//===-- InterferenceCache.h - Caching per-block interference ---*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // InterferenceCache remembers per-block interference from LiveIntervalUnions, // fixed RegUnit interference, and register masks. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_INTERFERENCECACHE #define LLVM_CODEGEN_INTERFERENCECACHE #include "llvm/CodeGen/LiveIntervalUnion.h" namespace llvm { class LiveIntervals; class InterferenceCache { const TargetRegisterInfo *TRI; LiveIntervalUnion *LIUArray; MachineFunction *MF; /// BlockInterference - information about the interference in a single basic /// block. struct BlockInterference { BlockInterference() : Tag(0) {} unsigned Tag; SlotIndex First; SlotIndex Last; }; /// Entry - A cache entry containing interference information for all aliases /// of PhysReg in all basic blocks. class Entry { /// PhysReg - The register currently represented. unsigned PhysReg; /// Tag - Cache tag is changed when any of the underlying LiveIntervalUnions /// change. unsigned Tag; /// RefCount - The total number of Cursor instances referring to this Entry. unsigned RefCount; /// MF - The current function. MachineFunction *MF; /// Indexes - Mapping block numbers to SlotIndex ranges. SlotIndexes *Indexes; /// LIS - Used for accessing register mask interference maps. LiveIntervals *LIS; /// PrevPos - The previous position the iterators were moved to. SlotIndex PrevPos; /// RegUnitInfo - Information tracked about each RegUnit in PhysReg. /// When PrevPos is set, the iterators are valid as if advanceTo(PrevPos) /// had just been called. struct RegUnitInfo { /// Iterator pointing into the LiveIntervalUnion containing virtual /// register interference. LiveIntervalUnion::SegmentIter VirtI; /// Tag of the LIU last time we looked. unsigned VirtTag; /// Fixed interference in RegUnit. LiveInterval *Fixed; /// Iterator pointing into the fixed RegUnit interference. LiveInterval::iterator FixedI; RegUnitInfo(LiveIntervalUnion &LIU) : VirtTag(LIU.getTag()), Fixed(0) { VirtI.setMap(LIU.getMap()); } }; /// Info for each RegUnit in PhysReg. It is very rare ofr a PHysReg to have /// more than 4 RegUnits. SmallVector<RegUnitInfo, 4> RegUnits; /// Blocks - Interference for each block in the function. SmallVector<BlockInterference, 8> Blocks; /// update - Recompute Blocks[MBBNum] void update(unsigned MBBNum); public: Entry() : PhysReg(0), Tag(0), RefCount(0), Indexes(0), LIS(0) {} void clear(MachineFunction *mf, SlotIndexes *indexes, LiveIntervals *lis) { assert(!hasRefs() && "Cannot clear cache entry with references"); PhysReg = 0; MF = mf; Indexes = indexes; LIS = lis; } unsigned getPhysReg() const { return PhysReg; } void addRef(int Delta) { RefCount += Delta; } bool hasRefs() const { return RefCount > 0; } void revalidate(LiveIntervalUnion *LIUArray, const TargetRegisterInfo *TRI); /// valid - Return true if this is a valid entry for physReg. bool valid(LiveIntervalUnion *LIUArray, const TargetRegisterInfo *TRI); /// reset - Initialize entry to represent physReg's aliases. void reset(unsigned physReg, LiveIntervalUnion *LIUArray, const TargetRegisterInfo *TRI, const MachineFunction *MF); /// get - Return an up to date BlockInterference. BlockInterference *get(unsigned MBBNum) { if (Blocks[MBBNum].Tag != Tag) update(MBBNum); return &Blocks[MBBNum]; } }; // We don't keep a cache entry for every physical register, that would use too // much memory. Instead, a fixed number of cache entries are used in a round- // robin manner. enum { CacheEntries = 32 }; // Point to an entry for each physreg. The entry pointed to may not be up to // date, and it may have been reused for a different physreg. SmallVector<unsigned char, 2> PhysRegEntries; // Next round-robin entry to be picked. unsigned RoundRobin; // The actual cache entries. Entry Entries[CacheEntries]; // get - Get a valid entry for PhysReg. Entry *get(unsigned PhysReg); public: InterferenceCache() : TRI(0), LIUArray(0), MF(0), RoundRobin(0) {} /// init - Prepare cache for a new function. void init(MachineFunction*, LiveIntervalUnion*, SlotIndexes*, LiveIntervals*, const TargetRegisterInfo *); /// getMaxCursors - Return the maximum number of concurrent cursors that can /// be supported. unsigned getMaxCursors() const { return CacheEntries; } /// Cursor - The primary query interface for the block interference cache. class Cursor { Entry *CacheEntry; BlockInterference *Current; static BlockInterference NoInterference; void setEntry(Entry *E) { Current = 0; // Update reference counts. Nothing happens when RefCount reaches 0, so // we don't have to check for E == CacheEntry etc. if (CacheEntry) CacheEntry->addRef(-1); CacheEntry = E; if (CacheEntry) CacheEntry->addRef(+1); } public: /// Cursor - Create a dangling cursor. Cursor() : CacheEntry(0), Current(0) {} ~Cursor() { setEntry(0); } Cursor(const Cursor &O) : CacheEntry(0), Current(0) { setEntry(O.CacheEntry); } Cursor &operator=(const Cursor &O) { setEntry(O.CacheEntry); return *this; } /// setPhysReg - Point this cursor to PhysReg's interference. void setPhysReg(InterferenceCache &Cache, unsigned PhysReg) { // Release reference before getting a new one. That guarantees we can // actually have CacheEntries live cursors. setEntry(0); if (PhysReg) setEntry(Cache.get(PhysReg)); } /// moveTo - Move cursor to basic block MBBNum. void moveToBlock(unsigned MBBNum) { Current = CacheEntry ? CacheEntry->get(MBBNum) : &NoInterference; } /// hasInterference - Return true if the current block has any interference. bool hasInterference() { return Current->First.isValid(); } /// first - Return the starting index of the first interfering range in the /// current block. SlotIndex first() { return Current->First; } /// last - Return the ending index of the last interfering range in the /// current block. SlotIndex last() { return Current->Last; } }; friend class Cursor; }; } // namespace llvm #endif