |= SymbolRef::SF_Undefined; // TODO: This are certainly too restrictive. if (symb->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL) Result |= SymbolRef::SF_Global; if (symb->StorageClass == COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL) Result |= SymbolRef::SF_Weak; if (symb->SectionNumber == COFF::IMAGE_SYM_ABSOLUTE) Result |= SymbolRef::SF_Absolute; return object_error::success; } error_code COFFObjectFile::getSymbolSize(DataRefImpl Symb, uint64_t &Result) const { // FIXME: Return the correct size. This requires looking at all the symbols // in the same section as this symbol, and looking for either the next // symbol, or the end of the section. const coff_symbol *symb = toSymb(Symb); const coff_section *Section = NULL; if (error_code ec = getSection(symb->SectionNumber, Section)) return ec; char Type; if (error_code ec = getSymbolNMTypeChar(Symb, Type)) return ec; if (Type == 'U' || Type == 'w') Result = UnknownAddressOrSize; else if (Section) Result = Section->SizeOfRawData - symb->Value; else Result = 0; return object_error::success; } error_code COFFObjectFile::getSymbolNMTypeChar(DataRefImpl Symb, char &Result) const { const coff_symbol *symb = toSymb(Symb); StringRef name; if (error_code ec = getSymbolName(Symb, name)) return ec; char ret = StringSwitch<char>(name) .StartsWith(".debug", 'N') .StartsWith(".sxdata", 'N') .Default('?'); if (ret != '?') { Result = ret; return object_error::success; } uint32_t Characteristics = 0; if (symb->SectionNumber > 0) { const coff_section *Section = NULL; if (error_code ec = getSection(symb->SectionNumber, Section)) return ec; Characteristics = Section->Characteristics; } switch (symb->SectionNumber) { case COFF::IMAGE_SYM_UNDEFINED: // Check storage classes. if (symb->StorageClass == COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL) { Result = 'w'; return object_error::success; // Don't do ::toupper. } else if (symb->Value != 0) // Check for common symbols. ret = 'c'; else ret = 'u'; break; case COFF::IMAGE_SYM_ABSOLUTE: ret = 'a'; break; case COFF::IMAGE_SYM_DEBUG: ret = 'n'; break; default: // Check section type. if (Characteristics & COFF::IMAGE_SCN_CNT_CODE) ret = 't'; else if ( Characteristics & COFF::IMAGE_SCN_MEM_READ && ~Characteristics & COFF::IMAGE_SCN_MEM_WRITE) // Read only. ret = 'r'; else if (Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA) ret = 'd'; else if (Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) ret = 'b'; else if (Characteristics & COFF::IMAGE_SCN_LNK_INFO) ret = 'i'; // Check for section symbol. else if ( symb->StorageClass == COFF::IMAGE_SYM_CLASS_STATIC && symb->Value == 0) ret = 's'; } if (symb->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL) ret = ::toupper(static_cast<unsigned char>(ret)); Result = ret; return object_error::success; } error_code COFFObjectFile::getSymbolSection(DataRefImpl Symb, section_iterator &Result) const { const coff_symbol *symb = toSymb(Symb); if (symb->SectionNumber <= COFF::IMAGE_SYM_UNDEFINED) Result = end_sections(); else { const coff_section *sec = 0; if (error_code ec = getSection(symb->SectionNumber, sec)) return ec; DataRefImpl Sec; Sec.p = reinterpret_cast<uintptr_t>(sec); Result = section_iterator(SectionRef(Sec, this)); } return object_error::success; } error_code COFFObjectFile::getSymbolValue(DataRefImpl Symb, uint64_t &Val) const { report_fatal_error("getSymbolValue unimplemented in COFFObjectFile"); } error_code COFFObjectFile::getSectionNext(DataRefImpl Sec, SectionRef &Result) const { const coff_section *sec = toSec(Sec); sec += 1; Sec.p = reinterpret_cast<uintptr_t>(sec); Result = SectionRef(Sec, this); return object_error::success; } error_code COFFObjectFile::getSectionName(DataRefImpl Sec, StringRef &Result) const { const coff_section *sec = toSec(Sec); return getSectionName(sec, Result); } error_code COFFObjectFile::getSectionAddress(DataRefImpl Sec, uint64_t &Result) const { const coff_section *sec = toSec(Sec); Result = sec->VirtualAddress; return object_error::success; } error_code COFFObjectFile::getSectionSize(DataRefImpl Sec, uint64_t &Result) const { const coff_section *sec = toSec(Sec); Result = sec->SizeOfRawData; return object_error::success; } error_code COFFObjectFile::getSectionContents(DataRefImpl Sec, StringRef &Result) const { const coff_section *sec = toSec(Sec); ArrayRef<uint8_t> Res; error_code EC = getSectionContents(sec, Res); Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); return EC; } error_code COFFObjectFile::getSectionAlignment(DataRefImpl Sec, uint64_t &Res) const { const coff_section *sec = toSec(Sec); if (!sec) return object_error::parse_failed; Res = uint64_t(1) << (((sec->Characteristics & 0x00F00000) >> 20) - 1); return object_error::success; } error_code COFFObjectFile::isSectionText(DataRefImpl Sec, bool &Result) const { const coff_section *sec = toSec(Sec); Result = sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; return object_error::success; } error_code COFFObjectFile::isSectionData(DataRefImpl Sec, bool &Result) const { const coff_section *sec = toSec(Sec); Result = sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; return object_error::success; } error_code COFFObjectFile::isSectionBSS(DataRefImpl Sec, bool &Result) const { const coff_section *sec = toSec(Sec); Result = sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; return object_error::success; } error_code COFFObjectFile::isSectionRequiredForExecution(DataRefImpl Sec, bool &Result) const { // FIXME: Unimplemented Result = true; return object_error::success; } error_code COFFObjectFile::isSectionVirtual(DataRefImpl Sec, bool &Result) const { const coff_section *sec = toSec(Sec); Result = sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; return object_error::success; } error_code COFFObjectFile::isSectionZeroInit(DataRefImpl Sec, bool &Result) const { // FIXME: Unimplemented. Result = false; return object_error::success; } error_code COFFObjectFile::isSectionReadOnlyData(DataRefImpl Sec, bool &Result) const { // FIXME: Unimplemented. Result = false; return object_error::success; } error_code COFFObjectFile::sectionContainsSymbol(DataRefImpl Sec, DataRefImpl Symb, bool &Result) const { const coff_section *sec = toSec(Sec); const coff_symbol *symb = toSymb(Symb); const coff_section *symb_sec = 0; if (error_code ec = getSection(symb->SectionNumber, symb_sec)) return ec; if (symb_sec == sec) Result = true; else Result = false; return object_error::success; } relocation_iterator COFFObjectFile::getSectionRelBegin(DataRefImpl Sec) const { const coff_section *sec = toSec(Sec); DataRefImpl ret; if (sec->NumberOfRelocations == 0) ret.p = 0; else ret.p = reinterpret_cast<uintptr_t>(base() + sec->PointerToRelocations); return relocation_iterator(RelocationRef(ret, this)); } relocation_iterator COFFObjectFile::getSectionRelEnd(DataRefImpl Sec) const { const coff_section *sec = toSec(Sec); DataRefImpl ret; if (sec->NumberOfRelocations == 0) ret.p = 0; else ret.p = reinterpret_cast<uintptr_t>( reinterpret_cast<const coff_relocation*>( base() + sec->PointerToRelocations) + sec->NumberOfRelocations); return relocation_iterator(RelocationRef(ret, this)); } COFFObjectFile::COFFObjectFile(MemoryBuffer *Object, error_code &ec) : ObjectFile(Binary::ID_COFF, Object) , COFFHeader(0) , PE32Header(0) , DataDirectory(0) , SectionTable(0) , SymbolTable(0) , StringTable(0) , StringTableSize(0) { // Check that we at least have enough room for a header. if (!checkSize(Data, ec, sizeof(coff_file_header))) return; // The current location in the file where we are looking at. uint64_t CurPtr = 0; // PE header is optional and is present only in executables. If it exists, // it is placed right after COFF header. bool hasPEHeader = false; // Check if this is a PE/COFF file. if (base()[0] == 0x4d && base()[1] == 0x5a) { // PE/COFF, seek through MS-DOS compatibility stub and 4-byte // PE signature to find 'normal' COFF header. if (!checkSize(Data, ec, 0x3c + 8)) return; CurPtr = *reinterpret_cast<const ulittle16_t *>(base() + 0x3c); // Check the PE magic bytes. ("PE\0\0") if (std::memcmp(base() + CurPtr, "PE\0\0", 4) != 0) { ec = object_error::parse_failed; return; } CurPtr += 4; // Skip the PE magic bytes. hasPEHeader = true; } if ((ec = getObject(COFFHeader, Data, base() + CurPtr))) return; CurPtr += sizeof(coff_file_header); if (hasPEHeader) { if ((ec = getObject(PE32Header, Data, base() + CurPtr))) return; if (PE32Header->Magic != 0x10b) { // We only support PE32. If this is PE32 (not PE32+), the magic byte // should be 0x10b. If this is not PE32, continue as if there's no PE // header in this file. PE32Header = 0; } else if (PE32Header->NumberOfRvaAndSize > 0) { const uint8_t *addr = base() + CurPtr + sizeof(pe32_header); uint64_t size = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; if ((ec = getObject(DataDirectory, Data, addr, size))) return; } CurPtr += COFFHeader->SizeOfOptionalHeader; } if ((ec = getObject(SectionTable, Data, base() + CurPtr, COFFHeader->NumberOfSections * sizeof(coff_section)))) return; if (COFFHeader->PointerToSymbolTable != 0) { if ((ec = getObject(SymbolTable, Data, base() + COFFHeader->PointerToSymbolTable, COFFHeader->NumberOfSymbols * sizeof(coff_symbol)))) return; // Find string table. The first four byte of the string table contains the // total size of the string table, including the size field itself. If the // string table is empty, the value of the first four byte would be 4. const uint8_t *StringTableAddr = base() + COFFHeader->PointerToSymbolTable + COFFHeader->NumberOfSymbols * sizeof(coff_symbol); const ulittle32_t *StringTableSizePtr; if ((ec = getObject(StringTableSizePtr, Data, StringTableAddr))) return; StringTableSize = *StringTableSizePtr; if ((ec = getObject(StringTable, Data, StringTableAddr, StringTableSize))) return; // Check that the string table is null terminated if has any in it. if (StringTableSize < 4 || (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)) { ec = object_error::parse_failed; return; } } ec = object_error::success; } symbol_iterator COFFObjectFile::begin_symbols() const { DataRefImpl ret; ret.p = reinterpret_cast<intptr_t>(SymbolTable); return symbol_iterator(SymbolRef(ret, this)); } symbol_iterator COFFObjectFile::end_symbols() const { // The symbol table ends where the string table begins. DataRefImpl ret; ret.p = reinterpret_cast<intptr_t>(StringTable); return symbol_iterator(SymbolRef(ret, this)); } symbol_iterator COFFObjectFile::begin_dynamic_symbols() const { // TODO: implement report_fatal_error("Dynamic symbols unimplemented in COFFObjectFile"); } symbol_iterator COFFObjectFile::end_dynamic_symbols() const { // TODO: implement report_fatal_error("Dynamic symbols unimplemented in COFFObjectFile"); } library_iterator COFFObjectFile::begin_libraries_needed() const { // TODO: implement report_fatal_error("Libraries needed unimplemented in COFFObjectFile"); } library_iterator COFFObjectFile::end_libraries_needed() const { // TODO: implement report_fatal_error("Libraries needed unimplemented in COFFObjectFile"); } StringRef COFFObjectFile::getLoadName() const { // COFF does not have this field. return ""; } section_iterator COFFObjectFile::begin_sections() const { DataRefImpl ret; ret.p = reinterpret_cast<intptr_t>(SectionTable); return section_iterator(SectionRef(ret, this)); } section_iterator COFFObjectFile::end_sections() const { DataRefImpl ret; ret.p = reinterpret_cast<intptr_t>(SectionTable + COFFHeader->NumberOfSections); return section_iterator(SectionRef(ret, this)); } uint8_t COFFObjectFile::getBytesInAddress() const { return getArch() == Triple::x86_64 ? 8 : 4; } StringRef COFFObjectFile::getFileFormatName() const { switch(COFFHeader->Machine) { case COFF::IMAGE_FILE_MACHINE_I386: return "COFF-i386"; case COFF::IMAGE_FILE_MACHINE_AMD64: return "COFF-x86-64"; default: return "COFF-<unknown arch>"; } } unsigned COFFObjectFile::getArch() const { switch(COFFHeader->Machine) { case COFF::IMAGE_FILE_MACHINE_I386: return Triple::x86; case COFF::IMAGE_FILE_MACHINE_AMD64: return Triple::x86_64; default: return Triple::UnknownArch; } } // This method is kept here because lld uses this. As soon as we make // lld to use getCOFFHeader, this method will be removed. error_code COFFObjectFile::getHeader(const coff_file_header *&Res) const { return getCOFFHeader(Res); } error_code COFFObjectFile::getCOFFHeader(const coff_file_header *&Res) const { Res = COFFHeader; return object_error::success; } error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { Res = PE32Header; return object_error::success; } error_code COFFObjectFile::getDataDirectory(uint32_t index, const data_directory *&Res) const { // Error if if there's no data directory or the index is out of range. if (!DataDirectory || index > PE32Header->NumberOfRvaAndSize) return object_error::parse_failed; Res = &DataDirectory[index]; return object_error::success; } error_code COFFObjectFile::getSection(int32_t index, const coff_section *&Result) const { // Check for special index values. if (index == COFF::IMAGE_SYM_UNDEFINED || index == COFF::IMAGE_SYM_ABSOLUTE || index == COFF::IMAGE_SYM_DEBUG) Result = NULL; else if (index > 0 && index <= COFFHeader->NumberOfSections) // We already verified the section table data, so no need to check again. Result = SectionTable + (index - 1); else return object_error::parse_failed; return object_error::success; } error_code COFFObjectFile::getString(uint32_t offset, StringRef &Result) const { if (StringTableSize <= 4) // Tried to get a string from an empty string table. return object_error::parse_failed; if (offset >= StringTableSize) return object_error::unexpected_eof; Result = StringRef(StringTable + offset); return object_error::success; } error_code COFFObjectFile::getSymbol(uint32_t index, const coff_symbol *&Result) const { if (index < COFFHeader->NumberOfSymbols) Result = SymbolTable + index; else return object_error::parse_failed; return object_error::success; } error_code COFFObjectFile::getSymbolName(const coff_symbol *symbol, StringRef &Res) const { // Check for string table entry. First 4 bytes are 0. if (symbol->Name.Offset.Zeroes == 0) { uint32_t Offset = symbol->Name.Offset.Offset; if (error_code ec = getString(Offset, Res)) return ec; return object_error::success; } if (symbol->Name.ShortName[7] == 0) // Null terminated, let ::strlen figure out the length. Res = StringRef(symbol->Name.ShortName); else // Not null terminated, use all 8 bytes. Res = StringRef(symbol->Name.ShortName, 8); return object_error::success; } ArrayRef<uint8_t> COFFObjectFile::getSymbolAuxData( const coff_symbol *symbol) const { const uint8_t *aux = NULL; if ( symbol->NumberOfAuxSymbols > 0 ) { // AUX data comes immediately after the symbol in COFF aux = reinterpret_cast<const uint8_t *>(symbol + 1); # ifndef NDEBUG // Verify that the aux symbol points to a valid entry in the symbol table. uintptr_t offset = uintptr_t(aux) - uintptr_t(base()); if (offset < COFFHeader->PointerToSymbolTable || offset >= COFFHeader->PointerToSymbolTable + (COFFHeader->NumberOfSymbols * sizeof(coff_symbol))) report_fatal_error("Aux Symbol data was outside of symbol table."); assert((offset - COFFHeader->PointerToSymbolTable) % sizeof(coff_symbol) == 0 && "Aux Symbol data did not point to the beginning of a symbol"); # endif } return ArrayRef<uint8_t>(aux, symbol->NumberOfAuxSymbols * sizeof(coff_symbol)); } error_code COFFObjectFile::getSectionName(const coff_section *Sec, StringRef &Res) const { StringRef Name; if (Sec->Name[7] == 0) // Null terminated, let ::strlen figure out the length. Name = Sec->Name; else // Not null terminated, use all 8 bytes. Name = StringRef(Sec->Name, 8); // Check for string table entry. First byte is '/'. if (Name[0] == '/') { uint32_t Offset; if (Name.substr(1).getAsInteger(10, Offset)) return object_error::parse_failed; if (error_code ec = getString(Offset, Name)) return ec; } Res = Name; return object_error::success; } error_code COFFObjectFile::getSectionContents(const coff_section *Sec, ArrayRef<uint8_t> &Res) const { // The only thing that we need to verify is that the contents is contained // within the file bounds. We don't need to make sure it doesn't cover other // data, as there's nothing that says that is not allowed. uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; uintptr_t ConEnd = ConStart + Sec->SizeOfRawData; if (ConEnd > uintptr_t(Data->getBufferEnd())) return object_error::parse_failed; Res = ArrayRef<uint8_t>(reinterpret_cast<const unsigned char*>(ConStart), Sec->SizeOfRawData); return object_error::success; } const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { return reinterpret_cast<const coff_relocation*>(Rel.p); } error_code COFFObjectFile::getRelocationNext(DataRefImpl Rel, RelocationRef &Res) const { Rel.p = reinterpret_cast<uintptr_t>( reinterpret_cast<const coff_relocation*>(Rel.p) + 1); Res = RelocationRef(Rel, this); return object_error::success; } error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel, uint64_t &Res) const { report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); } error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel, uint64_t &Res) const { Res = toRel(Rel)->VirtualAddress; return object_error::success; } symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { const coff_relocation* R = toRel(Rel); DataRefImpl Symb; Symb.p = reinterpret_cast<uintptr_t>(SymbolTable + R->SymbolTableIndex); return symbol_iterator(SymbolRef(Symb, this)); } error_code COFFObjectFile::getRelocationType(DataRefImpl Rel, uint64_t &Res) const { const coff_relocation* R = toRel(Rel); Res = R->Type; return object_error::success; } const coff_section *COFFObjectFile::getCOFFSection(section_iterator &It) const { return toSec(It->getRawDataRefImpl()); } const coff_symbol *COFFObjectFile::getCOFFSymbol(symbol_iterator &It) const { return toSymb(It->getRawDataRefImpl()); } const coff_relocation *COFFObjectFile::getCOFFRelocation( relocation_iterator &It) const { return toRel(It->getRawDataRefImpl()); } #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(enum) \ case COFF::enum: res = #enum; break; error_code COFFObjectFile::getRelocationTypeName(DataRefImpl Rel, SmallVectorImpl<char> &Result) const { const coff_relocation *reloc = toRel(Rel); StringRef res; switch (COFFHeader->Machine) { case COFF::IMAGE_FILE_MACHINE_AMD64: switch (reloc->Type) { LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); default: res = "Unknown"; } break; case COFF::IMAGE_FILE_MACHINE_I386: switch (reloc->Type) { LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); default: res = "Unknown"; } break; default: res = "Unknown"; } Result.append(res.begin(), res.end()); return object_error::success; } #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME error_code COFFObjectFile::getRelocationValueString(DataRefImpl Rel, SmallVectorImpl<char> &Result) const { const coff_relocation *reloc = toRel(Rel); const coff_symbol *symb = 0; if (error_code ec = getSymbol(reloc->SymbolTableIndex, symb)) return ec; DataRefImpl sym; sym.p = reinterpret_cast<uintptr_t>(symb); StringRef symname; if (error_code ec = getSymbolName(sym, symname)) return ec; Result.append(symname.begin(), symname.end()); return object_error::success; } error_code COFFObjectFile::getLibraryNext(DataRefImpl LibData, LibraryRef &Result) const { report_fatal_error("getLibraryNext not implemented in COFFObjectFile"); } error_code COFFObjectFile::getLibraryPath(DataRefImpl LibData, StringRef &Result) const { report_fatal_error("getLibraryPath not implemented in COFFObjectFile"); } namespace llvm { ObjectFile *ObjectFile::createCOFFObjectFile(MemoryBuffer *Object) { error_code ec; return new COFFObjectFile(Object, ec); } } // end namespace llvm