//===-- Instruction.cpp - Implement the Instruction class -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Instruction class for the IR library. // //===----------------------------------------------------------------------===// #include "llvm/IR/Instruction.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/LeakDetector.h" using namespace llvm; Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps, Instruction *InsertBefore) : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) { // Make sure that we get added to a basicblock LeakDetector::addGarbageObject(this); // If requested, insert this instruction into a basic block... if (InsertBefore) { assert(InsertBefore->getParent() && "Instruction to insert before is not in a basic block!"); InsertBefore->getParent()->getInstList().insert(InsertBefore, this); } } Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd) : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) { // Make sure that we get added to a basicblock LeakDetector::addGarbageObject(this); // append this instruction into the basic block assert(InsertAtEnd && "Basic block to append to may not be NULL!"); InsertAtEnd->getInstList().push_back(this); } // Out of line virtual method, so the vtable, etc has a home. Instruction::~Instruction() { assert(Parent == 0 && "Instruction still linked in the program!"); if (hasMetadataHashEntry()) clearMetadataHashEntries(); } void Instruction::setParent(BasicBlock *P) { if (getParent()) { if (!P) LeakDetector::addGarbageObject(this); } else { if (P) LeakDetector::removeGarbageObject(this); } Parent = P; } void Instruction::removeFromParent() { getParent()->getInstList().remove(this); } void Instruction::eraseFromParent() { getParent()->getInstList().erase(this); } /// insertBefore - Insert an unlinked instructions into a basic block /// immediately before the specified instruction. void Instruction::insertBefore(Instruction *InsertPos) { InsertPos->getParent()->getInstList().insert(InsertPos, this); } /// insertAfter - Insert an unlinked instructions into a basic block /// immediately after the specified instruction. void Instruction::insertAfter(Instruction *InsertPos) { InsertPos->getParent()->getInstList().insertAfter(InsertPos, this); } /// moveBefore - Unlink this instruction from its current basic block and /// insert it into the basic block that MovePos lives in, right before /// MovePos. void Instruction::moveBefore(Instruction *MovePos) { MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(), this); } /// Set or clear the unsafe-algebra flag on this instruction, which must be an /// operator which supports this flag. See LangRef.html for the meaning of this /// flag. void Instruction::setHasUnsafeAlgebra(bool B) { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B); } /// Set or clear the NoNaNs flag on this instruction, which must be an operator /// which supports this flag. See LangRef.html for the meaning of this flag. void Instruction::setHasNoNaNs(bool B) { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); cast<FPMathOperator>(this)->setHasNoNaNs(B); } /// Set or clear the no-infs flag on this instruction, which must be an operator /// which supports this flag. See LangRef.html for the meaning of this flag. void Instruction::setHasNoInfs(bool B) { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); cast<FPMathOperator>(this)->setHasNoInfs(B); } /// Set or clear the no-signed-zeros flag on this instruction, which must be an /// operator which supports this flag. See LangRef.html for the meaning of this /// flag. void Instruction::setHasNoSignedZeros(bool B) { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); cast<FPMathOperator>(this)->setHasNoSignedZeros(B); } /// Set or clear the allow-reciprocal flag on this instruction, which must be an /// operator which supports this flag. See LangRef.html for the meaning of this /// flag. void Instruction::setHasAllowReciprocal(bool B) { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); cast<FPMathOperator>(this)->setHasAllowReciprocal(B); } /// Convenience function for setting all the fast-math flags on this /// instruction, which must be an operator which supports these flags. See /// LangRef.html for the meaning of these flats. void Instruction::setFastMathFlags(FastMathFlags FMF) { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); cast<FPMathOperator>(this)->setFastMathFlags(FMF); } /// Determine whether the unsafe-algebra flag is set. bool Instruction::hasUnsafeAlgebra() const { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); return cast<FPMathOperator>(this)->hasUnsafeAlgebra(); } /// Determine whether the no-NaNs flag is set. bool Instruction::hasNoNaNs() const { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); return cast<FPMathOperator>(this)->hasNoNaNs(); } /// Determine whether the no-infs flag is set. bool Instruction::hasNoInfs() const { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); return cast<FPMathOperator>(this)->hasNoInfs(); } /// Determine whether the no-signed-zeros flag is set. bool Instruction::hasNoSignedZeros() const { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); return cast<FPMathOperator>(this)->hasNoSignedZeros(); } /// Determine whether the allow-reciprocal flag is set. bool Instruction::hasAllowReciprocal() const { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); return cast<FPMathOperator>(this)->hasAllowReciprocal(); } /// Convenience function for getting all the fast-math flags, which must be an /// operator which supports these flags. See LangRef.html for the meaning of /// these flats. FastMathFlags Instruction::getFastMathFlags() const { assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); return cast<FPMathOperator>(this)->getFastMathFlags(); } /// Copy I's fast-math flags void Instruction::copyFastMathFlags(const Instruction *I) { setFastMathFlags(I->getFastMathFlags()); } const char *Instruction::getOpcodeName(unsigned OpCode) { switch (OpCode) { // Terminators case Ret: return "ret"; case Br: return "br"; case Switch: return "switch"; case IndirectBr: return "indirectbr"; case Invoke: return "invoke"; case Resume: return "resume"; case Unreachable: return "unreachable"; // Standard binary operators... case Add: return "add"; case FAdd: return "fadd"; case Sub: return "sub"; case FSub: return "fsub"; case Mul: return "mul"; case FMul: return "fmul"; case UDiv: return "udiv"; case SDiv: return "sdiv"; case FDiv: return "fdiv"; case URem: return "urem"; case SRem: return "srem"; case FRem: return "frem"; // Logical operators... case And: return "and"; case Or : return "or"; case Xor: return "xor"; // Memory instructions... case Alloca: return "alloca"; case Load: return "load"; case Store: return "store"; case AtomicCmpXchg: return "cmpxchg"; case AtomicRMW: return "atomicrmw"; case Fence: return "fence"; case GetElementPtr: return "getelementptr"; // Convert instructions... case Trunc: return "trunc"; case ZExt: return "zext"; case SExt: return "sext"; case FPTrunc: return "fptrunc"; case FPExt: return "fpext"; case FPToUI: return "fptoui"; case FPToSI: return "fptosi"; case UIToFP: return "uitofp"; case SIToFP: return "sitofp"; case IntToPtr: return "inttoptr"; case PtrToInt: return "ptrtoint"; case BitCast: return "bitcast"; // Other instructions... case ICmp: return "icmp"; case FCmp: return "fcmp"; case PHI: return "phi"; case Select: return "select"; case Call: return "call"; case Shl: return "shl"; case LShr: return "lshr"; case AShr: return "ashr"; case VAArg: return "va_arg"; case ExtractElement: return "extractelement"; case InsertElement: return "insertelement"; case ShuffleVector: return "shufflevector"; case ExtractValue: return "extractvalue"; case InsertValue: return "insertvalue"; case LandingPad: return "landingpad"; default: return "<Invalid operator> "; } } /// isIdenticalTo - Return true if the specified instruction is exactly /// identical to the current one. This means that all operands match and any /// extra information (e.g. load is volatile) agree. bool Instruction::isIdenticalTo(const Instruction *I) const { return isIdenticalToWhenDefined(I) && SubclassOptionalData == I->SubclassOptionalData; } /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it /// ignores the SubclassOptionalData flags, which specify conditions /// under which the instruction's result is undefined. bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const { if (getOpcode() != I->getOpcode() || getNumOperands() != I->getNumOperands() || getType() != I->getType()) return false; // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same. for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (getOperand(i) != I->getOperand(i)) return false; // Check special state that is a part of some instructions. if (const LoadInst *LI = dyn_cast<LoadInst>(this)) return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() && LI->getAlignment() == cast<LoadInst>(I)->getAlignment() && LI->getOrdering() == cast<LoadInst>(I)->getOrdering() && LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope(); if (const StoreInst *SI = dyn_cast<StoreInst>(this)) return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() && SI->getAlignment() == cast<StoreInst>(I)->getAlignment() && SI->getOrdering() == cast<StoreInst>(I)->getOrdering() && SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope(); if (const CmpInst *CI = dyn_cast<CmpInst>(this)) return CI->getPredicate() == cast<CmpInst>(I)->getPredicate(); if (const CallInst *CI = dyn_cast<CallInst>(this)) return CI->isTailCall() == cast<CallInst>(I)->isTailCall() && CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() && CI->getAttributes() == cast<CallInst>(I)->getAttributes(); if (const InvokeInst *CI = dyn_cast<InvokeInst>(this)) return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() && CI->getAttributes() == cast<InvokeInst>(I)->getAttributes(); if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this)) return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices(); if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this)) return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices(); if (const FenceInst *FI = dyn_cast<FenceInst>(this)) return FI->getOrdering() == cast<FenceInst>(FI)->getOrdering() && FI->getSynchScope() == cast<FenceInst>(FI)->getSynchScope(); if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this)) return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() && CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() && CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope(); if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this)) return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() && RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() && RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() && RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope(); if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) { const PHINode *otherPHI = cast<PHINode>(I); for (unsigned i = 0, e = thisPHI->getNumOperands(); i != e; ++i) { if (thisPHI->getIncomingBlock(i) != otherPHI->getIncomingBlock(i)) return false; } return true; } return true; } // isSameOperationAs // This should be kept in sync with isEquivalentOperation in // lib/Transforms/IPO/MergeFunctions.cpp. bool Instruction::isSameOperationAs(const Instruction *I, unsigned flags) const { bool IgnoreAlignment = flags & CompareIgnoringAlignment; bool UseScalarTypes = flags & CompareUsingScalarTypes; if (getOpcode() != I->getOpcode() || getNumOperands() != I->getNumOperands() || (UseScalarTypes ? getType()->getScalarType() != I->getType()->getScalarType() : getType() != I->getType())) return false; // We have two instructions of identical opcode and #operands. Check to see // if all operands are the same type for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (UseScalarTypes ? getOperand(i)->getType()->getScalarType() != I->getOperand(i)->getType()->getScalarType() : getOperand(i)->getType() != I->getOperand(i)->getType()) return false; // Check special state that is a part of some instructions. if (const LoadInst *LI = dyn_cast<LoadInst>(this)) return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() && (LI->getAlignment() == cast<LoadInst>(I)->getAlignment() || IgnoreAlignment) && LI->getOrdering() == cast<LoadInst>(I)->getOrdering() && LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope(); if (const StoreInst *SI = dyn_cast<StoreInst>(this)) return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() && (SI->getAlignment() == cast<StoreInst>(I)->getAlignment() || IgnoreAlignment) && SI->getOrdering() == cast<StoreInst>(I)->getOrdering() && SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope(); if (const CmpInst *CI = dyn_cast<CmpInst>(this)) return CI->getPredicate() == cast<CmpInst>(I)->getPredicate(); if (const CallInst *CI = dyn_cast<CallInst>(this)) return CI->isTailCall() == cast<CallInst>(I)->isTailCall() && CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() && CI->getAttributes() == cast<CallInst>(I)->getAttributes(); if (const InvokeInst *CI = dyn_cast<InvokeInst>(this)) return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() && CI->getAttributes() == cast<InvokeInst>(I)->getAttributes(); if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this)) return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices(); if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this)) return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices(); if (const FenceInst *FI = dyn_cast<FenceInst>(this)) return FI->getOrdering() == cast<FenceInst>(I)->getOrdering() && FI->getSynchScope() == cast<FenceInst>(I)->getSynchScope(); if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this)) return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() && CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() && CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope(); if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this)) return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() && RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() && RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() && RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope(); return true; } /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the /// specified block. Note that PHI nodes are considered to evaluate their /// operands in the corresponding predecessor block. bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const { for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { // PHI nodes uses values in the corresponding predecessor block. For other // instructions, just check to see whether the parent of the use matches up. const User *U = *UI; const PHINode *PN = dyn_cast<PHINode>(U); if (PN == 0) { if (cast<Instruction>(U)->getParent() != BB) return true; continue; } if (PN->getIncomingBlock(UI) != BB) return true; } return false; } /// mayReadFromMemory - Return true if this instruction may read memory. /// bool Instruction::mayReadFromMemory() const { switch (getOpcode()) { default: return false; case Instruction::VAArg: case Instruction::Load: case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: return true; case Instruction::Call: return !cast<CallInst>(this)->doesNotAccessMemory(); case Instruction::Invoke: return !cast<InvokeInst>(this)->doesNotAccessMemory(); case Instruction::Store: return !cast<StoreInst>(this)->isUnordered(); } } /// mayWriteToMemory - Return true if this instruction may modify memory. /// bool Instruction::mayWriteToMemory() const { switch (getOpcode()) { default: return false; case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory case Instruction::Store: case Instruction::VAArg: case Instruction::AtomicCmpXchg: case Instruction::AtomicRMW: return true; case Instruction::Call: return !cast<CallInst>(this)->onlyReadsMemory(); case Instruction::Invoke: return !cast<InvokeInst>(this)->onlyReadsMemory(); case Instruction::Load: return !cast<LoadInst>(this)->isUnordered(); } } bool Instruction::mayThrow() const { if (const CallInst *CI = dyn_cast<CallInst>(this)) return !CI->doesNotThrow(); return isa<ResumeInst>(this); } bool Instruction::mayReturn() const { if (const CallInst *CI = dyn_cast<CallInst>(this)) return !CI->doesNotReturn(); return true; } /// isAssociative - Return true if the instruction is associative: /// /// Associative operators satisfy: x op (y op z) === (x op y) op z /// /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative. /// bool Instruction::isAssociative(unsigned Opcode) { return Opcode == And || Opcode == Or || Opcode == Xor || Opcode == Add || Opcode == Mul; } bool Instruction::isAssociative() const { unsigned Opcode = getOpcode(); if (isAssociative(Opcode)) return true; switch (Opcode) { case FMul: case FAdd: return cast<FPMathOperator>(this)->hasUnsafeAlgebra(); default: return false; } } /// isCommutative - Return true if the instruction is commutative: /// /// Commutative operators satisfy: (x op y) === (y op x) /// /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when /// applied to any type. /// bool Instruction::isCommutative(unsigned op) { switch (op) { case Add: case FAdd: case Mul: case FMul: case And: case Or: case Xor: return true; default: return false; } } /// isIdempotent - Return true if the instruction is idempotent: /// /// Idempotent operators satisfy: x op x === x /// /// In LLVM, the And and Or operators are idempotent. /// bool Instruction::isIdempotent(unsigned Opcode) { return Opcode == And || Opcode == Or; } /// isNilpotent - Return true if the instruction is nilpotent: /// /// Nilpotent operators satisfy: x op x === Id, /// /// where Id is the identity for the operator, i.e. a constant such that /// x op Id === x and Id op x === x for all x. /// /// In LLVM, the Xor operator is nilpotent. /// bool Instruction::isNilpotent(unsigned Opcode) { return Opcode == Xor; } Instruction *Instruction::clone() const { Instruction *New = clone_impl(); New->SubclassOptionalData = SubclassOptionalData; if (!hasMetadata()) return New; // Otherwise, enumerate and copy over metadata from the old instruction to the // new one. SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs; getAllMetadataOtherThanDebugLoc(TheMDs); for (unsigned i = 0, e = TheMDs.size(); i != e; ++i) New->setMetadata(TheMDs[i].first, TheMDs[i].second); New->setDebugLoc(getDebugLoc()); return New; }