#include "llvm/Analysis/Passes.h" #include "llvm/Analysis/Verifier.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/JIT.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/PassManager.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Transforms/Scalar.h" #include <cstdio> #include <map> #include <string> #include <vector> using namespace llvm; //===----------------------------------------------------------------------===// // Lexer //===----------------------------------------------------------------------===// // The lexer returns tokens [0-255] if it is an unknown character, otherwise one // of these for known things. enum Token { tok_eof = -1, // commands tok_def = -2, tok_extern = -3, // primary tok_identifier = -4, tok_number = -5, // control tok_if = -6, tok_then = -7, tok_else = -8, tok_for = -9, tok_in = -10 }; static std::string IdentifierStr; // Filled in if tok_identifier static double NumVal; // Filled in if tok_number /// gettok - Return the next token from standard input. static int gettok() { static int LastChar = ' '; // Skip any whitespace. while (isspace(LastChar)) LastChar = getchar(); if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* IdentifierStr = LastChar; while (isalnum((LastChar = getchar()))) IdentifierStr += LastChar; if (IdentifierStr == "def") return tok_def; if (IdentifierStr == "extern") return tok_extern; if (IdentifierStr == "if") return tok_if; if (IdentifierStr == "then") return tok_then; if (IdentifierStr == "else") return tok_else; if (IdentifierStr == "for") return tok_for; if (IdentifierStr == "in") return tok_in; return tok_identifier; } if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ std::string NumStr; do { NumStr += LastChar; LastChar = getchar(); } while (isdigit(LastChar) || LastChar == '.'); NumVal = strtod(NumStr.c_str(), 0); return tok_number; } if (LastChar == '#') { // Comment until end of line. do LastChar = getchar(); while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); if (LastChar != EOF) return gettok(); } // Check for end of file. Don't eat the EOF. if (LastChar == EOF) return tok_eof; // Otherwise, just return the character as its ascii value. int ThisChar = LastChar; LastChar = getchar(); return ThisChar; } //===----------------------------------------------------------------------===// // Abstract Syntax Tree (aka Parse Tree) //===----------------------------------------------------------------------===// /// ExprAST - Base class for all expression nodes. class ExprAST { public: virtual ~ExprAST() {} virtual Value *Codegen() = 0; }; /// NumberExprAST - Expression class for numeric literals like "1.0". class NumberExprAST : public ExprAST { double Val; public: NumberExprAST(double val) : Val(val) {} virtual Value *Codegen(); }; /// VariableExprAST - Expression class for referencing a variable, like "a". class VariableExprAST : public ExprAST { std::string Name; public: VariableExprAST(const std::string &name) : Name(name) {} virtual Value *Codegen(); }; /// BinaryExprAST - Expression class for a binary operator. class BinaryExprAST : public ExprAST { char Op; ExprAST *LHS, *RHS; public: BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) : Op(op), LHS(lhs), RHS(rhs) {} virtual Value *Codegen(); }; /// CallExprAST - Expression class for function calls. class CallExprAST : public ExprAST { std::string Callee; std::vector<ExprAST*> Args; public: CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) : Callee(callee), Args(args) {} virtual Value *Codegen(); }; /// IfExprAST - Expression class for if/then/else. class IfExprAST : public ExprAST { ExprAST *Cond, *Then, *Else; public: IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) : Cond(cond), Then(then), Else(_else) {} virtual Value *Codegen(); }; /// ForExprAST - Expression class for for/in. class ForExprAST : public ExprAST { std::string VarName; ExprAST *Start, *End, *Step, *Body; public: ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, ExprAST *step, ExprAST *body) : VarName(varname), Start(start), End(end), Step(step), Body(body) {} virtual Value *Codegen(); }; /// PrototypeAST - This class represents the "prototype" for a function, /// which captures its name, and its argument names (thus implicitly the number /// of arguments the function takes). class PrototypeAST { std::string Name; std::vector<std::string> Args; public: PrototypeAST(const std::string &name, const std::vector<std::string> &args) : Name(name), Args(args) {} Function *Codegen(); }; /// FunctionAST - This class represents a function definition itself. class FunctionAST { PrototypeAST *Proto; ExprAST *Body; public: FunctionAST(PrototypeAST *proto, ExprAST *body) : Proto(proto), Body(body) {} Function *Codegen(); }; //===----------------------------------------------------------------------===// // Parser //===----------------------------------------------------------------------===// /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current /// token the parser is looking at. getNextToken reads another token from the /// lexer and updates CurTok with its results. static int CurTok; static int getNextToken() { return CurTok = gettok(); } /// BinopPrecedence - This holds the precedence for each binary operator that is /// defined. static std::map<char, int> BinopPrecedence; /// GetTokPrecedence - Get the precedence of the pending binary operator token. static int GetTokPrecedence() { if (!isascii(CurTok)) return -1; // Make sure it's a declared binop. int TokPrec = BinopPrecedence[CurTok]; if (TokPrec <= 0) return -1; return TokPrec; } /// Error* - These are little helper functions for error handling. ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } static ExprAST *ParseExpression(); /// identifierexpr /// ::= identifier /// ::= identifier '(' expression* ')' static ExprAST *ParseIdentifierExpr() { std::string IdName = IdentifierStr; getNextToken(); // eat identifier. if (CurTok != '(') // Simple variable ref. return new VariableExprAST(IdName); // Call. getNextToken(); // eat ( std::vector<ExprAST*> Args; if (CurTok != ')') { while (1) { ExprAST *Arg = ParseExpression(); if (!Arg) return 0; Args.push_back(Arg); if (CurTok == ')') break; if (CurTok != ',') return Error("Expected ')' or ',' in argument list"); getNextToken(); } } // Eat the ')'. getNextToken(); return new CallExprAST(IdName, Args); } /// numberexpr ::= number static ExprAST *ParseNumberExpr() { ExprAST *Result = new NumberExprAST(NumVal); getNextToken(); // consume the number return Result; } /// parenexpr ::= '(' expression ')' static ExprAST *ParseParenExpr() { getNextToken(); // eat (. ExprAST *V = ParseExpression(); if (!V) return 0; if (CurTok != ')') return Error("expected ')'"); getNextToken(); // eat ). return V; } /// ifexpr ::= 'if' expression 'then' expression 'else' expression static ExprAST *ParseIfExpr() { getNextToken(); // eat the if. // condition. ExprAST *Cond = ParseExpression(); if (!Cond) return 0; if (CurTok != tok_then) return Error("expected then"); getNextToken(); // eat the then ExprAST *Then = ParseExpression(); if (Then == 0) return 0; if (CurTok != tok_else) return Error("expected else"); getNextToken(); ExprAST *Else = ParseExpression(); if (!Else) return 0; return new IfExprAST(Cond, Then, Else); } /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression static ExprAST *ParseForExpr() { getNextToken(); // eat the for. if (CurTok != tok_identifier) return Error("expected identifier after for"); std::string IdName = IdentifierStr; getNextToken(); // eat identifier. if (CurTok != '=') return Error("expected '=' after for"); getNextToken(); // eat '='. ExprAST *Start = ParseExpression(); if (Start == 0) return 0; if (CurTok != ',') return Error("expected ',' after for start value"); getNextToken(); ExprAST *End = ParseExpression(); if (End == 0) return 0; // The step value is optional. ExprAST *Step = 0; if (CurTok == ',') { getNextToken(); Step = ParseExpression(); if (Step == 0) return 0; } if (CurTok != tok_in) return Error("expected 'in' after for"); getNextToken(); // eat 'in'. ExprAST *Body = ParseExpression(); if (Body == 0) return 0; return new ForExprAST(IdName, Start, End, Step, Body); } /// primary /// ::= identifierexpr /// ::= numberexpr /// ::= parenexpr /// ::= ifexpr /// ::= forexpr static ExprAST *ParsePrimary() { switch (CurTok) { default: return Error("unknown token when expecting an expression"); case tok_identifier: return ParseIdentifierExpr(); case tok_number: return ParseNumberExpr(); case '(': return ParseParenExpr(); case tok_if: return ParseIfExpr(); case tok_for: return ParseForExpr(); } } /// binoprhs /// ::= ('+' primary)* static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { // If this is a binop, find its precedence. while (1) { int TokPrec = GetTokPrecedence(); // If this is a binop that binds at least as tightly as the current binop, // consume it, otherwise we are done. if (TokPrec < ExprPrec) return LHS; // Okay, we know this is a binop. int BinOp = CurTok; getNextToken(); // eat binop // Parse the primary expression after the binary operator. ExprAST *RHS = ParsePrimary(); if (!RHS) return 0; // If BinOp binds less tightly with RHS than the operator after RHS, let // the pending operator take RHS as its LHS. int NextPrec = GetTokPrecedence(); if (TokPrec < NextPrec) { RHS = ParseBinOpRHS(TokPrec+1, RHS); if (RHS == 0) return 0; } // Merge LHS/RHS. LHS = new BinaryExprAST(BinOp, LHS, RHS); } } /// expression /// ::= primary binoprhs /// static ExprAST *ParseExpression() { ExprAST *LHS = ParsePrimary(); if (!LHS) return 0; return ParseBinOpRHS(0, LHS); } /// prototype /// ::= id '(' id* ')' static PrototypeAST *ParsePrototype() { if (CurTok != tok_identifier) return ErrorP("Expected function name in prototype"); std::string FnName = IdentifierStr; getNextToken(); if (CurTok != '(') return ErrorP("Expected '(' in prototype"); std::vector<std::string> ArgNames; while (getNextToken() == tok_identifier) ArgNames.push_back(IdentifierStr); if (CurTok != ')') return ErrorP("Expected ')' in prototype"); // success. getNextToken(); // eat ')'. return new PrototypeAST(FnName, ArgNames); } /// definition ::= 'def' prototype expression static FunctionAST *ParseDefinition() { getNextToken(); // eat def. PrototypeAST *Proto = ParsePrototype(); if (Proto == 0) return 0; if (ExprAST *E = ParseExpression()) return new FunctionAST(Proto, E); return 0; } /// toplevelexpr ::= expression static FunctionAST *ParseTopLevelExpr() { if (ExprAST *E = ParseExpression()) { // Make an anonymous proto. PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); return new FunctionAST(Proto, E); } return 0; } /// external ::= 'extern' prototype static PrototypeAST *ParseExtern() { getNextToken(); // eat extern. return ParsePrototype(); } //===----------------------------------------------------------------------===// // Code Generation //===----------------------------------------------------------------------===// static Module *TheModule; static IRBuilder<> Builder(getGlobalContext()); static std::map<std::string, Value*> NamedValues; static FunctionPassManager *TheFPM; Value *ErrorV(const char *Str) { Error(Str); return 0; } Value *NumberExprAST::Codegen() { return ConstantFP::get(getGlobalContext(), APFloat(Val)); } Value *VariableExprAST::Codegen() { // Look this variable up in the function. Value *V = NamedValues[Name]; return V ? V : ErrorV("Unknown variable name"); } Value *BinaryExprAST::Codegen() { Value *L = LHS->Codegen(); Value *R = RHS->Codegen(); if (L == 0 || R == 0) return 0; switch (Op) { case '+': return Builder.CreateFAdd(L, R, "addtmp"); case '-': return Builder.CreateFSub(L, R, "subtmp"); case '*': return Builder.CreateFMul(L, R, "multmp"); case '<': L = Builder.CreateFCmpULT(L, R, "cmptmp"); // Convert bool 0/1 to double 0.0 or 1.0 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), "booltmp"); default: return ErrorV("invalid binary operator"); } } Value *CallExprAST::Codegen() { // Look up the name in the global module table. Function *CalleeF = TheModule->getFunction(Callee); if (CalleeF == 0) return ErrorV("Unknown function referenced"); // If argument mismatch error. if (CalleeF->arg_size() != Args.size()) return ErrorV("Incorrect # arguments passed"); std::vector<Value*> ArgsV; for (unsigned i = 0, e = Args.size(); i != e; ++i) { ArgsV.push_back(Args[i]->Codegen()); if (ArgsV.back() == 0) return 0; } return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); } Value *IfExprAST::Codegen() { Value *CondV = Cond->Codegen(); if (CondV == 0) return 0; // Convert condition to a bool by comparing equal to 0.0. CondV = Builder.CreateFCmpONE(CondV, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "ifcond"); Function *TheFunction = Builder.GetInsertBlock()->getParent(); // Create blocks for the then and else cases. Insert the 'then' block at the // end of the function. BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); Builder.CreateCondBr(CondV, ThenBB, ElseBB); // Emit then value. Builder.SetInsertPoint(ThenBB); Value *ThenV = Then->Codegen(); if (ThenV == 0) return 0; Builder.CreateBr(MergeBB); // Codegen of 'Then' can change the current block, update ThenBB for the PHI. ThenBB = Builder.GetInsertBlock(); // Emit else block. TheFunction->getBasicBlockList().push_back(ElseBB); Builder.SetInsertPoint(ElseBB); Value *ElseV = Else->Codegen(); if (ElseV == 0) return 0; Builder.CreateBr(MergeBB); // Codegen of 'Else' can change the current block, update ElseBB for the PHI. ElseBB = Builder.GetInsertBlock(); // Emit merge block. TheFunction->getBasicBlockList().push_back(MergeBB); Builder.SetInsertPoint(MergeBB); PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, "iftmp"); PN->addIncoming(ThenV, ThenBB); PN->addIncoming(ElseV, ElseBB); return PN; } Value *ForExprAST::Codegen() { // Output this as: // ... // start = startexpr // goto loop // loop: // variable = phi [start, loopheader], [nextvariable, loopend] // ... // bodyexpr // ... // loopend: // step = stepexpr // nextvariable = variable + step // endcond = endexpr // br endcond, loop, endloop // outloop: // Emit the start code first, without 'variable' in scope. Value *StartVal = Start->Codegen(); if (StartVal == 0) return 0; // Make the new basic block for the loop header, inserting after current // block. Function *TheFunction = Builder.GetInsertBlock()->getParent(); BasicBlock *PreheaderBB = Builder.GetInsertBlock(); BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); // Insert an explicit fall through from the current block to the LoopBB. Builder.CreateBr(LoopBB); // Start insertion in LoopBB. Builder.SetInsertPoint(LoopBB); // Start the PHI node with an entry for Start. PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str()); Variable->addIncoming(StartVal, PreheaderBB); // Within the loop, the variable is defined equal to the PHI node. If it // shadows an existing variable, we have to restore it, so save it now. Value *OldVal = NamedValues[VarName]; NamedValues[VarName] = Variable; // Emit the body of the loop. This, like any other expr, can change the // current BB. Note that we ignore the value computed by the body, but don't // allow an error. if (Body->Codegen() == 0) return 0; // Emit the step value. Value *StepVal; if (Step) { StepVal = Step->Codegen(); if (StepVal == 0) return 0; } else { // If not specified, use 1.0. StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); } Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); // Compute the end condition. Value *EndCond = End->Codegen(); if (EndCond == 0) return EndCond; // Convert condition to a bool by comparing equal to 0.0. EndCond = Builder.CreateFCmpONE(EndCond, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "loopcond"); // Create the "after loop" block and insert it. BasicBlock *LoopEndBB = Builder.GetInsertBlock(); BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); // Insert the conditional branch into the end of LoopEndBB. Builder.CreateCondBr(EndCond, LoopBB, AfterBB); // Any new code will be inserted in AfterBB. Builder.SetInsertPoint(AfterBB); // Add a new entry to the PHI node for the backedge. Variable->addIncoming(NextVar, LoopEndBB); // Restore the unshadowed variable. if (OldVal) NamedValues[VarName] = OldVal; else NamedValues.erase(VarName); // for expr always returns 0.0. return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); } Function *PrototypeAST::Codegen() { // Make the function type: double(double,double) etc. std::vector<Type*> Doubles(Args.size(), Type::getDoubleTy(getGlobalContext())); FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false); Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); // If F conflicted, there was already something named 'Name'. If it has a // body, don't allow redefinition or reextern. if (F->getName() != Name) { // Delete the one we just made and get the existing one. F->eraseFromParent(); F = TheModule->getFunction(Name); // If F already has a body, reject this. if (!F->empty()) { ErrorF("redefinition of function"); return 0; } // If F took a different number of args, reject. if (F->arg_size() != Args.size()) { ErrorF("redefinition of function with different # args"); return 0; } } // Set names for all arguments. unsigned Idx = 0; for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); ++AI, ++Idx) { AI->setName(Args[Idx]); // Add arguments to variable symbol table. NamedValues[Args[Idx]] = AI; } return F; } Function *FunctionAST::Codegen() { NamedValues.clear(); Function *TheFunction = Proto->Codegen(); if (TheFunction == 0) return 0; // Create a new basic block to start insertion into. BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); Builder.SetInsertPoint(BB); if (Value *RetVal = Body->Codegen()) { // Finish off the function. Builder.CreateRet(RetVal); // Validate the generated code, checking for consistency. verifyFunction(*TheFunction); // Optimize the function. TheFPM->run(*TheFunction); return TheFunction; } // Error reading body, remove function. TheFunction->eraseFromParent(); return 0; } //===----------------------------------------------------------------------===// // Top-Level parsing and JIT Driver //===----------------------------------------------------------------------===// static ExecutionEngine *TheExecutionEngine; static void HandleDefinition() { if (FunctionAST *F = ParseDefinition()) { if (Function *LF = F->Codegen()) { fprintf(stderr, "Read function definition:"); LF->dump(); } } else { // Skip token for error recovery. getNextToken(); } } static void HandleExtern() { if (PrototypeAST *P = ParseExtern()) { if (Function *F = P->Codegen()) { fprintf(stderr, "Read extern: "); F->dump(); } } else { // Skip token for error recovery. getNextToken(); } } static void HandleTopLevelExpression() { // Evaluate a top-level expression into an anonymous function. if (FunctionAST *F = ParseTopLevelExpr()) { if (Function *LF = F->Codegen()) { // JIT the function, returning a function pointer. void *FPtr = TheExecutionEngine->getPointerToFunction(LF); // Cast it to the right type (takes no arguments, returns a double) so we // can call it as a native function. double (*FP)() = (double (*)())(intptr_t)FPtr; fprintf(stderr, "Evaluated to %f\n", FP()); } } else { // Skip token for error recovery. getNextToken(); } } /// top ::= definition | external | expression | ';' static void MainLoop() { while (1) { fprintf(stderr, "ready> "); switch (CurTok) { case tok_eof: return; case ';': getNextToken(); break; // ignore top-level semicolons. case tok_def: HandleDefinition(); break; case tok_extern: HandleExtern(); break; default: HandleTopLevelExpression(); break; } } } //===----------------------------------------------------------------------===// // "Library" functions that can be "extern'd" from user code. //===----------------------------------------------------------------------===// /// putchard - putchar that takes a double and returns 0. extern "C" double putchard(double X) { putchar((char)X); return 0; } //===----------------------------------------------------------------------===// // Main driver code. //===----------------------------------------------------------------------===// int main() { InitializeNativeTarget(); LLVMContext &Context = getGlobalContext(); // Install standard binary operators. // 1 is lowest precedence. BinopPrecedence['<'] = 10; BinopPrecedence['+'] = 20; BinopPrecedence['-'] = 20; BinopPrecedence['*'] = 40; // highest. // Prime the first token. fprintf(stderr, "ready> "); getNextToken(); // Make the module, which holds all the code. TheModule = new Module("my cool jit", Context); // Create the JIT. This takes ownership of the module. std::string ErrStr; TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); if (!TheExecutionEngine) { fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); exit(1); } FunctionPassManager OurFPM(TheModule); // Set up the optimizer pipeline. Start with registering info about how the // target lays out data structures. OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); // Provide basic AliasAnalysis support for GVN. OurFPM.add(createBasicAliasAnalysisPass()); // Do simple "peephole" optimizations and bit-twiddling optzns. OurFPM.add(createInstructionCombiningPass()); // Reassociate expressions. OurFPM.add(createReassociatePass()); // Eliminate Common SubExpressions. OurFPM.add(createGVNPass()); // Simplify the control flow graph (deleting unreachable blocks, etc). OurFPM.add(createCFGSimplificationPass()); OurFPM.doInitialization(); // Set the global so the code gen can use this. TheFPM = &OurFPM; // Run the main "interpreter loop" now. MainLoop(); TheFPM = 0; // Print out all of the generated code. TheModule->dump(); return 0; }