//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // MachineScheduler schedules machine instructions after phi elimination. It // preserves LiveIntervals so it can be invoked before register allocation. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "misched" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/PriorityQueue.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/ScheduleDFS.h" #include "llvm/CodeGen/ScheduleHazardRecognizer.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include <queue> using namespace llvm; namespace llvm { cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, cl::desc("Force top-down list scheduling")); cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, cl::desc("Force bottom-up list scheduling")); } #ifndef NDEBUG static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, cl::desc("Pop up a window to show MISched dags after they are processed")); static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); #else static bool ViewMISchedDAGs = false; #endif // NDEBUG static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, cl::desc("Enable load clustering."), cl::init(true)); // Experimental heuristics static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, cl::desc("Enable scheduling for macro fusion."), cl::init(true)); static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, cl::desc("Verify machine instrs before and after machine scheduling")); // DAG subtrees must have at least this many nodes. static const unsigned MinSubtreeSize = 8; //===----------------------------------------------------------------------===// // Machine Instruction Scheduling Pass and Registry //===----------------------------------------------------------------------===// MachineSchedContext::MachineSchedContext(): MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { RegClassInfo = new RegisterClassInfo(); } MachineSchedContext::~MachineSchedContext() { delete RegClassInfo; } namespace { /// MachineScheduler runs after coalescing and before register allocation. class MachineScheduler : public MachineSchedContext, public MachineFunctionPass { public: MachineScheduler(); virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory() {} virtual bool runOnMachineFunction(MachineFunction&); virtual void print(raw_ostream &O, const Module* = 0) const; static char ID; // Class identification, replacement for typeinfo }; } // namespace char MachineScheduler::ID = 0; char &llvm::MachineSchedulerID = MachineScheduler::ID; INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", "Machine Instruction Scheduler", false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_END(MachineScheduler, "misched", "Machine Instruction Scheduler", false, false) MachineScheduler::MachineScheduler() : MachineFunctionPass(ID) { initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); } void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequiredID(MachineDominatorsID); AU.addRequired<MachineLoopInfo>(); AU.addRequired<AliasAnalysis>(); AU.addRequired<TargetPassConfig>(); AU.addRequired<SlotIndexes>(); AU.addPreserved<SlotIndexes>(); AU.addRequired<LiveIntervals>(); AU.addPreserved<LiveIntervals>(); MachineFunctionPass::getAnalysisUsage(AU); } MachinePassRegistry MachineSchedRegistry::Registry; /// A dummy default scheduler factory indicates whether the scheduler /// is overridden on the command line. static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { return 0; } /// MachineSchedOpt allows command line selection of the scheduler. static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, RegisterPassParser<MachineSchedRegistry> > MachineSchedOpt("misched", cl::init(&useDefaultMachineSched), cl::Hidden, cl::desc("Machine instruction scheduler to use")); static MachineSchedRegistry DefaultSchedRegistry("default", "Use the target's default scheduler choice.", useDefaultMachineSched); /// Forward declare the standard machine scheduler. This will be used as the /// default scheduler if the target does not set a default. static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); /// Decrement this iterator until reaching the top or a non-debug instr. static MachineBasicBlock::iterator priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { assert(I != Beg && "reached the top of the region, cannot decrement"); while (--I != Beg) { if (!I->isDebugValue()) break; } return I; } /// If this iterator is a debug value, increment until reaching the End or a /// non-debug instruction. static MachineBasicBlock::iterator nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { for(; I != End; ++I) { if (!I->isDebugValue()) break; } return I; } /// Top-level MachineScheduler pass driver. /// /// Visit blocks in function order. Divide each block into scheduling regions /// and visit them bottom-up. Visiting regions bottom-up is not required, but is /// consistent with the DAG builder, which traverses the interior of the /// scheduling regions bottom-up. /// /// This design avoids exposing scheduling boundaries to the DAG builder, /// simplifying the DAG builder's support for "special" target instructions. /// At the same time the design allows target schedulers to operate across /// scheduling boundaries, for example to bundle the boudary instructions /// without reordering them. This creates complexity, because the target /// scheduler must update the RegionBegin and RegionEnd positions cached by /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler /// design would be to split blocks at scheduling boundaries, but LLVM has a /// general bias against block splitting purely for implementation simplicity. bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); // Initialize the context of the pass. MF = &mf; MLI = &getAnalysis<MachineLoopInfo>(); MDT = &getAnalysis<MachineDominatorTree>(); PassConfig = &getAnalysis<TargetPassConfig>(); AA = &getAnalysis<AliasAnalysis>(); LIS = &getAnalysis<LiveIntervals>(); const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); if (VerifyScheduling) { DEBUG(LIS->dump()); MF->verify(this, "Before machine scheduling."); } RegClassInfo->runOnMachineFunction(*MF); // Select the scheduler, or set the default. MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; if (Ctor == useDefaultMachineSched) { // Get the default scheduler set by the target. Ctor = MachineSchedRegistry::getDefault(); if (!Ctor) { Ctor = createConvergingSched; MachineSchedRegistry::setDefault(Ctor); } } // Instantiate the selected scheduler. OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); // Visit all machine basic blocks. // // TODO: Visit blocks in global postorder or postorder within the bottom-up // loop tree. Then we can optionally compute global RegPressure. for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); MBB != MBBEnd; ++MBB) { Scheduler->startBlock(MBB); // Break the block into scheduling regions [I, RegionEnd), and schedule each // region as soon as it is discovered. RegionEnd points the scheduling // boundary at the bottom of the region. The DAG does not include RegionEnd, // but the region does (i.e. the next RegionEnd is above the previous // RegionBegin). If the current block has no terminator then RegionEnd == // MBB->end() for the bottom region. // // The Scheduler may insert instructions during either schedule() or // exitRegion(), even for empty regions. So the local iterators 'I' and // 'RegionEnd' are invalid across these calls. unsigned RemainingInstrs = MBB->size(); for(MachineBasicBlock::iterator RegionEnd = MBB->end(); RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { // Avoid decrementing RegionEnd for blocks with no terminator. if (RegionEnd != MBB->end() || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { --RegionEnd; // Count the boundary instruction. --RemainingInstrs; } // The next region starts above the previous region. Look backward in the // instruction stream until we find the nearest boundary. MachineBasicBlock::iterator I = RegionEnd; for(;I != MBB->begin(); --I, --RemainingInstrs) { if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) break; } // Notify the scheduler of the region, even if we may skip scheduling // it. Perhaps it still needs to be bundled. Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs); // Skip empty scheduling regions (0 or 1 schedulable instructions). if (I == RegionEnd || I == llvm::prior(RegionEnd)) { // Close the current region. Bundle the terminator if needed. // This invalidates 'RegionEnd' and 'I'. Scheduler->exitRegion(); continue; } DEBUG(dbgs() << "********** MI Scheduling **********\n"); DEBUG(dbgs() << MF->getName() << ":BB#" << MBB->getNumber() << " " << MBB->getName() << "\n From: " << *I << " To: "; if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; else dbgs() << "End"; dbgs() << " Remaining: " << RemainingInstrs << "\n"); // Schedule a region: possibly reorder instructions. // This invalidates 'RegionEnd' and 'I'. Scheduler->schedule(); // Close the current region. Scheduler->exitRegion(); // Scheduling has invalidated the current iterator 'I'. Ask the // scheduler for the top of it's scheduled region. RegionEnd = Scheduler->begin(); } assert(RemainingInstrs == 0 && "Instruction count mismatch!"); Scheduler->finishBlock(); } Scheduler->finalizeSchedule(); DEBUG(LIS->dump()); if (VerifyScheduling) MF->verify(this, "After machine scheduling."); return true; } void MachineScheduler::print(raw_ostream &O, const Module* m) const { // unimplemented } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void ReadyQueue::dump() { dbgs() << Name << ": "; for (unsigned i = 0, e = Queue.size(); i < e; ++i) dbgs() << Queue[i]->NodeNum << " "; dbgs() << "\n"; } #endif //===----------------------------------------------------------------------===// // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals // preservation. //===----------------------------------------------------------------------===// ScheduleDAGMI::~ScheduleDAGMI() { delete DFSResult; DeleteContainerPointers(Mutations); delete SchedImpl; } bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); } bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { if (SuccSU != &ExitSU) { // Do not use WillCreateCycle, it assumes SD scheduling. // If Pred is reachable from Succ, then the edge creates a cycle. if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) return false; Topo.AddPred(SuccSU, PredDep.getSUnit()); } SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); // Return true regardless of whether a new edge needed to be inserted. return true; } /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When /// NumPredsLeft reaches zero, release the successor node. /// /// FIXME: Adjust SuccSU height based on MinLatency. void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { SUnit *SuccSU = SuccEdge->getSUnit(); if (SuccEdge->isWeak()) { --SuccSU->WeakPredsLeft; if (SuccEdge->isCluster()) NextClusterSucc = SuccSU; return; } #ifndef NDEBUG if (SuccSU->NumPredsLeft == 0) { dbgs() << "*** Scheduling failed! ***\n"; SuccSU->dump(this); dbgs() << " has been released too many times!\n"; llvm_unreachable(0); } #endif --SuccSU->NumPredsLeft; if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) SchedImpl->releaseTopNode(SuccSU); } /// releaseSuccessors - Call releaseSucc on each of SU's successors. void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { releaseSucc(SU, &*I); } } /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When /// NumSuccsLeft reaches zero, release the predecessor node. /// /// FIXME: Adjust PredSU height based on MinLatency. void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { SUnit *PredSU = PredEdge->getSUnit(); if (PredEdge->isWeak()) { --PredSU->WeakSuccsLeft; if (PredEdge->isCluster()) NextClusterPred = PredSU; return; } #ifndef NDEBUG if (PredSU->NumSuccsLeft == 0) { dbgs() << "*** Scheduling failed! ***\n"; PredSU->dump(this); dbgs() << " has been released too many times!\n"; llvm_unreachable(0); } #endif --PredSU->NumSuccsLeft; if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) SchedImpl->releaseBottomNode(PredSU); } /// releasePredecessors - Call releasePred on each of SU's predecessors. void ScheduleDAGMI::releasePredecessors(SUnit *SU) { for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { releasePred(SU, &*I); } } /// This is normally called from the main scheduler loop but may also be invoked /// by the scheduling strategy to perform additional code motion. void ScheduleDAGMI::moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { // Advance RegionBegin if the first instruction moves down. if (&*RegionBegin == MI) ++RegionBegin; // Update the instruction stream. BB->splice(InsertPos, BB, MI); // Update LiveIntervals LIS->handleMove(MI, /*UpdateFlags=*/true); // Recede RegionBegin if an instruction moves above the first. if (RegionBegin == InsertPos) RegionBegin = MI; } bool ScheduleDAGMI::checkSchedLimit() { #ifndef NDEBUG if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { CurrentTop = CurrentBottom; return false; } ++NumInstrsScheduled; #endif return true; } /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after /// crossing a scheduling boundary. [begin, end) includes all instructions in /// the region, including the boundary itself and single-instruction regions /// that don't get scheduled. void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned endcount) { ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount); // For convenience remember the end of the liveness region. LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); } // Setup the register pressure trackers for the top scheduled top and bottom // scheduled regions. void ScheduleDAGMI::initRegPressure() { TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); // Close the RPTracker to finalize live ins. RPTracker.closeRegion(); DEBUG(RPTracker.dump()); // Initialize the live ins and live outs. TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); // Close one end of the tracker so we can call // getMaxUpward/DownwardPressureDelta before advancing across any // instructions. This converts currently live regs into live ins/outs. TopRPTracker.closeTop(); BotRPTracker.closeBottom(); BotRPTracker.initLiveThru(RPTracker); if (!BotRPTracker.getLiveThru().empty()) { TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); DEBUG(dbgs() << "Live Thru: "; dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); }; // Account for liveness generated by the region boundary. if (LiveRegionEnd != RegionEnd) BotRPTracker.recede(); assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); // Cache the list of excess pressure sets in this region. This will also track // the max pressure in the scheduled code for these sets. RegionCriticalPSets.clear(); const std::vector<unsigned> &RegionPressure = RPTracker.getPressure().MaxSetPressure; for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); if (RegionPressure[i] > Limit) { DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit << " Actual " << RegionPressure[i] << "\n"); RegionCriticalPSets.push_back(PressureElement(i, 0)); } } DEBUG(dbgs() << "Excess PSets: "; for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) dbgs() << TRI->getRegPressureSetName( RegionCriticalPSets[i].PSetID) << " "; dbgs() << "\n"); } // FIXME: When the pressure tracker deals in pressure differences then we won't // iterate over all RegionCriticalPSets[i]. void ScheduleDAGMI:: updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) { for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { unsigned ID = RegionCriticalPSets[i].PSetID; int &MaxUnits = RegionCriticalPSets[i].UnitIncrease; if ((int)NewMaxPressure[ID] > MaxUnits) MaxUnits = NewMaxPressure[ID]; } DEBUG( for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) { unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); if (NewMaxPressure[i] > Limit ) { dbgs() << " " << TRI->getRegPressureSetName(i) << ": " << NewMaxPressure[i] << " > " << Limit << "\n"; } }); } /// schedule - Called back from MachineScheduler::runOnMachineFunction /// after setting up the current scheduling region. [RegionBegin, RegionEnd) /// only includes instructions that have DAG nodes, not scheduling boundaries. /// /// This is a skeletal driver, with all the functionality pushed into helpers, /// so that it can be easilly extended by experimental schedulers. Generally, /// implementing MachineSchedStrategy should be sufficient to implement a new /// scheduling algorithm. However, if a scheduler further subclasses /// ScheduleDAGMI then it will want to override this virtual method in order to /// update any specialized state. void ScheduleDAGMI::schedule() { buildDAGWithRegPressure(); Topo.InitDAGTopologicalSorting(); postprocessDAG(); SmallVector<SUnit*, 8> TopRoots, BotRoots; findRootsAndBiasEdges(TopRoots, BotRoots); // Initialize the strategy before modifying the DAG. // This may initialize a DFSResult to be used for queue priority. SchedImpl->initialize(this); DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) SUnits[su].dumpAll(this)); if (ViewMISchedDAGs) viewGraph(); // Initialize ready queues now that the DAG and priority data are finalized. initQueues(TopRoots, BotRoots); bool IsTopNode = false; while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { assert(!SU->isScheduled && "Node already scheduled"); if (!checkSchedLimit()) break; scheduleMI(SU, IsTopNode); updateQueues(SU, IsTopNode); } assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); placeDebugValues(); DEBUG({ unsigned BBNum = begin()->getParent()->getNumber(); dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; dumpSchedule(); dbgs() << '\n'; }); } /// Build the DAG and setup three register pressure trackers. void ScheduleDAGMI::buildDAGWithRegPressure() { // Initialize the register pressure tracker used by buildSchedGraph. RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, /*TrackUntiedDefs=*/true); // Account for liveness generate by the region boundary. if (LiveRegionEnd != RegionEnd) RPTracker.recede(); // Build the DAG, and compute current register pressure. buildSchedGraph(AA, &RPTracker); // Initialize top/bottom trackers after computing region pressure. initRegPressure(); } /// Apply each ScheduleDAGMutation step in order. void ScheduleDAGMI::postprocessDAG() { for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { Mutations[i]->apply(this); } } void ScheduleDAGMI::computeDFSResult() { if (!DFSResult) DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); DFSResult->clear(); ScheduledTrees.clear(); DFSResult->resize(SUnits.size()); DFSResult->compute(SUnits); ScheduledTrees.resize(DFSResult->getNumSubtrees()); } void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, SmallVectorImpl<SUnit*> &BotRoots) { for (std::vector<SUnit>::iterator I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { SUnit *SU = &(*I); assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); // Order predecessors so DFSResult follows the critical path. SU->biasCriticalPath(); // A SUnit is ready to top schedule if it has no predecessors. if (!I->NumPredsLeft) TopRoots.push_back(SU); // A SUnit is ready to bottom schedule if it has no successors. if (!I->NumSuccsLeft) BotRoots.push_back(SU); } ExitSU.biasCriticalPath(); } /// Identify DAG roots and setup scheduler queues. void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots) { NextClusterSucc = NULL; NextClusterPred = NULL; // Release all DAG roots for scheduling, not including EntrySU/ExitSU. // // Nodes with unreleased weak edges can still be roots. // Release top roots in forward order. for (SmallVectorImpl<SUnit*>::const_iterator I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { SchedImpl->releaseTopNode(*I); } // Release bottom roots in reverse order so the higher priority nodes appear // first. This is more natural and slightly more efficient. for (SmallVectorImpl<SUnit*>::const_reverse_iterator I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { SchedImpl->releaseBottomNode(*I); } releaseSuccessors(&EntrySU); releasePredecessors(&ExitSU); SchedImpl->registerRoots(); // Advance past initial DebugValues. assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); CurrentTop = nextIfDebug(RegionBegin, RegionEnd); TopRPTracker.setPos(CurrentTop); CurrentBottom = RegionEnd; } /// Move an instruction and update register pressure. void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { // Move the instruction to its new location in the instruction stream. MachineInstr *MI = SU->getInstr(); if (IsTopNode) { assert(SU->isTopReady() && "node still has unscheduled dependencies"); if (&*CurrentTop == MI) CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); else { moveInstruction(MI, CurrentTop); TopRPTracker.setPos(MI); } // Update top scheduled pressure. TopRPTracker.advance(); assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); } else { assert(SU->isBottomReady() && "node still has unscheduled dependencies"); MachineBasicBlock::iterator priorII = priorNonDebug(CurrentBottom, CurrentTop); if (&*priorII == MI) CurrentBottom = priorII; else { if (&*CurrentTop == MI) { CurrentTop = nextIfDebug(++CurrentTop, priorII); TopRPTracker.setPos(CurrentTop); } moveInstruction(MI, CurrentBottom); CurrentBottom = MI; } // Update bottom scheduled pressure. BotRPTracker.recede(); assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); } } /// Update scheduler queues after scheduling an instruction. void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { // Release dependent instructions for scheduling. if (IsTopNode) releaseSuccessors(SU); else releasePredecessors(SU); SU->isScheduled = true; if (DFSResult) { unsigned SubtreeID = DFSResult->getSubtreeID(SU); if (!ScheduledTrees.test(SubtreeID)) { ScheduledTrees.set(SubtreeID); DFSResult->scheduleTree(SubtreeID); SchedImpl->scheduleTree(SubtreeID); } } // Notify the scheduling strategy after updating the DAG. SchedImpl->schedNode(SU, IsTopNode); } /// Reinsert any remaining debug_values, just like the PostRA scheduler. void ScheduleDAGMI::placeDebugValues() { // If first instruction was a DBG_VALUE then put it back. if (FirstDbgValue) { BB->splice(RegionBegin, BB, FirstDbgValue); RegionBegin = FirstDbgValue; } for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); MachineInstr *DbgValue = P.first; MachineBasicBlock::iterator OrigPrevMI = P.second; if (&*RegionBegin == DbgValue) ++RegionBegin; BB->splice(++OrigPrevMI, BB, DbgValue); if (OrigPrevMI == llvm::prior(RegionEnd)) RegionEnd = DbgValue; } DbgValues.clear(); FirstDbgValue = NULL; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void ScheduleDAGMI::dumpSchedule() const { for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { if (SUnit *SU = getSUnit(&(*MI))) SU->dump(this); else dbgs() << "Missing SUnit\n"; } } #endif //===----------------------------------------------------------------------===// // LoadClusterMutation - DAG post-processing to cluster loads. //===----------------------------------------------------------------------===// namespace { /// \brief Post-process the DAG to create cluster edges between neighboring /// loads. class LoadClusterMutation : public ScheduleDAGMutation { struct LoadInfo { SUnit *SU; unsigned BaseReg; unsigned Offset; LoadInfo(SUnit *su, unsigned reg, unsigned ofs) : SU(su), BaseReg(reg), Offset(ofs) {} }; static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, const LoadClusterMutation::LoadInfo &RHS); const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; public: LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) : TII(tii), TRI(tri) {} virtual void apply(ScheduleDAGMI *DAG); protected: void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); }; } // anonymous bool LoadClusterMutation::LoadInfoLess( const LoadClusterMutation::LoadInfo &LHS, const LoadClusterMutation::LoadInfo &RHS) { if (LHS.BaseReg != RHS.BaseReg) return LHS.BaseReg < RHS.BaseReg; return LHS.Offset < RHS.Offset; } void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG) { SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { SUnit *SU = Loads[Idx]; unsigned BaseReg; unsigned Offset; if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); } if (LoadRecords.size() < 2) return; std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); unsigned ClusterLength = 1; for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { ClusterLength = 1; continue; } SUnit *SUa = LoadRecords[Idx].SU; SUnit *SUb = LoadRecords[Idx+1].SU; if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" << SUb->NodeNum << ")\n"); // Copy successor edges from SUa to SUb. Interleaving computation // dependent on SUa can prevent load combining due to register reuse. // Predecessor edges do not need to be copied from SUb to SUa since nearby // loads should have effectively the same inputs. for (SUnit::const_succ_iterator SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { if (SI->getSUnit() == SUb) continue; DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); } ++ClusterLength; } else ClusterLength = 1; } } /// \brief Callback from DAG postProcessing to create cluster edges for loads. void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { // Map DAG NodeNum to store chain ID. DenseMap<unsigned, unsigned> StoreChainIDs; // Map each store chain to a set of dependent loads. SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { SUnit *SU = &DAG->SUnits[Idx]; if (!SU->getInstr()->mayLoad()) continue; unsigned ChainPredID = DAG->SUnits.size(); for (SUnit::const_pred_iterator PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { if (PI->isCtrl()) { ChainPredID = PI->getSUnit()->NodeNum; break; } } // Check if this chain-like pred has been seen // before. ChainPredID==MaxNodeID for loads at the top of the schedule. unsigned NumChains = StoreChainDependents.size(); std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); if (Result.second) StoreChainDependents.resize(NumChains + 1); StoreChainDependents[Result.first->second].push_back(SU); } // Iterate over the store chains. for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) clusterNeighboringLoads(StoreChainDependents[Idx], DAG); } //===----------------------------------------------------------------------===// // MacroFusion - DAG post-processing to encourage fusion of macro ops. //===----------------------------------------------------------------------===// namespace { /// \brief Post-process the DAG to create cluster edges between instructions /// that may be fused by the processor into a single operation. class MacroFusion : public ScheduleDAGMutation { const TargetInstrInfo *TII; public: MacroFusion(const TargetInstrInfo *tii): TII(tii) {} virtual void apply(ScheduleDAGMI *DAG); }; } // anonymous /// \brief Callback from DAG postProcessing to create cluster edges to encourage /// fused operations. void MacroFusion::apply(ScheduleDAGMI *DAG) { // For now, assume targets can only fuse with the branch. MachineInstr *Branch = DAG->ExitSU.getInstr(); if (!Branch) return; for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { SUnit *SU = &DAG->SUnits[--Idx]; if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) continue; // Create a single weak edge from SU to ExitSU. The only effect is to cause // bottom-up scheduling to heavily prioritize the clustered SU. There is no // need to copy predecessor edges from ExitSU to SU, since top-down // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling // of SU, we could create an artificial edge from the deepest root, but it // hasn't been needed yet. bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); (void)Success; assert(Success && "No DAG nodes should be reachable from ExitSU"); DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); break; } } //===----------------------------------------------------------------------===// // CopyConstrain - DAG post-processing to encourage copy elimination. //===----------------------------------------------------------------------===// namespace { /// \brief Post-process the DAG to create weak edges from all uses of a copy to /// the one use that defines the copy's source vreg, most likely an induction /// variable increment. class CopyConstrain : public ScheduleDAGMutation { // Transient state. SlotIndex RegionBeginIdx; // RegionEndIdx is the slot index of the last non-debug instruction in the // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. SlotIndex RegionEndIdx; public: CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} virtual void apply(ScheduleDAGMI *DAG); protected: void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG); }; } // anonymous /// constrainLocalCopy handles two possibilities: /// 1) Local src: /// I0: = dst /// I1: src = ... /// I2: = dst /// I3: dst = src (copy) /// (create pred->succ edges I0->I1, I2->I1) /// /// 2) Local copy: /// I0: dst = src (copy) /// I1: = dst /// I2: src = ... /// I3: = dst /// (create pred->succ edges I1->I2, I3->I2) /// /// Although the MachineScheduler is currently constrained to single blocks, /// this algorithm should handle extended blocks. An EBB is a set of /// contiguously numbered blocks such that the previous block in the EBB is /// always the single predecessor. void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) { LiveIntervals *LIS = DAG->getLIS(); MachineInstr *Copy = CopySU->getInstr(); // Check for pure vreg copies. unsigned SrcReg = Copy->getOperand(1).getReg(); if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) return; unsigned DstReg = Copy->getOperand(0).getReg(); if (!TargetRegisterInfo::isVirtualRegister(DstReg)) return; // Check if either the dest or source is local. If it's live across a back // edge, it's not local. Note that if both vregs are live across the back // edge, we cannot successfully contrain the copy without cyclic scheduling. unsigned LocalReg = DstReg; unsigned GlobalReg = SrcReg; LiveInterval *LocalLI = &LIS->getInterval(LocalReg); if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { LocalReg = SrcReg; GlobalReg = DstReg; LocalLI = &LIS->getInterval(LocalReg); if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) return; } LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); // Find the global segment after the start of the local LI. LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a // local live range. We could create edges from other global uses to the local // start, but the coalescer should have already eliminated these cases, so // don't bother dealing with it. if (GlobalSegment == GlobalLI->end()) return; // If GlobalSegment is killed at the LocalLI->start, the call to find() // returned the next global segment. But if GlobalSegment overlaps with // LocalLI->start, then advance to the next segement. If a hole in GlobalLI // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. if (GlobalSegment->contains(LocalLI->beginIndex())) ++GlobalSegment; if (GlobalSegment == GlobalLI->end()) return; // Check if GlobalLI contains a hole in the vicinity of LocalLI. if (GlobalSegment != GlobalLI->begin()) { // Two address defs have no hole. if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end, GlobalSegment->start)) { return; } // If the prior global segment may be defined by the same two-address // instruction that also defines LocalLI, then can't make a hole here. if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->start, LocalLI->beginIndex())) { return; } // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise // it would be a disconnected component in the live range. assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() && "Disconnected LRG within the scheduling region."); } MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); if (!GlobalDef) return; SUnit *GlobalSU = DAG->getSUnit(GlobalDef); if (!GlobalSU) return; // GlobalDef is the bottom of the GlobalLI hole. Open the hole by // constraining the uses of the last local def to precede GlobalDef. SmallVector<SUnit*,8> LocalUses; const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); for (SUnit::const_succ_iterator I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); I != E; ++I) { if (I->getKind() != SDep::Data || I->getReg() != LocalReg) continue; if (I->getSUnit() == GlobalSU) continue; if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) return; LocalUses.push_back(I->getSUnit()); } // Open the top of the GlobalLI hole by constraining any earlier global uses // to precede the start of LocalLI. SmallVector<SUnit*,8> GlobalUses; MachineInstr *FirstLocalDef = LIS->getInstructionFromIndex(LocalLI->beginIndex()); SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); for (SUnit::const_pred_iterator I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) continue; if (I->getSUnit() == FirstLocalSU) continue; if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) return; GlobalUses.push_back(I->getSUnit()); } DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); // Add the weak edges. for (SmallVectorImpl<SUnit*>::const_iterator I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" << GlobalSU->NodeNum << ")\n"); DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); } for (SmallVectorImpl<SUnit*>::const_iterator I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" << FirstLocalSU->NodeNum << ")\n"); DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); } } /// \brief Callback from DAG postProcessing to create weak edges to encourage /// copy elimination. void CopyConstrain::apply(ScheduleDAGMI *DAG) { MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); if (FirstPos == DAG->end()) return; RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); RegionEndIdx = DAG->getLIS()->getInstructionIndex( &*priorNonDebug(DAG->end(), DAG->begin())); for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { SUnit *SU = &DAG->SUnits[Idx]; if (!SU->getInstr()->isCopy()) continue; constrainLocalCopy(SU, DAG); } } //===----------------------------------------------------------------------===// // ConvergingScheduler - Implementation of the generic MachineSchedStrategy. //===----------------------------------------------------------------------===// namespace { /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance /// the schedule. class ConvergingScheduler : public MachineSchedStrategy { public: /// Represent the type of SchedCandidate found within a single queue. /// pickNodeBidirectional depends on these listed by decreasing priority. enum CandReason { NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder}; #ifndef NDEBUG static const char *getReasonStr(ConvergingScheduler::CandReason Reason); #endif /// Policy for scheduling the next instruction in the candidate's zone. struct CandPolicy { bool ReduceLatency; unsigned ReduceResIdx; unsigned DemandResIdx; CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} }; /// Status of an instruction's critical resource consumption. struct SchedResourceDelta { // Count critical resources in the scheduled region required by SU. unsigned CritResources; // Count critical resources from another region consumed by SU. unsigned DemandedResources; SchedResourceDelta(): CritResources(0), DemandedResources(0) {} bool operator==(const SchedResourceDelta &RHS) const { return CritResources == RHS.CritResources && DemandedResources == RHS.DemandedResources; } bool operator!=(const SchedResourceDelta &RHS) const { return !operator==(RHS); } }; /// Store the state used by ConvergingScheduler heuristics, required for the /// lifetime of one invocation of pickNode(). struct SchedCandidate { CandPolicy Policy; // The best SUnit candidate. SUnit *SU; // The reason for this candidate. CandReason Reason; // Set of reasons that apply to multiple candidates. uint32_t RepeatReasonSet; // Register pressure values for the best candidate. RegPressureDelta RPDelta; // Critical resource consumption of the best candidate. SchedResourceDelta ResDelta; SchedCandidate(const CandPolicy &policy) : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {} bool isValid() const { return SU; } // Copy the status of another candidate without changing policy. void setBest(SchedCandidate &Best) { assert(Best.Reason != NoCand && "uninitialized Sched candidate"); SU = Best.SU; Reason = Best.Reason; RPDelta = Best.RPDelta; ResDelta = Best.ResDelta; } bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); } void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); } void initResourceDelta(const ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); }; /// Summarize the unscheduled region. struct SchedRemainder { // Critical path through the DAG in expected latency. unsigned CriticalPath; // Scaled count of micro-ops left to schedule. unsigned RemIssueCount; // Unscheduled resources SmallVector<unsigned, 16> RemainingCounts; void reset() { CriticalPath = 0; RemIssueCount = 0; RemainingCounts.clear(); } SchedRemainder() { reset(); } void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); }; /// Each Scheduling boundary is associated with ready queues. It tracks the /// current cycle in the direction of movement, and maintains the state /// of "hazards" and other interlocks at the current cycle. struct SchedBoundary { ScheduleDAGMI *DAG; const TargetSchedModel *SchedModel; SchedRemainder *Rem; ReadyQueue Available; ReadyQueue Pending; bool CheckPending; // For heuristics, keep a list of the nodes that immediately depend on the // most recently scheduled node. SmallPtrSet<const SUnit*, 8> NextSUs; ScheduleHazardRecognizer *HazardRec; /// Number of cycles it takes to issue the instructions scheduled in this /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls. /// See getStalls(). unsigned CurrCycle; /// Micro-ops issued in the current cycle unsigned CurrMOps; /// MinReadyCycle - Cycle of the soonest available instruction. unsigned MinReadyCycle; // The expected latency of the critical path in this scheduled zone. unsigned ExpectedLatency; // The latency of dependence chains leading into this zone. // For each node scheduled bottom-up: DLat = max DLat, N.Depth. // For each cycle scheduled: DLat -= 1. unsigned DependentLatency; /// Count the scheduled (issued) micro-ops that can be retired by /// time=CurrCycle assuming the first scheduled instr is retired at time=0. unsigned RetiredMOps; // Count scheduled resources that have been executed. Resources are // considered executed if they become ready in the time that it takes to // saturate any resource including the one in question. Counts are scaled // for direct comparison with other resources. Counts can be compared with // MOps * getMicroOpFactor and Latency * getLatencyFactor. SmallVector<unsigned, 16> ExecutedResCounts; /// Cache the max count for a single resource. unsigned MaxExecutedResCount; // Cache the critical resources ID in this scheduled zone. unsigned ZoneCritResIdx; // Is the scheduled region resource limited vs. latency limited. bool IsResourceLimited; #ifndef NDEBUG // Remember the greatest operand latency as an upper bound on the number of // times we should retry the pending queue because of a hazard. unsigned MaxObservedLatency; #endif void reset() { // A new HazardRec is created for each DAG and owned by SchedBoundary. delete HazardRec; Available.clear(); Pending.clear(); CheckPending = false; NextSUs.clear(); HazardRec = 0; CurrCycle = 0; CurrMOps = 0; MinReadyCycle = UINT_MAX; ExpectedLatency = 0; DependentLatency = 0; RetiredMOps = 0; MaxExecutedResCount = 0; ZoneCritResIdx = 0; IsResourceLimited = false; #ifndef NDEBUG MaxObservedLatency = 0; #endif // Reserve a zero-count for invalid CritResIdx. ExecutedResCounts.resize(1); assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); } /// Pending queues extend the ready queues with the same ID and the /// PendingFlag set. SchedBoundary(unsigned ID, const Twine &Name): DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"), HazardRec(0) { reset(); } ~SchedBoundary() { delete HazardRec; } void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem); bool isTop() const { return Available.getID() == ConvergingScheduler::TopQID; } #ifndef NDEBUG const char *getResourceName(unsigned PIdx) { if (!PIdx) return "MOps"; return SchedModel->getProcResource(PIdx)->Name; } #endif /// Get the number of latency cycles "covered" by the scheduled /// instructions. This is the larger of the critical path within the zone /// and the number of cycles required to issue the instructions. unsigned getScheduledLatency() const { return std::max(ExpectedLatency, CurrCycle); } unsigned getUnscheduledLatency(SUnit *SU) const { return isTop() ? SU->getHeight() : SU->getDepth(); } unsigned getResourceCount(unsigned ResIdx) const { return ExecutedResCounts[ResIdx]; } /// Get the scaled count of scheduled micro-ops and resources, including /// executed resources. unsigned getCriticalCount() const { if (!ZoneCritResIdx) return RetiredMOps * SchedModel->getMicroOpFactor(); return getResourceCount(ZoneCritResIdx); } /// Get a scaled count for the minimum execution time of the scheduled /// micro-ops that are ready to execute by getExecutedCount. Notice the /// feedback loop. unsigned getExecutedCount() const { return std::max(CurrCycle * SchedModel->getLatencyFactor(), MaxExecutedResCount); } bool checkHazard(SUnit *SU); unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs); unsigned getOtherResourceCount(unsigned &OtherCritIdx); void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone); void releaseNode(SUnit *SU, unsigned ReadyCycle); void bumpCycle(unsigned NextCycle); void incExecutedResources(unsigned PIdx, unsigned Count); unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle); void bumpNode(SUnit *SU); void releasePending(); void removeReady(SUnit *SU); SUnit *pickOnlyChoice(); #ifndef NDEBUG void dumpScheduledState(); #endif }; private: ScheduleDAGMI *DAG; const TargetSchedModel *SchedModel; const TargetRegisterInfo *TRI; // State of the top and bottom scheduled instruction boundaries. SchedRemainder Rem; SchedBoundary Top; SchedBoundary Bot; public: /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) enum { TopQID = 1, BotQID = 2, LogMaxQID = 2 }; ConvergingScheduler(): DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} virtual void initialize(ScheduleDAGMI *dag); virtual SUnit *pickNode(bool &IsTopNode); virtual void schedNode(SUnit *SU, bool IsTopNode); virtual void releaseTopNode(SUnit *SU); virtual void releaseBottomNode(SUnit *SU); virtual void registerRoots(); protected: void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand, SchedBoundary &Zone, const RegPressureTracker &RPTracker, RegPressureTracker &TempTracker); SUnit *pickNodeBidirectional(bool &IsTopNode); void pickNodeFromQueue(SchedBoundary &Zone, const RegPressureTracker &RPTracker, SchedCandidate &Candidate); void reschedulePhysRegCopies(SUnit *SU, bool isTop); #ifndef NDEBUG void traceCandidate(const SchedCandidate &Cand); #endif }; } // namespace void ConvergingScheduler::SchedRemainder:: init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { reset(); if (!SchedModel->hasInstrSchedModel()) return; RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); for (std::vector<SUnit>::iterator I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) * SchedModel->getMicroOpFactor(); for (TargetSchedModel::ProcResIter PI = SchedModel->getWriteProcResBegin(SC), PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { unsigned PIdx = PI->ProcResourceIdx; unsigned Factor = SchedModel->getResourceFactor(PIdx); RemainingCounts[PIdx] += (Factor * PI->Cycles); } } } void ConvergingScheduler::SchedBoundary:: init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { reset(); DAG = dag; SchedModel = smodel; Rem = rem; if (SchedModel->hasInstrSchedModel()) ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); } void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { DAG = dag; SchedModel = DAG->getSchedModel(); TRI = DAG->TRI; Rem.init(DAG, SchedModel); Top.init(DAG, SchedModel, &Rem); Bot.init(DAG, SchedModel, &Rem); // Initialize resource counts. // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or // are disabled, then these HazardRecs will be disabled. const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); const TargetMachine &TM = DAG->MF.getTarget(); Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); assert((!ForceTopDown || !ForceBottomUp) && "-misched-topdown incompatible with -misched-bottomup"); } void ConvergingScheduler::releaseTopNode(SUnit *SU) { if (SU->isScheduled) return; for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isWeak()) continue; unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; unsigned Latency = I->getLatency(); #ifndef NDEBUG Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency); #endif if (SU->TopReadyCycle < PredReadyCycle + Latency) SU->TopReadyCycle = PredReadyCycle + Latency; } Top.releaseNode(SU, SU->TopReadyCycle); } void ConvergingScheduler::releaseBottomNode(SUnit *SU) { if (SU->isScheduled) return; assert(SU->getInstr() && "Scheduled SUnit must have instr"); for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isWeak()) continue; unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; unsigned Latency = I->getLatency(); #ifndef NDEBUG Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency); #endif if (SU->BotReadyCycle < SuccReadyCycle + Latency) SU->BotReadyCycle = SuccReadyCycle + Latency; } Bot.releaseNode(SU, SU->BotReadyCycle); } void ConvergingScheduler::registerRoots() { Rem.CriticalPath = DAG->ExitSU.getDepth(); // Some roots may not feed into ExitSU. Check all of them in case. for (std::vector<SUnit*>::const_iterator I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { if ((*I)->getDepth() > Rem.CriticalPath) Rem.CriticalPath = (*I)->getDepth(); } DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); } /// Does this SU have a hazard within the current instruction group. /// /// The scheduler supports two modes of hazard recognition. The first is the /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that /// supports highly complicated in-order reservation tables /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. /// /// The second is a streamlined mechanism that checks for hazards based on /// simple counters that the scheduler itself maintains. It explicitly checks /// for instruction dispatch limitations, including the number of micro-ops that /// can dispatch per cycle. /// /// TODO: Also check whether the SU must start a new group. bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { if (HazardRec->isEnabled()) return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); return true; } return false; } // Find the unscheduled node in ReadySUs with the highest latency. unsigned ConvergingScheduler::SchedBoundary:: findMaxLatency(ArrayRef<SUnit*> ReadySUs) { SUnit *LateSU = 0; unsigned RemLatency = 0; for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); I != E; ++I) { unsigned L = getUnscheduledLatency(*I); if (L > RemLatency) { RemLatency = L; LateSU = *I; } } if (LateSU) { DEBUG(dbgs() << Available.getName() << " RemLatency SU(" << LateSU->NodeNum << ") " << RemLatency << "c\n"); } return RemLatency; } // Count resources in this zone and the remaining unscheduled // instruction. Return the max count, scaled. Set OtherCritIdx to the critical // resource index, or zero if the zone is issue limited. unsigned ConvergingScheduler::SchedBoundary:: getOtherResourceCount(unsigned &OtherCritIdx) { OtherCritIdx = 0; if (!SchedModel->hasInstrSchedModel()) return 0; unsigned OtherCritCount = Rem->RemIssueCount + (RetiredMOps * SchedModel->getMicroOpFactor()); DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); PIdx != PEnd; ++PIdx) { unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; if (OtherCount > OtherCritCount) { OtherCritCount = OtherCount; OtherCritIdx = PIdx; } } if (OtherCritIdx) { DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) << " " << getResourceName(OtherCritIdx) << "\n"); } return OtherCritCount; } /// Set the CandPolicy for this zone given the current resources and latencies /// inside and outside the zone. void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone) { // Now that potential stalls have been considered, apply preemptive heuristics // based on the the total latency and resources inside and outside this // zone. // Compute remaining latency. We need this both to determine whether the // overall schedule has become latency-limited and whether the instructions // outside this zone are resource or latency limited. // // The "dependent" latency is updated incrementally during scheduling as the // max height/depth of scheduled nodes minus the cycles since it was // scheduled: // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone // // The "independent" latency is the max ready queue depth: // ILat = max N.depth for N in Available|Pending // // RemainingLatency is the greater of independent and dependent latency. unsigned RemLatency = DependentLatency; RemLatency = std::max(RemLatency, findMaxLatency(Available.elements())); RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements())); // Compute the critical resource outside the zone. unsigned OtherCritIdx; unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx); bool OtherResLimited = false; if (SchedModel->hasInstrSchedModel()) { unsigned LFactor = SchedModel->getLatencyFactor(); OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; } if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) { Policy.ReduceLatency |= true; DEBUG(dbgs() << " " << Available.getName() << " RemainingLatency " << RemLatency << " + " << CurrCycle << "c > CritPath " << Rem->CriticalPath << "\n"); } // If the same resource is limiting inside and outside the zone, do nothing. if (ZoneCritResIdx == OtherCritIdx) return; DEBUG( if (IsResourceLimited) { dbgs() << " " << Available.getName() << " ResourceLimited: " << getResourceName(ZoneCritResIdx) << "\n"; } if (OtherResLimited) dbgs() << " RemainingLimit: " << getResourceName(OtherCritIdx) << "\n"; if (!IsResourceLimited && !OtherResLimited) dbgs() << " Latency limited both directions.\n"); if (IsResourceLimited && !Policy.ReduceResIdx) Policy.ReduceResIdx = ZoneCritResIdx; if (OtherResLimited) Policy.DemandResIdx = OtherCritIdx; } void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { if (ReadyCycle < MinReadyCycle) MinReadyCycle = ReadyCycle; // Check for interlocks first. For the purpose of other heuristics, an // instruction that cannot issue appears as if it's not in the ReadyQueue. bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) Pending.push(SU); else Available.push(SU); // Record this node as an immediate dependent of the scheduled node. NextSUs.insert(SU); } /// Move the boundary of scheduled code by one cycle. void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) { if (SchedModel->getMicroOpBufferSize() == 0) { assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); if (MinReadyCycle > NextCycle) NextCycle = MinReadyCycle; } // Update the current micro-ops, which will issue in the next cycle. unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; // Decrement DependentLatency based on the next cycle. if ((NextCycle - CurrCycle) > DependentLatency) DependentLatency = 0; else DependentLatency -= (NextCycle - CurrCycle); if (!HazardRec->isEnabled()) { // Bypass HazardRec virtual calls. CurrCycle = NextCycle; } else { // Bypass getHazardType calls in case of long latency. for (; CurrCycle != NextCycle; ++CurrCycle) { if (isTop()) HazardRec->AdvanceCycle(); else HazardRec->RecedeCycle(); } } CheckPending = true; unsigned LFactor = SchedModel->getLatencyFactor(); IsResourceLimited = (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) > (int)LFactor; DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); } void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { ExecutedResCounts[PIdx] += Count; if (ExecutedResCounts[PIdx] > MaxExecutedResCount) MaxExecutedResCount = ExecutedResCounts[PIdx]; } /// Add the given processor resource to this scheduled zone. /// /// \param Cycles indicates the number of consecutive (non-pipelined) cycles /// during which this resource is consumed. /// /// \return the next cycle at which the instruction may execute without /// oversubscribing resources. unsigned ConvergingScheduler::SchedBoundary:: countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) { unsigned Factor = SchedModel->getResourceFactor(PIdx); unsigned Count = Factor * Cycles; DEBUG(dbgs() << " " << getResourceName(PIdx) << " +" << Cycles << "x" << Factor << "u\n"); // Update Executed resources counts. incExecutedResources(PIdx, Count); assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); Rem->RemainingCounts[PIdx] -= Count; // Check if this resource exceeds the current critical resource. If so, it // becomes the critical resource. if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { ZoneCritResIdx = PIdx; DEBUG(dbgs() << " *** Critical resource " << getResourceName(PIdx) << ": " << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); } // TODO: We don't yet model reserved resources. It's not hard though. return CurrCycle; } /// Move the boundary of scheduled code by one SUnit. void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { // Update the reservation table. if (HazardRec->isEnabled()) { if (!isTop() && SU->isCall) { // Calls are scheduled with their preceding instructions. For bottom-up // scheduling, clear the pipeline state before emitting. HazardRec->Reset(); } HazardRec->EmitInstruction(SU); } const MCSchedClassDesc *SC = DAG->getSchedClass(SU); unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); CurrMOps += IncMOps; // checkHazard prevents scheduling multiple instructions per cycle that exceed // issue width. However, we commonly reach the maximum. In this case // opportunistically bump the cycle to avoid uselessly checking everything in // the readyQ. Furthermore, a single instruction may produce more than one // cycle's worth of micro-ops. // // TODO: Also check if this SU must end a dispatch group. unsigned NextCycle = CurrCycle; if (CurrMOps >= SchedModel->getIssueWidth()) { ++NextCycle; DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " << CurrCycle << '\n'); } unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); switch (SchedModel->getMicroOpBufferSize()) { case 0: assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); break; case 1: if (ReadyCycle > NextCycle) { NextCycle = ReadyCycle; DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); } break; default: // We don't currently model the OOO reorder buffer, so consider all // scheduled MOps to be "retired". break; } RetiredMOps += IncMOps; // Update resource counts and critical resource. if (SchedModel->hasInstrSchedModel()) { unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); Rem->RemIssueCount -= DecRemIssue; if (ZoneCritResIdx) { // Scale scheduled micro-ops for comparing with the critical resource. unsigned ScaledMOps = RetiredMOps * SchedModel->getMicroOpFactor(); // If scaled micro-ops are now more than the previous critical resource by // a full cycle, then micro-ops issue becomes critical. if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) >= (int)SchedModel->getLatencyFactor()) { ZoneCritResIdx = 0; DEBUG(dbgs() << " *** Critical resource NumMicroOps: " << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); } } for (TargetSchedModel::ProcResIter PI = SchedModel->getWriteProcResBegin(SC), PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { unsigned RCycle = countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle); if (RCycle > NextCycle) NextCycle = RCycle; } } // Update ExpectedLatency and DependentLatency. unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; if (SU->getDepth() > TopLatency) { TopLatency = SU->getDepth(); DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); } if (SU->getHeight() > BotLatency) { BotLatency = SU->getHeight(); DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); } // If we stall for any reason, bump the cycle. if (NextCycle > CurrCycle) { bumpCycle(NextCycle); } else { // After updating ZoneCritResIdx and ExpectedLatency, check if we're // resource limited. If a stall occured, bumpCycle does this. unsigned LFactor = SchedModel->getLatencyFactor(); IsResourceLimited = (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) > (int)LFactor; } DEBUG(dumpScheduledState()); } /// Release pending ready nodes in to the available queue. This makes them /// visible to heuristics. void ConvergingScheduler::SchedBoundary::releasePending() { // If the available queue is empty, it is safe to reset MinReadyCycle. if (Available.empty()) MinReadyCycle = UINT_MAX; // Check to see if any of the pending instructions are ready to issue. If // so, add them to the available queue. bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; for (unsigned i = 0, e = Pending.size(); i != e; ++i) { SUnit *SU = *(Pending.begin()+i); unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; if (ReadyCycle < MinReadyCycle) MinReadyCycle = ReadyCycle; if (!IsBuffered && ReadyCycle > CurrCycle) continue; if (checkHazard(SU)) continue; Available.push(SU); Pending.remove(Pending.begin()+i); --i; --e; } DEBUG(if (!Pending.empty()) Pending.dump()); CheckPending = false; } /// Remove SU from the ready set for this boundary. void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { if (Available.isInQueue(SU)) Available.remove(Available.find(SU)); else { assert(Pending.isInQueue(SU) && "bad ready count"); Pending.remove(Pending.find(SU)); } } /// If this queue only has one ready candidate, return it. As a side effect, /// defer any nodes that now hit a hazard, and advance the cycle until at least /// one node is ready. If multiple instructions are ready, return NULL. SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { if (CheckPending) releasePending(); if (CurrMOps > 0) { // Defer any ready instrs that now have a hazard. for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { if (checkHazard(*I)) { Pending.push(*I); I = Available.remove(I); continue; } ++I; } } for (unsigned i = 0; Available.empty(); ++i) { assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) && "permanent hazard"); (void)i; bumpCycle(CurrCycle + 1); releasePending(); } if (Available.size() == 1) return *Available.begin(); return NULL; } #ifndef NDEBUG // This is useful information to dump after bumpNode. // Note that the Queue contents are more useful before pickNodeFromQueue. void ConvergingScheduler::SchedBoundary::dumpScheduledState() { unsigned ResFactor; unsigned ResCount; if (ZoneCritResIdx) { ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); ResCount = getResourceCount(ZoneCritResIdx); } else { ResFactor = SchedModel->getMicroOpFactor(); ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); } unsigned LFactor = SchedModel->getLatencyFactor(); dbgs() << Available.getName() << " @" << CurrCycle << "c\n" << " Retired: " << RetiredMOps; dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; dbgs() << "\n Critical: " << ResCount / LFactor << "c, " << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx) << "\n ExpectedLatency: " << ExpectedLatency << "c\n" << (IsResourceLimited ? " - Resource" : " - Latency") << " limited.\n"; } #endif void ConvergingScheduler::SchedCandidate:: initResourceDelta(const ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { if (!Policy.ReduceResIdx && !Policy.DemandResIdx) return; const MCSchedClassDesc *SC = DAG->getSchedClass(SU); for (TargetSchedModel::ProcResIter PI = SchedModel->getWriteProcResBegin(SC), PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { if (PI->ProcResourceIdx == Policy.ReduceResIdx) ResDelta.CritResources += PI->Cycles; if (PI->ProcResourceIdx == Policy.DemandResIdx) ResDelta.DemandedResources += PI->Cycles; } } /// Return true if this heuristic determines order. static bool tryLess(int TryVal, int CandVal, ConvergingScheduler::SchedCandidate &TryCand, ConvergingScheduler::SchedCandidate &Cand, ConvergingScheduler::CandReason Reason) { if (TryVal < CandVal) { TryCand.Reason = Reason; return true; } if (TryVal > CandVal) { if (Cand.Reason > Reason) Cand.Reason = Reason; return true; } Cand.setRepeat(Reason); return false; } static bool tryGreater(int TryVal, int CandVal, ConvergingScheduler::SchedCandidate &TryCand, ConvergingScheduler::SchedCandidate &Cand, ConvergingScheduler::CandReason Reason) { if (TryVal > CandVal) { TryCand.Reason = Reason; return true; } if (TryVal < CandVal) { if (Cand.Reason > Reason) Cand.Reason = Reason; return true; } Cand.setRepeat(Reason); return false; } static bool tryPressure(const PressureElement &TryP, const PressureElement &CandP, ConvergingScheduler::SchedCandidate &TryCand, ConvergingScheduler::SchedCandidate &Cand, ConvergingScheduler::CandReason Reason) { // If both candidates affect the same set, go with the smallest increase. if (TryP.PSetID == CandP.PSetID) { return tryLess(TryP.UnitIncrease, CandP.UnitIncrease, TryCand, Cand, Reason); } // If one candidate decreases and the other increases, go with it. if (tryLess(TryP.UnitIncrease < 0, CandP.UnitIncrease < 0, TryCand, Cand, Reason)) { return true; } // If TryP has lower Rank, it has a higher priority. int TryRank = TryP.PSetRank(); int CandRank = CandP.PSetRank(); // If the candidates are decreasing pressure, reverse priority. if (TryP.UnitIncrease < 0) std::swap(TryRank, CandRank); return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); } static unsigned getWeakLeft(const SUnit *SU, bool isTop) { return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; } /// Minimize physical register live ranges. Regalloc wants them adjacent to /// their physreg def/use. /// /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled /// with the operation that produces or consumes the physreg. We'll do this when /// regalloc has support for parallel copies. static int biasPhysRegCopy(const SUnit *SU, bool isTop) { const MachineInstr *MI = SU->getInstr(); if (!MI->isCopy()) return 0; unsigned ScheduledOper = isTop ? 1 : 0; unsigned UnscheduledOper = isTop ? 0 : 1; // If we have already scheduled the physreg produce/consumer, immediately // schedule the copy. if (TargetRegisterInfo::isPhysicalRegister( MI->getOperand(ScheduledOper).getReg())) return 1; // If the physreg is at the boundary, defer it. Otherwise schedule it // immediately to free the dependent. We can hoist the copy later. bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; if (TargetRegisterInfo::isPhysicalRegister( MI->getOperand(UnscheduledOper).getReg())) return AtBoundary ? -1 : 1; return 0; } /// Apply a set of heursitics to a new candidate. Heuristics are currently /// hierarchical. This may be more efficient than a graduated cost model because /// we don't need to evaluate all aspects of the model for each node in the /// queue. But it's really done to make the heuristics easier to debug and /// statistically analyze. /// /// \param Cand provides the policy and current best candidate. /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. /// \param Zone describes the scheduled zone that we are extending. /// \param RPTracker describes reg pressure within the scheduled zone. /// \param TempTracker is a scratch pressure tracker to reuse in queries. void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand, SchedBoundary &Zone, const RegPressureTracker &RPTracker, RegPressureTracker &TempTracker) { // Always initialize TryCand's RPDelta. TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta, DAG->getRegionCriticalPSets(), DAG->getRegPressure().MaxSetPressure); // Initialize the candidate if needed. if (!Cand.isValid()) { TryCand.Reason = NodeOrder; return; } if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), biasPhysRegCopy(Cand.SU, Zone.isTop()), TryCand, Cand, PhysRegCopy)) return; // Avoid exceeding the target's limit. If signed PSetID is negative, it is // invalid; convert it to INT_MAX to give it lowest priority. if (tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand, RegExcess)) return; // Avoid increasing the max critical pressure in the scheduled region. if (tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax, TryCand, Cand, RegCritical)) return; // Keep clustered nodes together to encourage downstream peephole // optimizations which may reduce resource requirements. // // This is a best effort to set things up for a post-RA pass. Optimizations // like generating loads of multiple registers should ideally be done within // the scheduler pass by combining the loads during DAG postprocessing. const SUnit *NextClusterSU = Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, TryCand, Cand, Cluster)) return; // Weak edges are for clustering and other constraints. if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), getWeakLeft(Cand.SU, Zone.isTop()), TryCand, Cand, Weak)) { return; } // Avoid increasing the max pressure of the entire region. if (tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax, TryCand, Cand, RegMax)) return; // Avoid critical resource consumption and balance the schedule. TryCand.initResourceDelta(DAG, SchedModel); if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, TryCand, Cand, ResourceReduce)) return; if (tryGreater(TryCand.ResDelta.DemandedResources, Cand.ResDelta.DemandedResources, TryCand, Cand, ResourceDemand)) return; // Avoid serializing long latency dependence chains. if (Cand.Policy.ReduceLatency) { if (Zone.isTop()) { if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), TryCand, Cand, TopDepthReduce)) return; } if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), TryCand, Cand, TopPathReduce)) return; } else { if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), TryCand, Cand, BotHeightReduce)) return; } if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), TryCand, Cand, BotPathReduce)) return; } } // Prefer immediate defs/users of the last scheduled instruction. This is a // local pressure avoidance strategy that also makes the machine code // readable. if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), TryCand, Cand, NextDefUse)) return; // Fall through to original instruction order. if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { TryCand.Reason = NodeOrder; } } #ifndef NDEBUG const char *ConvergingScheduler::getReasonStr( ConvergingScheduler::CandReason Reason) { switch (Reason) { case NoCand: return "NOCAND "; case PhysRegCopy: return "PREG-COPY"; case RegExcess: return "REG-EXCESS"; case RegCritical: return "REG-CRIT "; case Cluster: return "CLUSTER "; case Weak: return "WEAK "; case RegMax: return "REG-MAX "; case ResourceReduce: return "RES-REDUCE"; case ResourceDemand: return "RES-DEMAND"; case TopDepthReduce: return "TOP-DEPTH "; case TopPathReduce: return "TOP-PATH "; case BotHeightReduce:return "BOT-HEIGHT"; case BotPathReduce: return "BOT-PATH "; case NextDefUse: return "DEF-USE "; case NodeOrder: return "ORDER "; }; llvm_unreachable("Unknown reason!"); } void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) { PressureElement P; unsigned ResIdx = 0; unsigned Latency = 0; switch (Cand.Reason) { default: break; case RegExcess: P = Cand.RPDelta.Excess; break; case RegCritical: P = Cand.RPDelta.CriticalMax; break; case RegMax: P = Cand.RPDelta.CurrentMax; break; case ResourceReduce: ResIdx = Cand.Policy.ReduceResIdx; break; case ResourceDemand: ResIdx = Cand.Policy.DemandResIdx; break; case TopDepthReduce: Latency = Cand.SU->getDepth(); break; case TopPathReduce: Latency = Cand.SU->getHeight(); break; case BotHeightReduce: Latency = Cand.SU->getHeight(); break; case BotPathReduce: Latency = Cand.SU->getDepth(); break; } dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); if (P.isValid()) dbgs() << " " << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease << " "; else dbgs() << " "; if (ResIdx) dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; else dbgs() << " "; if (Latency) dbgs() << " " << Latency << " cycles "; else dbgs() << " "; dbgs() << '\n'; } #endif /// Pick the best candidate from the top queue. /// /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during /// DAG building. To adjust for the current scheduling location we need to /// maintain the number of vreg uses remaining to be top-scheduled. void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, const RegPressureTracker &RPTracker, SchedCandidate &Cand) { ReadyQueue &Q = Zone.Available; DEBUG(Q.dump()); // getMaxPressureDelta temporarily modifies the tracker. RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { SchedCandidate TryCand(Cand.Policy); TryCand.SU = *I; tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); if (TryCand.Reason != NoCand) { // Initialize resource delta if needed in case future heuristics query it. if (TryCand.ResDelta == SchedResourceDelta()) TryCand.initResourceDelta(DAG, SchedModel); Cand.setBest(TryCand); DEBUG(traceCandidate(Cand)); } } } static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, bool IsTop) { DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); } /// Pick the best candidate node from either the top or bottom queue. SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { // Schedule as far as possible in the direction of no choice. This is most // efficient, but also provides the best heuristics for CriticalPSets. if (SUnit *SU = Bot.pickOnlyChoice()) { IsTopNode = false; DEBUG(dbgs() << "Pick Bot NOCAND\n"); return SU; } if (SUnit *SU = Top.pickOnlyChoice()) { IsTopNode = true; DEBUG(dbgs() << "Pick Top NOCAND\n"); return SU; } CandPolicy NoPolicy; SchedCandidate BotCand(NoPolicy); SchedCandidate TopCand(NoPolicy); Bot.setPolicy(BotCand.Policy, Top); Top.setPolicy(TopCand.Policy, Bot); // Prefer bottom scheduling when heuristics are silent. pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); assert(BotCand.Reason != NoCand && "failed to find the first candidate"); // If either Q has a single candidate that provides the least increase in // Excess pressure, we can immediately schedule from that Q. // // RegionCriticalPSets summarizes the pressure within the scheduled region and // affects picking from either Q. If scheduling in one direction must // increase pressure for one of the excess PSets, then schedule in that // direction first to provide more freedom in the other direction. if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) || (BotCand.Reason == RegCritical && !BotCand.isRepeat(RegCritical))) { IsTopNode = false; tracePick(BotCand, IsTopNode); return BotCand.SU; } // Check if the top Q has a better candidate. pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); assert(TopCand.Reason != NoCand && "failed to find the first candidate"); // Choose the queue with the most important (lowest enum) reason. if (TopCand.Reason < BotCand.Reason) { IsTopNode = true; tracePick(TopCand, IsTopNode); return TopCand.SU; } // Otherwise prefer the bottom candidate, in node order if all else failed. IsTopNode = false; tracePick(BotCand, IsTopNode); return BotCand.SU; } /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { if (DAG->top() == DAG->bottom()) { assert(Top.Available.empty() && Top.Pending.empty() && Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); return NULL; } SUnit *SU; do { if (ForceTopDown) { SU = Top.pickOnlyChoice(); if (!SU) { CandPolicy NoPolicy; SchedCandidate TopCand(NoPolicy); pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); assert(TopCand.Reason != NoCand && "failed to find the first candidate"); SU = TopCand.SU; } IsTopNode = true; } else if (ForceBottomUp) { SU = Bot.pickOnlyChoice(); if (!SU) { CandPolicy NoPolicy; SchedCandidate BotCand(NoPolicy); pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); assert(BotCand.Reason != NoCand && "failed to find the first candidate"); SU = BotCand.SU; } IsTopNode = false; } else { SU = pickNodeBidirectional(IsTopNode); } } while (SU->isScheduled); if (SU->isTopReady()) Top.removeReady(SU); if (SU->isBottomReady()) Bot.removeReady(SU); DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); return SU; } void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { MachineBasicBlock::iterator InsertPos = SU->getInstr(); if (!isTop) ++InsertPos; SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; // Find already scheduled copies with a single physreg dependence and move // them just above the scheduled instruction. for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); I != E; ++I) { if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) continue; SUnit *DepSU = I->getSUnit(); if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) continue; MachineInstr *Copy = DepSU->getInstr(); if (!Copy->isCopy()) continue; DEBUG(dbgs() << " Rescheduling physreg copy "; I->getSUnit()->dump(DAG)); DAG->moveInstruction(Copy, InsertPos); } } /// Update the scheduler's state after scheduling a node. This is the same node /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update /// it's state based on the current cycle before MachineSchedStrategy does. /// /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling /// them here. See comments in biasPhysRegCopy. void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { if (IsTopNode) { SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle); Top.bumpNode(SU); if (SU->hasPhysRegUses) reschedulePhysRegCopies(SU, true); } else { SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle); Bot.bumpNode(SU); if (SU->hasPhysRegDefs) reschedulePhysRegCopies(SU, false); } } /// Create the standard converging machine scheduler. This will be used as the /// default scheduler if the target does not set a default. static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { assert((!ForceTopDown || !ForceBottomUp) && "-misched-topdown incompatible with -misched-bottomup"); ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler()); // Register DAG post-processors. // // FIXME: extend the mutation API to allow earlier mutations to instantiate // data and pass it to later mutations. Have a single mutation that gathers // the interesting nodes in one pass. DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI)); if (EnableLoadCluster) DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); if (EnableMacroFusion) DAG->addMutation(new MacroFusion(DAG->TII)); return DAG; } static MachineSchedRegistry ConvergingSchedRegistry("converge", "Standard converging scheduler.", createConvergingSched); //===----------------------------------------------------------------------===// // ILP Scheduler. Currently for experimental analysis of heuristics. //===----------------------------------------------------------------------===// namespace { /// \brief Order nodes by the ILP metric. struct ILPOrder { const SchedDFSResult *DFSResult; const BitVector *ScheduledTrees; bool MaximizeILP; ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {} /// \brief Apply a less-than relation on node priority. /// /// (Return true if A comes after B in the Q.) bool operator()(const SUnit *A, const SUnit *B) const { unsigned SchedTreeA = DFSResult->getSubtreeID(A); unsigned SchedTreeB = DFSResult->getSubtreeID(B); if (SchedTreeA != SchedTreeB) { // Unscheduled trees have lower priority. if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) return ScheduledTrees->test(SchedTreeB); // Trees with shallower connections have have lower priority. if (DFSResult->getSubtreeLevel(SchedTreeA) != DFSResult->getSubtreeLevel(SchedTreeB)) { return DFSResult->getSubtreeLevel(SchedTreeA) < DFSResult->getSubtreeLevel(SchedTreeB); } } if (MaximizeILP) return DFSResult->getILP(A) < DFSResult->getILP(B); else return DFSResult->getILP(A) > DFSResult->getILP(B); } }; /// \brief Schedule based on the ILP metric. class ILPScheduler : public MachineSchedStrategy { /// In case all subtrees are eventually connected to a common root through /// data dependence (e.g. reduction), place an upper limit on their size. /// /// FIXME: A subtree limit is generally good, but in the situation commented /// above, where multiple similar subtrees feed a common root, we should /// only split at a point where the resulting subtrees will be balanced. /// (a motivating test case must be found). static const unsigned SubtreeLimit = 16; ScheduleDAGMI *DAG; ILPOrder Cmp; std::vector<SUnit*> ReadyQ; public: ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {} virtual void initialize(ScheduleDAGMI *dag) { DAG = dag; DAG->computeDFSResult(); Cmp.DFSResult = DAG->getDFSResult(); Cmp.ScheduledTrees = &DAG->getScheduledTrees(); ReadyQ.clear(); } virtual void registerRoots() { // Restore the heap in ReadyQ with the updated DFS results. std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); } /// Implement MachineSchedStrategy interface. /// ----------------------------------------- /// Callback to select the highest priority node from the ready Q. virtual SUnit *pickNode(bool &IsTopNode) { if (ReadyQ.empty()) return NULL; std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); SUnit *SU = ReadyQ.back(); ReadyQ.pop_back(); IsTopNode = false; DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " << " ILP: " << DAG->getDFSResult()->getILP(SU) << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" << DAG->getDFSResult()->getSubtreeLevel( DAG->getDFSResult()->getSubtreeID(SU)) << '\n' << "Scheduling " << *SU->getInstr()); return SU; } /// \brief Scheduler callback to notify that a new subtree is scheduled. virtual void scheduleTree(unsigned SubtreeID) { std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); } /// Callback after a node is scheduled. Mark a newly scheduled tree, notify /// DFSResults, and resort the priority Q. virtual void schedNode(SUnit *SU, bool IsTopNode) { assert(!IsTopNode && "SchedDFSResult needs bottom-up"); } virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } virtual void releaseBottomNode(SUnit *SU) { ReadyQ.push_back(SU); std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); } }; } // namespace static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { return new ScheduleDAGMI(C, new ILPScheduler(true)); } static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { return new ScheduleDAGMI(C, new ILPScheduler(false)); } static MachineSchedRegistry ILPMaxRegistry( "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); static MachineSchedRegistry ILPMinRegistry( "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); //===----------------------------------------------------------------------===// // Machine Instruction Shuffler for Correctness Testing //===----------------------------------------------------------------------===// #ifndef NDEBUG namespace { /// Apply a less-than relation on the node order, which corresponds to the /// instruction order prior to scheduling. IsReverse implements greater-than. template<bool IsReverse> struct SUnitOrder { bool operator()(SUnit *A, SUnit *B) const { if (IsReverse) return A->NodeNum > B->NodeNum; else return A->NodeNum < B->NodeNum; } }; /// Reorder instructions as much as possible. class InstructionShuffler : public MachineSchedStrategy { bool IsAlternating; bool IsTopDown; // Using a less-than relation (SUnitOrder<false>) for the TopQ priority // gives nodes with a higher number higher priority causing the latest // instructions to be scheduled first. PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > TopQ; // When scheduling bottom-up, use greater-than as the queue priority. PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > BottomQ; public: InstructionShuffler(bool alternate, bool topdown) : IsAlternating(alternate), IsTopDown(topdown) {} virtual void initialize(ScheduleDAGMI *) { TopQ.clear(); BottomQ.clear(); } /// Implement MachineSchedStrategy interface. /// ----------------------------------------- virtual SUnit *pickNode(bool &IsTopNode) { SUnit *SU; if (IsTopDown) { do { if (TopQ.empty()) return NULL; SU = TopQ.top(); TopQ.pop(); } while (SU->isScheduled); IsTopNode = true; } else { do { if (BottomQ.empty()) return NULL; SU = BottomQ.top(); BottomQ.pop(); } while (SU->isScheduled); IsTopNode = false; } if (IsAlternating) IsTopDown = !IsTopDown; return SU; } virtual void schedNode(SUnit *SU, bool IsTopNode) {} virtual void releaseTopNode(SUnit *SU) { TopQ.push(SU); } virtual void releaseBottomNode(SUnit *SU) { BottomQ.push(SU); } }; } // namespace static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { bool Alternate = !ForceTopDown && !ForceBottomUp; bool TopDown = !ForceBottomUp; assert((TopDown || !ForceTopDown) && "-misched-topdown incompatible with -misched-bottomup"); return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); } static MachineSchedRegistry ShufflerRegistry( "shuffle", "Shuffle machine instructions alternating directions", createInstructionShuffler); #endif // !NDEBUG //===----------------------------------------------------------------------===// // GraphWriter support for ScheduleDAGMI. //===----------------------------------------------------------------------===// #ifndef NDEBUG namespace llvm { template<> struct GraphTraits< ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; template<> struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} static std::string getGraphName(const ScheduleDAG *G) { return G->MF.getName(); } static bool renderGraphFromBottomUp() { return true; } static bool isNodeHidden(const SUnit *Node) { return (Node->NumPreds > 10 || Node->NumSuccs > 10); } static bool hasNodeAddressLabel(const SUnit *Node, const ScheduleDAG *Graph) { return false; } /// If you want to override the dot attributes printed for a particular /// edge, override this method. static std::string getEdgeAttributes(const SUnit *Node, SUnitIterator EI, const ScheduleDAG *Graph) { if (EI.isArtificialDep()) return "color=cyan,style=dashed"; if (EI.isCtrlDep()) return "color=blue,style=dashed"; return ""; } static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { std::string Str; raw_string_ostream SS(Str); SS << "SU(" << SU->NodeNum << ')'; return SS.str(); } static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { return G->getGraphNodeLabel(SU); } static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *Graph) { std::string Str("shape=Mrecord"); const SchedDFSResult *DFS = static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult(); if (DFS) { Str += ",style=filled,fillcolor=\"#"; Str += DOT::getColorString(DFS->getSubtreeID(N)); Str += '"'; } return Str; } }; } // namespace llvm #endif // NDEBUG /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG /// rendered using 'dot'. /// void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { #ifndef NDEBUG ViewGraph(this, Name, false, Title); #else errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " << "systems with Graphviz or gv!\n"; #endif // NDEBUG } /// Out-of-line implementation with no arguments is handy for gdb. void ScheduleDAGMI::viewGraph() { viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); }