/* ******************************************************************************* * * Copyright (C) 2001-2012, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: ucol_tok.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created 02/22/2001 * created by: Vladimir Weinstein * * This module reads a tailoring rule string and produces a list of * tokens that will be turned into collation elements * */ #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION #include "unicode/uscript.h" #include "unicode/ustring.h" #include "unicode/uchar.h" #include "unicode/uniset.h" #include "cmemory.h" #include "cstring.h" #include "patternprops.h" #include "ucol_bld.h" #include "ucol_tok.h" #include "ulocimp.h" #include "uresimp.h" // Define this only for debugging. // #define DEBUG_FOR_COLL_RULES 1 #ifdef DEBUG_FOR_COLL_RULES #include <iostream> #endif U_NAMESPACE_USE U_CDECL_BEGIN static int32_t U_CALLCONV uhash_hashTokens(const UHashTok k) { int32_t hash = 0; //uint32_t key = (uint32_t)k.integer; UColToken *key = (UColToken *)k.pointer; if (key != 0) { int32_t len = (key->source & 0xFF000000)>>24; int32_t inc = ((len - 32) / 32) + 1; const UChar *p = (key->source & 0x00FFFFFF) + *(key->rulesToParseHdl); const UChar *limit = p + len; while (p<limit) { hash = (hash * 37) + *p; p += inc; } } return hash; } static UBool U_CALLCONV uhash_compareTokens(const UHashTok key1, const UHashTok key2) { //uint32_t p1 = (uint32_t) key1.integer; //uint32_t p2 = (uint32_t) key2.integer; UColToken *p1 = (UColToken *)key1.pointer; UColToken *p2 = (UColToken *)key2.pointer; const UChar *s1 = (p1->source & 0x00FFFFFF) + *(p1->rulesToParseHdl); const UChar *s2 = (p2->source & 0x00FFFFFF) + *(p2->rulesToParseHdl); uint32_t s1L = ((p1->source & 0xFF000000) >> 24); uint32_t s2L = ((p2->source & 0xFF000000) >> 24); const UChar *end = s1+s1L-1; if (p1 == p2) { return TRUE; } if (p1->source == 0 || p2->source == 0) { return FALSE; } if(s1L != s2L) { return FALSE; } if(p1->source == p2->source) { return TRUE; } while((s1 < end) && *s1 == *s2) { ++s1; ++s2; } if(*s1 == *s2) { return TRUE; } else { return FALSE; } } U_CDECL_END /* * Debug messages used to pinpoint where a format error occurred. * A better way is to include context-sensitive information in syntaxError() function. * * To turn this debugging on, either uncomment the following line, or define use -DDEBUG_FOR_FORMAT_ERROR * in the compile line. */ /* #define DEBUG_FOR_FORMAT_ERROR 1 */ #ifdef DEBUG_FOR_FORMAT_ERROR #define DBG_FORMAT_ERROR { printf("U_INVALID_FORMAT_ERROR at line %d", __LINE__);} #else #define DBG_FORMAT_ERROR #endif /* * Controls debug messages so that the output can be compared before and after a * big change. Prints the information of every code point that comes out of the * collation parser and its strength into a file. When a big change in format * happens, the files before and after the change should be identical. * * To turn this debugging on, either uncomment the following line, or define use -DDEBUG_FOR_CODE_POINTS * in the compile line. */ // #define DEBUG_FOR_CODE_POINTS 1 #ifdef DEBUG_FOR_CODE_POINTS FILE* dfcp_fp = NULL; #endif typedef struct { uint32_t startCE; uint32_t startContCE; uint32_t limitCE; uint32_t limitContCE; } indirectBoundaries; /* these values are used for finding CE values for indirect positioning. */ /* Indirect positioning is a mechanism for allowing resets on symbolic */ /* values. It only works for resets and you cannot tailor indirect names */ /* An indirect name can define either an anchor point or a range. An */ /* anchor point behaves in exactly the same way as a code point in reset */ /* would, except that it cannot be tailored. A range (we currently only */ /* know for the [top] range will explicitly set the upper bound for */ /* generated CEs, thus allowing for better control over how many CEs can */ /* be squeezed between in the range without performance penalty. */ /* In that respect, we use [top] for tailoring of locales that use CJK */ /* characters. Other indirect values are currently a pure convenience, */ /* they can be used to assure that the CEs will be always positioned in */ /* the same place relative to a point with known properties (e.g. first */ /* primary ignorable). */ static indirectBoundaries ucolIndirectBoundaries[15]; /* static indirectBoundaries ucolIndirectBoundaries[11] = { { UCOL_RESET_TOP_VALUE, 0, UCOL_NEXT_TOP_VALUE, 0 }, { UCOL_FIRST_PRIMARY_IGNORABLE, 0, 0, 0 }, { UCOL_LAST_PRIMARY_IGNORABLE, UCOL_LAST_PRIMARY_IGNORABLE_CONT, 0, 0 }, { UCOL_FIRST_SECONDARY_IGNORABLE, 0, 0, 0 }, { UCOL_LAST_SECONDARY_IGNORABLE, 0, 0, 0 }, { UCOL_FIRST_TERTIARY_IGNORABLE, 0, 0, 0 }, { UCOL_LAST_TERTIARY_IGNORABLE, 0, 0, 0 }, { UCOL_FIRST_VARIABLE, 0, 0, 0 }, { UCOL_LAST_VARIABLE, 0, 0, 0 }, { UCOL_FIRST_NON_VARIABLE, 0, 0, 0 }, { UCOL_LAST_NON_VARIABLE, 0, 0, 0 }, }; */ static void setIndirectBoundaries(uint32_t indexR, uint32_t *start, uint32_t *end) { // Set values for the top - TODO: once we have values for all the indirects, we are going // to initalize here. ucolIndirectBoundaries[indexR].startCE = start[0]; ucolIndirectBoundaries[indexR].startContCE = start[1]; if(end) { ucolIndirectBoundaries[indexR].limitCE = end[0]; ucolIndirectBoundaries[indexR].limitContCE = end[1]; } else { ucolIndirectBoundaries[indexR].limitCE = 0; ucolIndirectBoundaries[indexR].limitContCE = 0; } } static inline void syntaxError(const UChar* rules, int32_t pos, int32_t rulesLen, UParseError* parseError) { parseError->offset = pos; parseError->line = 0 ; /* we are not using line numbers */ // for pre-context int32_t start = (pos < U_PARSE_CONTEXT_LEN)? 0 : (pos - (U_PARSE_CONTEXT_LEN-1)); int32_t stop = pos; u_memcpy(parseError->preContext,rules+start,stop-start); //null terminate the buffer parseError->preContext[stop-start] = 0; //for post-context start = pos+1; stop = ((pos+U_PARSE_CONTEXT_LEN)<= rulesLen )? (pos+(U_PARSE_CONTEXT_LEN-1)) : rulesLen; if(start < stop) { u_memcpy(parseError->postContext,rules+start,stop-start); //null terminate the buffer parseError->postContext[stop-start]= 0; } else { parseError->postContext[0] = 0; } } static void ucol_uprv_tok_setOptionInImage(UColOptionSet *opts, UColAttribute attrib, UColAttributeValue value) { switch(attrib) { case UCOL_HIRAGANA_QUATERNARY_MODE: opts->hiraganaQ = value; break; case UCOL_FRENCH_COLLATION: opts->frenchCollation = value; break; case UCOL_ALTERNATE_HANDLING: opts->alternateHandling = value; break; case UCOL_CASE_FIRST: opts->caseFirst = value; break; case UCOL_CASE_LEVEL: opts->caseLevel = value; break; case UCOL_NORMALIZATION_MODE: opts->normalizationMode = value; break; case UCOL_STRENGTH: opts->strength = value; break; case UCOL_NUMERIC_COLLATION: opts->numericCollation = value; break; case UCOL_ATTRIBUTE_COUNT: default: break; } } #define UTOK_OPTION_COUNT 22 static UBool didInit = FALSE; /* we can be strict, or we can be lenient */ /* I'd surely be lenient with the option arguments */ /* maybe even with options */ U_STRING_DECL(suboption_00, "non-ignorable", 13); U_STRING_DECL(suboption_01, "shifted", 7); U_STRING_DECL(suboption_02, "lower", 5); U_STRING_DECL(suboption_03, "upper", 5); U_STRING_DECL(suboption_04, "off", 3); U_STRING_DECL(suboption_05, "on", 2); U_STRING_DECL(suboption_06, "1", 1); U_STRING_DECL(suboption_07, "2", 1); U_STRING_DECL(suboption_08, "3", 1); U_STRING_DECL(suboption_09, "4", 1); U_STRING_DECL(suboption_10, "I", 1); U_STRING_DECL(suboption_11, "primary", 7); U_STRING_DECL(suboption_12, "secondary", 9); U_STRING_DECL(suboption_13, "tertiary", 8); U_STRING_DECL(suboption_14, "variable", 8); U_STRING_DECL(suboption_15, "regular", 7); U_STRING_DECL(suboption_16, "implicit", 8); U_STRING_DECL(suboption_17, "trailing", 8); U_STRING_DECL(option_00, "undefined", 9); U_STRING_DECL(option_01, "rearrange", 9); U_STRING_DECL(option_02, "alternate", 9); U_STRING_DECL(option_03, "backwards", 9); U_STRING_DECL(option_04, "variable top", 12); U_STRING_DECL(option_05, "top", 3); U_STRING_DECL(option_06, "normalization", 13); U_STRING_DECL(option_07, "caseLevel", 9); U_STRING_DECL(option_08, "caseFirst", 9); U_STRING_DECL(option_09, "scriptOrder", 11); U_STRING_DECL(option_10, "charsetname", 11); U_STRING_DECL(option_11, "charset", 7); U_STRING_DECL(option_12, "before", 6); U_STRING_DECL(option_13, "hiraganaQ", 9); U_STRING_DECL(option_14, "strength", 8); U_STRING_DECL(option_15, "first", 5); U_STRING_DECL(option_16, "last", 4); U_STRING_DECL(option_17, "optimize", 8); U_STRING_DECL(option_18, "suppressContractions", 20); U_STRING_DECL(option_19, "numericOrdering", 15); U_STRING_DECL(option_20, "import", 6); U_STRING_DECL(option_21, "reorder", 7); /* [last variable] last variable value [last primary ignorable] largest CE for primary ignorable [last secondary ignorable] largest CE for secondary ignorable [last tertiary ignorable] largest CE for tertiary ignorable [top] guaranteed to be above all implicit CEs, for now and in the future (in 1.8) */ static const ucolTokSuboption alternateSub[2] = { {suboption_00, 13, UCOL_NON_IGNORABLE}, {suboption_01, 7, UCOL_SHIFTED} }; static const ucolTokSuboption caseFirstSub[3] = { {suboption_02, 5, UCOL_LOWER_FIRST}, {suboption_03, 5, UCOL_UPPER_FIRST}, {suboption_04, 3, UCOL_OFF}, }; static const ucolTokSuboption onOffSub[2] = { {suboption_04, 3, UCOL_OFF}, {suboption_05, 2, UCOL_ON} }; static const ucolTokSuboption frenchSub[1] = { {suboption_07, 1, UCOL_ON} }; static const ucolTokSuboption beforeSub[3] = { {suboption_06, 1, UCOL_PRIMARY}, {suboption_07, 1, UCOL_SECONDARY}, {suboption_08, 1, UCOL_TERTIARY} }; static const ucolTokSuboption strengthSub[5] = { {suboption_06, 1, UCOL_PRIMARY}, {suboption_07, 1, UCOL_SECONDARY}, {suboption_08, 1, UCOL_TERTIARY}, {suboption_09, 1, UCOL_QUATERNARY}, {suboption_10, 1, UCOL_IDENTICAL}, }; static const ucolTokSuboption firstLastSub[7] = { {suboption_11, 7, UCOL_PRIMARY}, {suboption_12, 9, UCOL_PRIMARY}, {suboption_13, 8, UCOL_PRIMARY}, {suboption_14, 8, UCOL_PRIMARY}, {suboption_15, 7, UCOL_PRIMARY}, {suboption_16, 8, UCOL_PRIMARY}, {suboption_17, 8, UCOL_PRIMARY}, }; enum OptionNumber { OPTION_ALTERNATE_HANDLING = 0, OPTION_FRENCH_COLLATION, OPTION_CASE_LEVEL, OPTION_CASE_FIRST, OPTION_NORMALIZATION_MODE, OPTION_HIRAGANA_QUATERNARY, OPTION_STRENGTH, OPTION_NUMERIC_COLLATION, OPTION_NORMAL_OPTIONS_LIMIT = OPTION_NUMERIC_COLLATION, OPTION_VARIABLE_TOP, OPTION_REARRANGE, OPTION_BEFORE, OPTION_TOP, OPTION_FIRST, OPTION_LAST, OPTION_OPTIMIZE, OPTION_SUPPRESS_CONTRACTIONS, OPTION_UNDEFINED, OPTION_SCRIPT_ORDER, OPTION_CHARSET_NAME, OPTION_CHARSET, OPTION_IMPORT, OPTION_SCRIPTREORDER } ; static const ucolTokOption rulesOptions[UTOK_OPTION_COUNT] = { /*00*/ {option_02, 9, alternateSub, 2, UCOL_ALTERNATE_HANDLING}, /*"alternate" */ /*01*/ {option_03, 9, frenchSub, 1, UCOL_FRENCH_COLLATION}, /*"backwards" */ /*02*/ {option_07, 9, onOffSub, 2, UCOL_CASE_LEVEL}, /*"caseLevel" */ /*03*/ {option_08, 9, caseFirstSub, 3, UCOL_CASE_FIRST}, /*"caseFirst" */ /*04*/ {option_06, 13, onOffSub, 2, UCOL_NORMALIZATION_MODE}, /*"normalization" */ /*05*/ {option_13, 9, onOffSub, 2, UCOL_HIRAGANA_QUATERNARY_MODE}, /*"hiraganaQ" */ /*06*/ {option_14, 8, strengthSub, 5, UCOL_STRENGTH}, /*"strength" */ /*07*/ {option_19, 15, onOffSub, 2, UCOL_NUMERIC_COLLATION}, /*"numericOrdering"*/ /*08*/ {option_04, 12, NULL, 0, UCOL_ATTRIBUTE_COUNT}, /*"variable top" */ /*09*/ {option_01, 9, NULL, 0, UCOL_ATTRIBUTE_COUNT}, /*"rearrange" */ /*10*/ {option_12, 6, beforeSub, 3, UCOL_ATTRIBUTE_COUNT}, /*"before" */ /*11*/ {option_05, 3, NULL, 0, UCOL_ATTRIBUTE_COUNT}, /*"top" */ /*12*/ {option_15, 5, firstLastSub, 7, UCOL_ATTRIBUTE_COUNT}, /*"first" */ /*13*/ {option_16, 4, firstLastSub, 7, UCOL_ATTRIBUTE_COUNT}, /*"last" */ /*14*/ {option_17, 8, NULL, 0, UCOL_ATTRIBUTE_COUNT}, /*"optimize" */ /*15*/ {option_18, 20, NULL, 0, UCOL_ATTRIBUTE_COUNT}, /*"suppressContractions" */ /*16*/ {option_00, 9, NULL, 0, UCOL_ATTRIBUTE_COUNT}, /*"undefined" */ /*17*/ {option_09, 11, NULL, 0, UCOL_ATTRIBUTE_COUNT}, /*"scriptOrder" */ /*18*/ {option_10, 11, NULL, 0, UCOL_ATTRIBUTE_COUNT}, /*"charsetname" */ /*19*/ {option_11, 7, NULL, 0, UCOL_ATTRIBUTE_COUNT}, /*"charset" */ /*20*/ {option_20, 6, NULL, 0, UCOL_ATTRIBUTE_COUNT}, /*"import" */ /*21*/ {option_21, 7, NULL, 0, UCOL_ATTRIBUTE_COUNT} /*"reorder" */ }; static int32_t u_strncmpNoCase(const UChar *s1, const UChar *s2, int32_t n) { if(n > 0) { int32_t rc; for(;;) { rc = (int32_t)u_tolower(*s1) - (int32_t)u_tolower(*s2); if(rc != 0 || *s1 == 0 || --n == 0) { return rc; } ++s1; ++s2; } } return 0; } static void ucol_uprv_tok_initData() { if(!didInit) { U_STRING_INIT(suboption_00, "non-ignorable", 13); U_STRING_INIT(suboption_01, "shifted", 7); U_STRING_INIT(suboption_02, "lower", 5); U_STRING_INIT(suboption_03, "upper", 5); U_STRING_INIT(suboption_04, "off", 3); U_STRING_INIT(suboption_05, "on", 2); U_STRING_INIT(suboption_06, "1", 1); U_STRING_INIT(suboption_07, "2", 1); U_STRING_INIT(suboption_08, "3", 1); U_STRING_INIT(suboption_09, "4", 1); U_STRING_INIT(suboption_10, "I", 1); U_STRING_INIT(suboption_11, "primary", 7); U_STRING_INIT(suboption_12, "secondary", 9); U_STRING_INIT(suboption_13, "tertiary", 8); U_STRING_INIT(suboption_14, "variable", 8); U_STRING_INIT(suboption_15, "regular", 7); U_STRING_INIT(suboption_16, "implicit", 8); U_STRING_INIT(suboption_17, "trailing", 8); U_STRING_INIT(option_00, "undefined", 9); U_STRING_INIT(option_01, "rearrange", 9); U_STRING_INIT(option_02, "alternate", 9); U_STRING_INIT(option_03, "backwards", 9); U_STRING_INIT(option_04, "variable top", 12); U_STRING_INIT(option_05, "top", 3); U_STRING_INIT(option_06, "normalization", 13); U_STRING_INIT(option_07, "caseLevel", 9); U_STRING_INIT(option_08, "caseFirst", 9); U_STRING_INIT(option_09, "scriptOrder", 11); U_STRING_INIT(option_10, "charsetname", 11); U_STRING_INIT(option_11, "charset", 7); U_STRING_INIT(option_12, "before", 6); U_STRING_INIT(option_13, "hiraganaQ", 9); U_STRING_INIT(option_14, "strength", 8); U_STRING_INIT(option_15, "first", 5); U_STRING_INIT(option_16, "last", 4); U_STRING_INIT(option_17, "optimize", 8); U_STRING_INIT(option_18, "suppressContractions", 20); U_STRING_INIT(option_19, "numericOrdering", 15); U_STRING_INIT(option_20, "import ", 6); U_STRING_INIT(option_21, "reorder", 7); didInit = TRUE; } } // This function reads basic options to set in the runtime collator // used by data driven tests. Should not support build time options U_CAPI const UChar * U_EXPORT2 ucol_tok_getNextArgument(const UChar *start, const UChar *end, UColAttribute *attrib, UColAttributeValue *value, UErrorCode *status) { uint32_t i = 0; int32_t j=0; UBool foundOption = FALSE; const UChar *optionArg = NULL; ucol_uprv_tok_initData(); while(start < end && PatternProps::isWhiteSpace(*start)) { /* eat whitespace */ start++; } if(start >= end) { return NULL; } /* skip opening '[' */ if(*start == 0x005b) { start++; } else { *status = U_ILLEGAL_ARGUMENT_ERROR; // no opening '[' return NULL; } while(i < UTOK_OPTION_COUNT) { if(u_strncmpNoCase(start, rulesOptions[i].optionName, rulesOptions[i].optionLen) == 0) { foundOption = TRUE; if(end - start > rulesOptions[i].optionLen) { optionArg = start+rulesOptions[i].optionLen+1; /* start of the options, skip space */ while(PatternProps::isWhiteSpace(*optionArg)) { /* eat whitespace */ optionArg++; } } break; } i++; } if(!foundOption) { *status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } if(optionArg) { for(j = 0; j<rulesOptions[i].subSize; j++) { if(u_strncmpNoCase(optionArg, rulesOptions[i].subopts[j].subName, rulesOptions[i].subopts[j].subLen) == 0) { //ucol_uprv_tok_setOptionInImage(src->opts, rulesOptions[i].attr, rulesOptions[i].subopts[j].attrVal); *attrib = rulesOptions[i].attr; *value = rulesOptions[i].subopts[j].attrVal; optionArg += rulesOptions[i].subopts[j].subLen; while(PatternProps::isWhiteSpace(*optionArg)) { /* eat whitespace */ optionArg++; } if(*optionArg == 0x005d) { optionArg++; return optionArg; } else { *status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } } } } *status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } static USet *ucol_uprv_tok_readAndSetUnicodeSet(const UChar *start, const UChar *end, UErrorCode *status) { while(*start != 0x005b) { /* advance while we find the first '[' */ start++; } // now we need to get a balanced set of '[]'. The problem is that a set can have // many, and *end point to the first closing '[' int32_t noOpenBraces = 1; int32_t current = 1; // skip the opening brace while(start+current < end && noOpenBraces != 0) { if(start[current] == 0x005b) { noOpenBraces++; } else if(start[current] == 0x005D) { // closing brace noOpenBraces--; } current++; } if(noOpenBraces != 0 || u_strchr(start+current, 0x005d /*']'*/) == NULL) { *status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } return uset_openPattern(start, current, status); } /** * Reads an option and matches the option name with the predefined options. (Case-insensitive.) * @param start Pointer to the start UChar. * @param end Pointer to the last valid pointer beyond which the option will not extend. * @param optionArg Address of the pointer at which the options start (after the option name) * @return The index of the option, or -1 if the option is not valid. */ static int32_t ucol_uprv_tok_readOption(const UChar *start, const UChar *end, const UChar **optionArg) { int32_t i = 0; ucol_uprv_tok_initData(); while(PatternProps::isWhiteSpace(*start)) { /* eat whitespace */ start++; } while(i < UTOK_OPTION_COUNT) { if(u_strncmpNoCase(start, rulesOptions[i].optionName, rulesOptions[i].optionLen) == 0) { if(end - start > rulesOptions[i].optionLen) { *optionArg = start+rulesOptions[i].optionLen; /* End of option name; start of the options */ while(PatternProps::isWhiteSpace(**optionArg)) { /* eat whitespace */ (*optionArg)++; } } break; } i++; } if(i == UTOK_OPTION_COUNT) { i = -1; // didn't find an option } return i; } static void ucol_tok_parseScriptReorder(UColTokenParser *src, UErrorCode *status) { int32_t codeCount = 0; int32_t codeIndex = 0; char conversion[64]; int32_t tokenLength = 0; const UChar* space; const UChar* current = src->current; const UChar* end = u_memchr(src->current, 0x005d, src->end - src->current); // eat leading whitespace while(current < end && u_isWhitespace(*current)) { current++; } while(current < end) { space = u_memchr(current, 0x0020, end - current); space = space == 0 ? end : space; tokenLength = space - current; if (tokenLength < 4) { *status = U_INVALID_FORMAT_ERROR; return; } codeCount++; current += tokenLength; while(current < end && u_isWhitespace(*current)) { /* eat whitespace */ ++current; } } if (codeCount == 0) { *status = U_INVALID_FORMAT_ERROR; } src->reorderCodesLength = codeCount; src->reorderCodes = (int32_t*)uprv_malloc(codeCount * sizeof(int32_t)); current = src->current; // eat leading whitespace while(current < end && u_isWhitespace(*current)) { current++; } while(current < end) { space = u_memchr(current, 0x0020, end - current); space = space == 0 ? end : space; tokenLength = space - current; if (tokenLength < 4) { *status = U_ILLEGAL_ARGUMENT_ERROR; return; } else { u_UCharsToChars(current, conversion, tokenLength); conversion[tokenLength] = '\0'; src->reorderCodes[codeIndex] = ucol_findReorderingEntry(conversion); if (src->reorderCodes[codeIndex] == USCRIPT_INVALID_CODE) { src->reorderCodes[codeIndex] = u_getPropertyValueEnum(UCHAR_SCRIPT, conversion); } if (src->reorderCodes[codeIndex] == USCRIPT_INVALID_CODE) { *status = U_ILLEGAL_ARGUMENT_ERROR; } } codeIndex++; current += tokenLength; while(current < end && u_isWhitespace(*current)) { /* eat whitespace */ ++current; } } } // reads and conforms to various options in rules // end is the position of the first closing ']' // However, some of the options take an UnicodeSet definition // which needs to duplicate the closing ']' // for example: '[copy [\uAC00-\uD7FF]]' // These options will move end to the second ']' and the // caller will set the current to it. static uint8_t ucol_uprv_tok_readAndSetOption(UColTokenParser *src, UErrorCode *status) { const UChar* start = src->current; int32_t i = 0; int32_t j=0; const UChar *optionArg = NULL; uint8_t result = 0; start++; /*skip opening '['*/ i = ucol_uprv_tok_readOption(start, src->end, &optionArg); if(optionArg) { src->current = optionArg; } if(i < 0) { *status = U_ILLEGAL_ARGUMENT_ERROR; } else { int32_t noOpenBraces = 1; switch(i) { case OPTION_ALTERNATE_HANDLING: case OPTION_FRENCH_COLLATION: case OPTION_CASE_LEVEL: case OPTION_CASE_FIRST: case OPTION_NORMALIZATION_MODE: case OPTION_HIRAGANA_QUATERNARY: case OPTION_STRENGTH: case OPTION_NUMERIC_COLLATION: if(optionArg) { for(j = 0; j<rulesOptions[i].subSize; j++) { if(u_strncmpNoCase(optionArg, rulesOptions[i].subopts[j].subName, rulesOptions[i].subopts[j].subLen) == 0) { ucol_uprv_tok_setOptionInImage(src->opts, rulesOptions[i].attr, rulesOptions[i].subopts[j].attrVal); result = UCOL_TOK_SUCCESS; } } } if(result == 0) { *status = U_ILLEGAL_ARGUMENT_ERROR; } break; case OPTION_VARIABLE_TOP: result = UCOL_TOK_SUCCESS | UCOL_TOK_VARIABLE_TOP; break; case OPTION_REARRANGE: result = UCOL_TOK_SUCCESS; break; case OPTION_BEFORE: if(optionArg) { for(j = 0; j<rulesOptions[i].subSize; j++) { if(u_strncmpNoCase(optionArg, rulesOptions[i].subopts[j].subName, rulesOptions[i].subopts[j].subLen) == 0) { result = UCOL_TOK_SUCCESS | (rulesOptions[i].subopts[j].attrVal + 1); } } } if(result == 0) { *status = U_ILLEGAL_ARGUMENT_ERROR; } break; case OPTION_TOP: /* we are going to have an array with structures of limit CEs */ /* index to this array will be src->parsedToken.indirectIndex*/ src->parsedToken.indirectIndex = 0; result = UCOL_TOK_SUCCESS | UCOL_TOK_TOP; break; case OPTION_FIRST: case OPTION_LAST: /* first, last */ for(j = 0; j<rulesOptions[i].subSize; j++) { if(u_strncmpNoCase(optionArg, rulesOptions[i].subopts[j].subName, rulesOptions[i].subopts[j].subLen) == 0) { // the calculation below assumes that OPTION_FIRST and OPTION_LAST are at i and i+1 and that the first // element of indirect boundaries is reserved for top. src->parsedToken.indirectIndex = (uint16_t)(i-OPTION_FIRST+1+j*2); result = UCOL_TOK_SUCCESS | UCOL_TOK_TOP;; } } if(result == 0) { *status = U_ILLEGAL_ARGUMENT_ERROR; } break; case OPTION_OPTIMIZE: case OPTION_SUPPRESS_CONTRACTIONS: // copy and remove are handled before normalization // we need to move end here src->current++; // skip opening brace while(src->current < src->end && noOpenBraces != 0) { if(*src->current == 0x005b) { noOpenBraces++; } else if(*src->current == 0x005D) { // closing brace noOpenBraces--; } src->current++; } result = UCOL_TOK_SUCCESS; break; case OPTION_SCRIPTREORDER: ucol_tok_parseScriptReorder(src, status); break; default: *status = U_UNSUPPORTED_ERROR; break; } } src->current = u_memchr(src->current, 0x005d, (int32_t)(src->end-src->current)); return result; } inline void ucol_tok_addToExtraCurrent(UColTokenParser *src, const UChar *stuff, int32_t len, UErrorCode *status) { if (stuff == NULL || len <= 0) { return; } UnicodeString tempStuff(FALSE, stuff, len); if(src->extraCurrent+len >= src->extraEnd) { /* reallocate */ if (stuff >= src->source && stuff <= src->end) { // Copy the "stuff" contents into tempStuff's own buffer. // UnicodeString is copy-on-write. if (len > 0) { tempStuff.setCharAt(0, tempStuff[0]); } else { tempStuff.remove(); } } UChar *newSrc = (UChar *)uprv_realloc(src->source, (src->extraEnd-src->source)*2*sizeof(UChar)); if(newSrc != NULL) { src->current = newSrc + (src->current - src->source); src->extraCurrent = newSrc + (src->extraCurrent - src->source); src->end = newSrc + (src->end - src->source); src->extraEnd = newSrc + (src->extraEnd-src->source)*2; src->sourceCurrent = newSrc + (src->sourceCurrent-src->source); src->source = newSrc; } else { *status = U_MEMORY_ALLOCATION_ERROR; return; } } if(len == 1) { *src->extraCurrent++ = tempStuff[0]; } else { u_memcpy(src->extraCurrent, tempStuff.getBuffer(), len); src->extraCurrent += len; } } inline UBool ucol_tok_doSetTop(UColTokenParser *src, UErrorCode *status) { /* top = TRUE; */ UChar buff[5]; src->parsedToken.charsOffset = (uint32_t)(src->extraCurrent - src->source); buff[0] = 0xFFFE; buff[1] = (UChar)(ucolIndirectBoundaries[src->parsedToken.indirectIndex].startCE >> 16); buff[2] = (UChar)(ucolIndirectBoundaries[src->parsedToken.indirectIndex].startCE & 0xFFFF); if(ucolIndirectBoundaries[src->parsedToken.indirectIndex].startContCE == 0) { src->parsedToken.charsLen = 3; ucol_tok_addToExtraCurrent(src, buff, 3, status); } else { buff[3] = (UChar)(ucolIndirectBoundaries[src->parsedToken.indirectIndex].startContCE >> 16); buff[4] = (UChar)(ucolIndirectBoundaries[src->parsedToken.indirectIndex].startContCE & 0xFFFF); src->parsedToken.charsLen = 5; ucol_tok_addToExtraCurrent(src, buff, 5, status); } return TRUE; } static UBool isCharNewLine(UChar c){ switch(c){ case 0x000A: /* LF */ case 0x000D: /* CR */ case 0x000C: /* FF */ case 0x0085: /* NEL */ case 0x2028: /* LS */ case 0x2029: /* PS */ return TRUE; default: return FALSE; } } /* * This function is called several times when a range is processed. Each time, the next code point * is processed. * The following variables must be set before calling this function: * src->currentRangeCp: The current code point to process. * src->lastRangeCp: The last code point in the range. * Pre-requisite: src->currentRangeCp <= src->lastRangeCp. */ static const UChar* ucol_tok_processNextCodePointInRange(UColTokenParser *src, UErrorCode *status) { // Append current code point to source UChar buff[U16_MAX_LENGTH]; uint32_t i = 0; uint32_t nChars = U16_LENGTH(src->currentRangeCp); src->parsedToken.charsOffset = (uint32_t)(src->extraCurrent - src->source); src->parsedToken.charsLen = nChars; U16_APPEND_UNSAFE(buff, i, src->currentRangeCp); ucol_tok_addToExtraCurrent(src, buff, nChars, status); ++src->currentRangeCp; if (src->currentRangeCp > src->lastRangeCp) { src->inRange = FALSE; if (src->currentStarredCharIndex > src->lastStarredCharIndex) { src->isStarred = FALSE; } } else { src->previousCp = src->currentRangeCp; } return src->current; } /* * This function is called several times when a starred list is processed. Each time, the next code point * in the list is processed. * The following variables must be set before calling this function: * src->currentStarredCharIndex: Index (in src->source) of the first char of the current code point. * src->lastStarredCharIndex: Index to the last character in the list. * Pre-requisite: src->currentStarredCharIndex <= src->lastStarredCharIndex. */ static const UChar* ucol_tok_processNextTokenInStarredList(UColTokenParser *src) { // Extract the characters corresponding to the next code point. UChar32 cp; src->parsedToken.charsOffset = src->currentStarredCharIndex; int32_t prev = src->currentStarredCharIndex; U16_NEXT(src->source, src->currentStarredCharIndex, (uint32_t)(src->end - src->source), cp); src->parsedToken.charsLen = src->currentStarredCharIndex - prev; // When we are done parsing the starred string, turn the flag off so that // the normal processing is restored. if (src->currentStarredCharIndex > src->lastStarredCharIndex) { src->isStarred = FALSE; } src->previousCp = cp; return src->current; } /* * Partially parses the next token, keeps the indices in src->parsedToken, and updates the counters. * * This routine parses and separates almost all tokens. The following are the syntax characters recognized. * # : Comment character * & : Reset operator * = : Equality * < : Primary collation * << : Secondary collation * <<< : Tertiary collation * ; : Secondary collation * , : Tertiary collation * / : Expansions * | : Prefix * - : Range * ! : Java Thai modifier, ignored * @ : French only * [] : Options * '' : Quotes * * Along with operators =, <, <<, <<<, the operator * is supported to indicate a list. For example, &a<*bcdexyz * is equivalent to &a<b<c<d<e<x<y<z. In lists, ranges also can be given, so &a*b-ex-z is equivalent to the above. * This function do not separate the tokens in a list. Instead, &a<*b-ex-z is parsed as three tokens - "&a", * "<*b", "-ex", "-z". The strength (< in this case), whether in a list, whether in a range and the previous * character returned as cached so that the calling program can do further splitting. */ static const UChar* ucol_tok_parseNextTokenInternal(UColTokenParser *src, UBool startOfRules, UParseError *parseError, UErrorCode *status) { UBool variableTop = FALSE; UBool top = FALSE; UBool inChars = TRUE; UBool inQuote = FALSE; UBool wasInQuote = FALSE; uint8_t before = 0; UBool isEscaped = FALSE; // TODO: replace these variables with src->parsedToken counterparts // no need to use them anymore since we have src->parsedToken. // Ideally, token parser would be a nice class... Once, when I have // more time (around 2020 probably). uint32_t newExtensionLen = 0; uint32_t extensionOffset = 0; uint32_t newStrength = UCOL_TOK_UNSET; UChar buff[10]; src->parsedToken.charsOffset = 0; src->parsedToken.charsLen = 0; src->parsedToken.prefixOffset = 0; src->parsedToken.prefixLen = 0; src->parsedToken.indirectIndex = 0; while (src->current < src->end) { UChar ch = *(src->current); if (inQuote) { if (ch == 0x0027/*'\''*/) { inQuote = FALSE; } else { if ((src->parsedToken.charsLen == 0) || inChars) { if(src->parsedToken.charsLen == 0) { src->parsedToken.charsOffset = (uint32_t)(src->extraCurrent - src->source); } src->parsedToken.charsLen++; } else { if(newExtensionLen == 0) { extensionOffset = (uint32_t)(src->extraCurrent - src->source); } newExtensionLen++; } } }else if(isEscaped){ isEscaped =FALSE; if (newStrength == UCOL_TOK_UNSET) { *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,(int32_t)(src->current-src->source),(int32_t)(src->end-src->source),parseError); DBG_FORMAT_ERROR return NULL; // enabling rules to start with non-tokens a < b // newStrength = UCOL_TOK_RESET; } if(ch != 0x0000 && src->current != src->end) { if (inChars) { if(src->parsedToken.charsLen == 0) { src->parsedToken.charsOffset = (uint32_t)(src->current - src->source); } src->parsedToken.charsLen++; } else { if(newExtensionLen == 0) { extensionOffset = (uint32_t)(src->current - src->source); } newExtensionLen++; } } }else { if(!PatternProps::isWhiteSpace(ch)) { /* Sets the strength for this entry */ switch (ch) { case 0x003D/*'='*/ : if (newStrength != UCOL_TOK_UNSET) { goto EndOfLoop; } /* if we start with strength, we'll reset to top */ if(startOfRules == TRUE) { src->parsedToken.indirectIndex = 5; top = ucol_tok_doSetTop(src, status); newStrength = UCOL_TOK_RESET; goto EndOfLoop; } newStrength = UCOL_IDENTICAL; if(*(src->current+1) == 0x002A) {/*'*'*/ src->current++; src->isStarred = TRUE; } break; case 0x002C/*','*/: if (newStrength != UCOL_TOK_UNSET) { goto EndOfLoop; } /* if we start with strength, we'll reset to top */ if(startOfRules == TRUE) { src->parsedToken.indirectIndex = 5; top = ucol_tok_doSetTop(src, status); newStrength = UCOL_TOK_RESET; goto EndOfLoop; } newStrength = UCOL_TERTIARY; break; case 0x003B/*';'*/: if (newStrength != UCOL_TOK_UNSET) { goto EndOfLoop; } /* if we start with strength, we'll reset to top */ if(startOfRules == TRUE) { src->parsedToken.indirectIndex = 5; top = ucol_tok_doSetTop(src, status); newStrength = UCOL_TOK_RESET; goto EndOfLoop; } newStrength = UCOL_SECONDARY; break; case 0x003C/*'<'*/: if (newStrength != UCOL_TOK_UNSET) { goto EndOfLoop; } /* if we start with strength, we'll reset to top */ if(startOfRules == TRUE) { src->parsedToken.indirectIndex = 5; top = ucol_tok_doSetTop(src, status); newStrength = UCOL_TOK_RESET; goto EndOfLoop; } /* before this, do a scan to verify whether this is */ /* another strength */ if(*(src->current+1) == 0x003C) { src->current++; if(*(src->current+1) == 0x003C) { src->current++; /* three in a row! */ newStrength = UCOL_TERTIARY; } else { /* two in a row */ newStrength = UCOL_SECONDARY; } } else { /* just one */ newStrength = UCOL_PRIMARY; } if(*(src->current+1) == 0x002A) {/*'*'*/ src->current++; src->isStarred = TRUE; } break; case 0x0026/*'&'*/: if (newStrength != UCOL_TOK_UNSET) { /**/ goto EndOfLoop; } newStrength = UCOL_TOK_RESET; /* PatternEntry::RESET = 0 */ break; case 0x005b/*'['*/: /* options - read an option, analyze it */ if(u_strchr(src->current, 0x005d /*']'*/) != NULL) { uint8_t result = ucol_uprv_tok_readAndSetOption(src, status); if(U_SUCCESS(*status)) { if(result & UCOL_TOK_TOP) { if(newStrength == UCOL_TOK_RESET) { top = ucol_tok_doSetTop(src, status); if(before) { // This is a combination of before and indirection like '&[before 2][first regular]<b' src->parsedToken.charsLen+=2; buff[0] = 0x002d; buff[1] = before; ucol_tok_addToExtraCurrent(src, buff, 2, status); } src->current++; goto EndOfLoop; } else { *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,(int32_t)(src->current-src->source),(int32_t)(src->end-src->source),parseError); DBG_FORMAT_ERROR } } else if(result & UCOL_TOK_VARIABLE_TOP) { if(newStrength != UCOL_TOK_RESET && newStrength != UCOL_TOK_UNSET) { variableTop = TRUE; src->parsedToken.charsOffset = (uint32_t)(src->extraCurrent - src->source); src->parsedToken.charsLen = 1; buff[0] = 0xFFFF; ucol_tok_addToExtraCurrent(src, buff, 1, status); src->current++; goto EndOfLoop; } else { *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,(int32_t)(src->current-src->source),(int32_t)(src->end-src->source),parseError); DBG_FORMAT_ERROR } } else if (result & UCOL_TOK_BEFORE){ if(newStrength == UCOL_TOK_RESET) { before = result & UCOL_TOK_BEFORE; } else { *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,(int32_t)(src->current-src->source),(int32_t)(src->end-src->source),parseError); DBG_FORMAT_ERROR } } } else { *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,(int32_t)(src->current-src->source),(int32_t)(src->end-src->source),parseError); DBG_FORMAT_ERROR return NULL; } } break; case 0x0021/*! skip java thai modifier reordering*/: break; case 0x002F/*'/'*/: wasInQuote = FALSE; /* if we were copying source characters, we want to stop now */ inChars = FALSE; /* we're now processing expansion */ break; case 0x005C /* back slash for escaped chars */: isEscaped = TRUE; break; /* found a quote, we're gonna start copying */ case 0x0027/*'\''*/: if (newStrength == UCOL_TOK_UNSET) { /* quote is illegal until we have a strength */ *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,(int32_t)(src->current-src->source),(int32_t)(src->end-src->source),parseError); DBG_FORMAT_ERROR return NULL; // enabling rules to start with a non-token character a < b // newStrength = UCOL_TOK_RESET; } inQuote = TRUE; if(inChars) { /* we're doing characters */ if(wasInQuote == FALSE) { src->parsedToken.charsOffset = (uint32_t)(src->extraCurrent - src->source); } if (src->parsedToken.charsLen != 0) { ucol_tok_addToExtraCurrent(src, src->current - src->parsedToken.charsLen, src->parsedToken.charsLen, status); } src->parsedToken.charsLen++; } else { /* we're doing an expansion */ if(wasInQuote == FALSE) { extensionOffset = (uint32_t)(src->extraCurrent - src->source); } if (newExtensionLen != 0) { ucol_tok_addToExtraCurrent(src, src->current - newExtensionLen, newExtensionLen, status); } newExtensionLen++; } wasInQuote = TRUE; ch = *(++(src->current)); if(ch == 0x0027) { /* copy the double quote */ ucol_tok_addToExtraCurrent(src, &ch, 1, status); inQuote = FALSE; } break; /* '@' is french only if the strength is not currently set */ /* if it is, it's just a regular character in collation rules */ case 0x0040/*'@'*/: if (newStrength == UCOL_TOK_UNSET) { src->opts->frenchCollation = UCOL_ON; break; } case 0x007C /*|*/: /* this means we have actually been reading prefix part */ // we want to store read characters to the prefix part and continue reading // the characters (proper way would be to restart reading the chars, but in // that case we would have to complicate the token hasher, which I do not // intend to play with. Instead, we will do prefixes when prefixes are due // (before adding the elements). src->parsedToken.prefixOffset = src->parsedToken.charsOffset; src->parsedToken.prefixLen = src->parsedToken.charsLen; if(inChars) { /* we're doing characters */ if(wasInQuote == FALSE) { src->parsedToken.charsOffset = (uint32_t)(src->extraCurrent - src->source); } if (src->parsedToken.charsLen != 0) { ucol_tok_addToExtraCurrent(src, src->current - src->parsedToken.charsLen, src->parsedToken.charsLen, status); } src->parsedToken.charsLen++; } wasInQuote = TRUE; do { ch = *(++(src->current)); // skip whitespace between '|' and the character } while (PatternProps::isWhiteSpace(ch)); break; //charsOffset = 0; //newCharsLen = 0; //break; // We want to store the whole prefix/character sequence. If we break // the '|' is going to get lost. case 0x002D /*-*/: /* A range. */ if (newStrength != UCOL_TOK_UNSET) { // While processing the pending token, the isStarred field // is reset, so it needs to be saved for the next // invocation. src->savedIsStarred = src->isStarred; goto EndOfLoop; } src->isStarred = src->savedIsStarred; // Ranges are valid only in starred tokens. if (!src->isStarred) { *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,(int32_t)(src->current-src->source),(int32_t)(src->end-src->source),parseError); DBG_FORMAT_ERROR return NULL; } newStrength = src->parsedToken.strength; src->inRange = TRUE; break; case 0x0023 /*#*/: /* this is a comment, skip everything through the end of line */ do { ch = *(++(src->current)); } while (!isCharNewLine(ch)); break; default: if (newStrength == UCOL_TOK_UNSET) { *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,(int32_t)(src->current-src->source),(int32_t)(src->end-src->source),parseError); DBG_FORMAT_ERROR return NULL; } if (ucol_tok_isSpecialChar(ch) && (inQuote == FALSE)) { *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,(int32_t)(src->current-src->source),(int32_t)(src->end-src->source),parseError); DBG_FORMAT_ERROR return NULL; } if(ch == 0x0000 && src->current+1 == src->end) { break; } if (inChars) { if(src->parsedToken.charsLen == 0) { src->parsedToken.charsOffset = (uint32_t)(src->current - src->source); } src->parsedToken.charsLen++; } else { if(newExtensionLen == 0) { extensionOffset = (uint32_t)(src->current - src->source); } newExtensionLen++; } break; } } } if(wasInQuote) { if(ch != 0x27) { if(inQuote || !PatternProps::isWhiteSpace(ch)) { ucol_tok_addToExtraCurrent(src, &ch, 1, status); } } } src->current++; } EndOfLoop: wasInQuote = FALSE; if (newStrength == UCOL_TOK_UNSET) { return NULL; } if (src->parsedToken.charsLen == 0 && top == FALSE) { syntaxError(src->source,(int32_t)(src->current-src->source),(int32_t)(src->end-src->source),parseError); *status = U_INVALID_FORMAT_ERROR; DBG_FORMAT_ERROR return NULL; } src->parsedToken.strength = newStrength; src->parsedToken.extensionOffset = extensionOffset; src->parsedToken.extensionLen = newExtensionLen; src->parsedToken.flags = (UCOL_TOK_VARIABLE_TOP * (variableTop?1:0)) | (UCOL_TOK_TOP * (top?1:0)) | before; return src->current; } /* * Parses the next token, keeps the indices in src->parsedToken, and updates the counters. * @see ucol_tok_parseNextTokenInternal() for the description of what operators are supported. * * In addition to what ucol_tok_parseNextTokenInternal() does, this function does the following: * 1) ucol_tok_parseNextTokenInternal() returns a range as a single token. This function separates * it to separate tokens and returns one by one. In order to do that, the necessary states are * cached as member variables of the token parser. * 2) When encountering a range, ucol_tok_parseNextTokenInternal() processes characters up to the * starting character as a single list token (which is separated into individual characters here) * and as another list token starting with the last character in the range. Before expanding it * as a list of tokens, this function expands the range by filling the intermediate characters and * returns them one by one as separate tokens. * Necessary checks are done for invalid combinations. */ U_CAPI const UChar* U_EXPORT2 ucol_tok_parseNextToken(UColTokenParser *src, UBool startOfRules, UParseError *parseError, UErrorCode *status) { const UChar *nextToken; if (src->inRange) { // We are not done processing a range. Continue it. return ucol_tok_processNextCodePointInRange(src, status); } else if (src->isStarred) { // We are not done processing a starred token. Continue it. return ucol_tok_processNextTokenInStarredList(src); } // Get the next token. nextToken = ucol_tok_parseNextTokenInternal(src, startOfRules, parseError, status); if (nextToken == NULL) { return NULL; } if (src->inRange) { // A new range has started. // Check whether it is a chain of ranges with more than one hyphen. if (src->lastRangeCp > 0 && src->lastRangeCp == src->previousCp) { *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,src->parsedToken.charsOffset-1, src->parsedToken.charsOffset+src->parsedToken.charsLen, parseError); DBG_FORMAT_ERROR return NULL; } // The current token indicates the second code point of the range. // Process just that, and then proceed with the star. src->currentStarredCharIndex = src->parsedToken.charsOffset; U16_NEXT(src->source, src->currentStarredCharIndex, (uint32_t)(src->end - src->source), src->lastRangeCp); if (src->lastRangeCp <= src->previousCp) { *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,src->parsedToken.charsOffset-1, src->parsedToken.charsOffset+src->parsedToken.charsLen,parseError); DBG_FORMAT_ERROR return NULL; } // Set current range code point to process the range loop src->currentRangeCp = src->previousCp + 1; src->lastStarredCharIndex = src->parsedToken.charsOffset + src->parsedToken.charsLen - 1; return ucol_tok_processNextCodePointInRange(src, status); } else if (src->isStarred) { // We define two indices m_currentStarredCharIndex_ and m_lastStarredCharIndex_ so that // [m_currentStarredCharIndex_ .. m_lastStarredCharIndex_], both inclusive, need to be // separated into several tokens and returned. src->currentStarredCharIndex = src->parsedToken.charsOffset; src->lastStarredCharIndex = src->parsedToken.charsOffset + src->parsedToken.charsLen - 1; return ucol_tok_processNextTokenInStarredList(src); } else { // Set previous codepoint U16_GET(src->source, 0, src->parsedToken.charsOffset, (uint32_t)(src->end - src->source), src->previousCp); } return nextToken; } /* Processing Description 1 Build a ListList. Each list has a header, which contains two lists (positive and negative), a reset token, a baseCE, nextCE, and previousCE. The lists and reset may be null. 2 As you process, you keep a LAST pointer that points to the last token you handled. */ static UColToken *ucol_tok_initAReset(UColTokenParser *src, const UChar *expand, uint32_t *expandNext, UParseError *parseError, UErrorCode *status) { if(src->resultLen == src->listCapacity) { // Unfortunately, this won't work, as we store addresses of lhs in token src->listCapacity *= 2; src->lh = (UColTokListHeader *)uprv_realloc(src->lh, src->listCapacity*sizeof(UColTokListHeader)); if(src->lh == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } } /* do the reset thing */ UColToken *sourceToken = (UColToken *)uprv_malloc(sizeof(UColToken)); /* test for NULL */ if (sourceToken == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } sourceToken->rulesToParseHdl = &(src->source); sourceToken->source = src->parsedToken.charsLen << 24 | src->parsedToken.charsOffset; sourceToken->expansion = src->parsedToken.extensionLen << 24 | src->parsedToken.extensionOffset; sourceToken->debugSource = *(src->source + src->parsedToken.charsOffset); sourceToken->debugExpansion = *(src->source + src->parsedToken.extensionOffset); // keep the flags around so that we know about before sourceToken->flags = src->parsedToken.flags; if(src->parsedToken.prefixOffset != 0) { // this is a syntax error *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,src->parsedToken.charsOffset-1,src->parsedToken.charsOffset+src->parsedToken.charsLen,parseError); DBG_FORMAT_ERROR uprv_free(sourceToken); return 0; } else { sourceToken->prefix = 0; } sourceToken->polarity = UCOL_TOK_POLARITY_POSITIVE; /* TODO: this should also handle reverse */ sourceToken->strength = UCOL_TOK_RESET; sourceToken->next = NULL; sourceToken->previous = NULL; sourceToken->noOfCEs = 0; sourceToken->noOfExpCEs = 0; sourceToken->listHeader = &src->lh[src->resultLen]; src->lh[src->resultLen].first = NULL; src->lh[src->resultLen].last = NULL; src->lh[src->resultLen].first = NULL; src->lh[src->resultLen].last = NULL; src->lh[src->resultLen].reset = sourceToken; /* 3 Consider each item: relation, source, and expansion: e.g. ...< x / y ... First convert all expansions into normal form. Examples: If "xy" doesn't occur earlier in the list or in the UCA, convert &xy * c * d * ... into &x * c/y * d * ... Note: reset values can never have expansions, although they can cause the very next item to have one. They may be contractions, if they are found earlier in the list. */ *expandNext = 0; if(expand != NULL) { /* check to see if there is an expansion */ if(src->parsedToken.charsLen > 1) { uint32_t resetCharsOffset; resetCharsOffset = (uint32_t)(expand - src->source); sourceToken->source = ((resetCharsOffset - src->parsedToken.charsOffset ) << 24) | src->parsedToken.charsOffset; *expandNext = ((src->parsedToken.charsLen + src->parsedToken.charsOffset - resetCharsOffset)<<24) | (resetCharsOffset); } } src->resultLen++; uhash_put(src->tailored, sourceToken, sourceToken, status); return sourceToken; } static inline UColToken *getVirginBefore(UColTokenParser *src, UColToken *sourceToken, uint8_t strength, UParseError *parseError, UErrorCode *status) { if(U_FAILURE(*status)) { return NULL; } /* this is a virgin before - we need to fish the anchor from the UCA */ collIterate s; uint32_t baseCE = UCOL_NOT_FOUND, baseContCE = UCOL_NOT_FOUND; uint32_t CE, SecondCE; // uint32_t invPos; if(sourceToken != NULL) { uprv_init_collIterate(src->UCA, src->source+((sourceToken->source)&0xFFFFFF), 1, &s, status); } else { uprv_init_collIterate(src->UCA, src->source+src->parsedToken.charsOffset /**charsOffset*/, 1, &s, status); } if(U_FAILURE(*status)) { return NULL; } baseCE = ucol_getNextCE(src->UCA, &s, status) & 0xFFFFFF3F; baseContCE = ucol_getNextCE(src->UCA, &s, status); if(baseContCE == UCOL_NO_MORE_CES) { baseContCE = 0; } UCAConstants *consts = (UCAConstants *)((uint8_t *)src->UCA->image + src->UCA->image->UCAConsts); uint32_t ch = 0; uint32_t expandNext = 0; UColToken key; if((baseCE & 0xFF000000) >= (consts->UCA_PRIMARY_IMPLICIT_MIN<<24) && (baseCE & 0xFF000000) <= (consts->UCA_PRIMARY_IMPLICIT_MAX<<24) ) { /* implicits - */ uint32_t primary = (baseCE & UCOL_PRIMARYMASK) | ((baseContCE & UCOL_PRIMARYMASK) >> 16); uint32_t raw = uprv_uca_getRawFromImplicit(primary); ch = uprv_uca_getCodePointFromRaw(raw-1); uint32_t primaryCE = uprv_uca_getImplicitFromRaw(raw-1); CE = (primaryCE & UCOL_PRIMARYMASK) | 0x0505; SecondCE = ((primaryCE << 16) & UCOL_PRIMARYMASK) | UCOL_CONTINUATION_MARKER; src->parsedToken.charsOffset = (uint32_t)(src->extraCurrent - src->source); *src->extraCurrent++ = 0xFFFE; *src->extraCurrent++ = (UChar)ch; src->parsedToken.charsLen++; key.source = (src->parsedToken.charsLen/**newCharsLen*/ << 24) | src->parsedToken.charsOffset/**charsOffset*/; key.rulesToParseHdl = &(src->source); //sourceToken = (UColToken *)uhash_iget(src->tailored, (int32_t)key); sourceToken = (UColToken *)uhash_get(src->tailored, &key); if(sourceToken == NULL) { src->lh[src->resultLen].baseCE = CE & 0xFFFFFF3F; if(isContinuation(SecondCE)) { src->lh[src->resultLen].baseContCE = SecondCE; } else { src->lh[src->resultLen].baseContCE = 0; } src->lh[src->resultLen].nextCE = 0; src->lh[src->resultLen].nextContCE = 0; src->lh[src->resultLen].previousCE = 0; src->lh[src->resultLen].previousContCE = 0; src->lh[src->resultLen].indirect = FALSE; sourceToken = ucol_tok_initAReset(src, 0, &expandNext, parseError, status); } } else { /* invPos = */ ucol_inv_getPrevCE(src, baseCE, baseContCE, &CE, &SecondCE, strength); // we got the previous CE. Now we need to see if the difference between // the two CEs is really of the requested strength. // if it's a bigger difference (we asked for secondary and got primary), we // need to modify the CE. if(ucol_getCEStrengthDifference(baseCE, baseContCE, CE, SecondCE) < strength) { // adjust the strength // now we are in the situation where our baseCE should actually be modified in // order to get the CE in the right position. if(strength == UCOL_SECONDARY) { CE = baseCE - 0x0200; } else { // strength == UCOL_TERTIARY CE = baseCE - 0x02; } if(baseContCE) { if(strength == UCOL_SECONDARY) { SecondCE = baseContCE - 0x0200; } else { // strength == UCOL_TERTIARY SecondCE = baseContCE - 0x02; } } } #if 0 // the code below relies on getting a code point from the inverse table, in order to be // able to merge the situations like &x < 9 &[before 1]a < d. This won't work: // 1. There are many code points that have the same CE // 2. The CE to codepoint table (things pointed to by CETable[3*invPos+2] are broken. // Also, in case when there is no equivalent strength before an element, we have to actually // construct one. For example, &[before 2]a << x won't result in x << a, because the element // before a is a primary difference. //uint32_t *CETable = (uint32_t *)((uint8_t *)src->invUCA+src->invUCA->table); ch = CETable[3*invPos+2]; if((ch & UCOL_INV_SIZEMASK) != 0) { uint16_t *conts = (uint16_t *)((uint8_t *)src->invUCA+src->invUCA->conts); uint32_t offset = (ch & UCOL_INV_OFFSETMASK); ch = conts[offset]; } *src->extraCurrent++ = (UChar)ch; src->parsedToken.charsOffset = (uint32_t)(src->extraCurrent - src->source - 1); src->parsedToken.charsLen = 1; // We got an UCA before. However, this might have been tailored. // example: // &\u30ca = \u306a // &[before 3]\u306a<<<\u306a|\u309d // uint32_t key = (*newCharsLen << 24) | *charsOffset; key.source = (src->parsedToken.charsLen/**newCharsLen*/ << 24) | src->parsedToken.charsOffset/**charsOffset*/; key.rulesToParseHdl = &(src->source); //sourceToken = (UColToken *)uhash_iget(src->tailored, (int32_t)key); sourceToken = (UColToken *)uhash_get(src->tailored, &key); #endif // here is how it should be. The situation such as &[before 1]a < x, should be // resolved exactly as if we wrote &a > x. // therefore, I don't really care if the UCA value before a has been changed. // However, I do care if the strength between my element and the previous element // is bigger then I wanted. So, if CE < baseCE and I wanted &[before 2], then i'll // have to construct the base CE. // if we found a tailored thing, we have to use the UCA value and construct // a new reset token with constructed name //if(sourceToken != NULL && sourceToken->strength != UCOL_TOK_RESET) { // character to which we want to anchor is already tailored. // We need to construct a new token which will be the anchor // point //*(src->extraCurrent-1) = 0xFFFE; //*src->extraCurrent++ = (UChar)ch; // grab before src->parsedToken.charsOffset -= 10; src->parsedToken.charsLen += 10; src->lh[src->resultLen].baseCE = CE & 0xFFFFFF3F; if(isContinuation(SecondCE)) { src->lh[src->resultLen].baseContCE = SecondCE; } else { src->lh[src->resultLen].baseContCE = 0; } src->lh[src->resultLen].nextCE = 0; src->lh[src->resultLen].nextContCE = 0; src->lh[src->resultLen].previousCE = 0; src->lh[src->resultLen].previousContCE = 0; src->lh[src->resultLen].indirect = FALSE; sourceToken = ucol_tok_initAReset(src, 0, &expandNext, parseError, status); //} } return sourceToken; } uint32_t ucol_tok_assembleTokenList(UColTokenParser *src, UParseError *parseError, UErrorCode *status) { UColToken *lastToken = NULL; const UChar *parseEnd = NULL; uint32_t expandNext = 0; UBool variableTop = FALSE; UBool top = FALSE; uint16_t specs = 0; UColTokListHeader *ListList = NULL; src->parsedToken.strength = UCOL_TOK_UNSET; ListList = src->lh; if(U_FAILURE(*status)) { return 0; } #ifdef DEBUG_FOR_CODE_POINTS char filename[35]; sprintf(filename, "/tmp/debug_for_cp_%09d.txt", getpid()); dfcp_fp = fopen(filename, "a"); fprintf(stdout, "Output is in the file %s.\n", filename); #endif #ifdef DEBUG_FOR_COLL_RULES std::string s3; UnicodeString(src->source).toUTF8String(s3); std::cout << "src->source = " << s3 << std::endl; #endif while(src->current < src->end || src->isStarred) { src->parsedToken.prefixOffset = 0; parseEnd = ucol_tok_parseNextToken(src, (UBool)(lastToken == NULL), parseError, status); specs = src->parsedToken.flags; variableTop = ((specs & UCOL_TOK_VARIABLE_TOP) != 0); top = ((specs & UCOL_TOK_TOP) != 0); if(U_SUCCESS(*status) && parseEnd != NULL) { UColToken *sourceToken = NULL; //uint32_t key = 0; uint32_t lastStrength = UCOL_TOK_UNSET; if(lastToken != NULL ) { lastStrength = lastToken->strength; } #ifdef DEBUG_FOR_CODE_POINTS UChar32 cp; U16_GET(src->source, 0, src->parsedToken.charsOffset, (uint32_t)(src->extraEnd - src->source), cp); fprintf(dfcp_fp, "Code point = %x, Strength = %x\n", cp, src->parsedToken.strength); #endif //key = newCharsLen << 24 | charsOffset; UColToken key; key.source = src->parsedToken.charsLen << 24 | src->parsedToken.charsOffset; key.rulesToParseHdl = &(src->source); /* 4 Lookup each source in the CharsToToken map, and find a sourceToken */ sourceToken = (UColToken *)uhash_get(src->tailored, &key); if(src->parsedToken.strength != UCOL_TOK_RESET) { if(lastToken == NULL) { /* this means that rules haven't started properly */ *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,0,(int32_t)(src->end-src->source),parseError); DBG_FORMAT_ERROR return 0; } /* 6 Otherwise (when relation != reset) */ if(sourceToken == NULL) { /* If sourceToken is null, create new one, */ sourceToken = (UColToken *)uprv_malloc(sizeof(UColToken)); /* test for NULL */ if (sourceToken == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return 0; } sourceToken->rulesToParseHdl = &(src->source); sourceToken->source = src->parsedToken.charsLen << 24 | src->parsedToken.charsOffset; sourceToken->debugSource = *(src->source + src->parsedToken.charsOffset); sourceToken->prefix = src->parsedToken.prefixLen << 24 | src->parsedToken.prefixOffset; sourceToken->debugPrefix = *(src->source + src->parsedToken.prefixOffset); sourceToken->polarity = UCOL_TOK_POLARITY_POSITIVE; /* TODO: this should also handle reverse */ sourceToken->next = NULL; sourceToken->previous = NULL; sourceToken->noOfCEs = 0; sourceToken->noOfExpCEs = 0; // keep the flags around so that we know about before sourceToken->flags = src->parsedToken.flags; uhash_put(src->tailored, sourceToken, sourceToken, status); if(U_FAILURE(*status)) { return 0; } } else { /* we could have fished out a reset here */ if(sourceToken->strength != UCOL_TOK_RESET && lastToken != sourceToken) { /* otherwise remove sourceToken from where it was. */ if(sourceToken->next != NULL) { if(sourceToken->next->strength > sourceToken->strength) { sourceToken->next->strength = sourceToken->strength; } sourceToken->next->previous = sourceToken->previous; } else { sourceToken->listHeader->last = sourceToken->previous; } if(sourceToken->previous != NULL) { sourceToken->previous->next = sourceToken->next; } else { sourceToken->listHeader->first = sourceToken->next; } sourceToken->next = NULL; sourceToken->previous = NULL; } } sourceToken->strength = src->parsedToken.strength; sourceToken->listHeader = lastToken->listHeader; /* 1. Find the strongest strength in each list, and set strongestP and strongestN accordingly in the headers. */ if(lastStrength == UCOL_TOK_RESET || sourceToken->listHeader->first == 0) { /* If LAST is a reset insert sourceToken in the list. */ if(sourceToken->listHeader->first == 0) { sourceToken->listHeader->first = sourceToken; sourceToken->listHeader->last = sourceToken; } else { /* we need to find a place for us */ /* and we'll get in front of the same strength */ if(sourceToken->listHeader->first->strength <= sourceToken->strength) { sourceToken->next = sourceToken->listHeader->first; sourceToken->next->previous = sourceToken; sourceToken->listHeader->first = sourceToken; sourceToken->previous = NULL; } else { lastToken = sourceToken->listHeader->first; while(lastToken->next != NULL && lastToken->next->strength > sourceToken->strength) { lastToken = lastToken->next; } if(lastToken->next != NULL) { lastToken->next->previous = sourceToken; } else { sourceToken->listHeader->last = sourceToken; } sourceToken->previous = lastToken; sourceToken->next = lastToken->next; lastToken->next = sourceToken; } } } else { /* Otherwise (when LAST is not a reset) if polarity (LAST) == polarity(relation), insert sourceToken after LAST, otherwise insert before. when inserting after or before, search to the next position with the same strength in that direction. (This is called postpone insertion). */ if(sourceToken != lastToken) { if(lastToken->polarity == sourceToken->polarity) { while(lastToken->next != NULL && lastToken->next->strength > sourceToken->strength) { lastToken = lastToken->next; } sourceToken->previous = lastToken; if(lastToken->next != NULL) { lastToken->next->previous = sourceToken; } else { sourceToken->listHeader->last = sourceToken; } sourceToken->next = lastToken->next; lastToken->next = sourceToken; } else { while(lastToken->previous != NULL && lastToken->previous->strength > sourceToken->strength) { lastToken = lastToken->previous; } sourceToken->next = lastToken; if(lastToken->previous != NULL) { lastToken->previous->next = sourceToken; } else { sourceToken->listHeader->first = sourceToken; } sourceToken->previous = lastToken->previous; lastToken->previous = sourceToken; } } else { /* repeated one thing twice in rules, stay with the stronger strength */ if(lastStrength < sourceToken->strength) { sourceToken->strength = lastStrength; } } } /* if the token was a variable top, we're gonna put it in */ if(variableTop == TRUE && src->varTop == NULL) { variableTop = FALSE; src->varTop = sourceToken; } // Treat the expansions. // There are two types of expansions: explicit (x / y) and reset based propagating expansions // (&abc * d * e <=> &ab * d / c * e / c) // if both of them are in effect for a token, they are combined. sourceToken->expansion = src->parsedToken.extensionLen << 24 | src->parsedToken.extensionOffset; if(expandNext != 0) { if(sourceToken->strength == UCOL_PRIMARY) { /* primary strength kills off the implicit expansion */ expandNext = 0; } else if(sourceToken->expansion == 0) { /* if there is no expansion, implicit is just added to the token */ sourceToken->expansion = expandNext; } else { /* there is both explicit and implicit expansion. We need to make a combination */ uprv_memcpy(src->extraCurrent, src->source + (expandNext & 0xFFFFFF), (expandNext >> 24)*sizeof(UChar)); uprv_memcpy(src->extraCurrent+(expandNext >> 24), src->source + src->parsedToken.extensionOffset, src->parsedToken.extensionLen*sizeof(UChar)); sourceToken->expansion = (uint32_t)(((expandNext >> 24) + src->parsedToken.extensionLen)<<24 | (uint32_t)(src->extraCurrent - src->source)); src->extraCurrent += (expandNext >> 24) + src->parsedToken.extensionLen; } } // This is just for debugging purposes if(sourceToken->expansion != 0) { sourceToken->debugExpansion = *(src->source + src->parsedToken.extensionOffset); } else { sourceToken->debugExpansion = 0; } // if the previous token was a reset before, the strength of this // token must match the strength of before. Otherwise we have an // undefined situation. // In other words, we currently have a cludge which we use to // represent &a >> x. This is written as &[before 2]a << x. if((lastToken->flags & UCOL_TOK_BEFORE) != 0) { uint8_t beforeStrength = (lastToken->flags & UCOL_TOK_BEFORE) - 1; if(beforeStrength != sourceToken->strength) { *status = U_INVALID_FORMAT_ERROR; syntaxError(src->source,0,(int32_t)(src->end-src->source),parseError); DBG_FORMAT_ERROR return 0; } } } else { if(lastToken != NULL && lastStrength == UCOL_TOK_RESET) { /* if the previous token was also a reset, */ /*this means that we have two consecutive resets */ /* and we want to remove the previous one if empty*/ if(src->resultLen > 0 && ListList[src->resultLen-1].first == NULL) { src->resultLen--; } } if(sourceToken == NULL) { /* this is a reset, but it might still be somewhere in the tailoring, in shorter form */ uint32_t searchCharsLen = src->parsedToken.charsLen; while(searchCharsLen > 1 && sourceToken == NULL) { searchCharsLen--; //key = searchCharsLen << 24 | charsOffset; UColToken key; key.source = searchCharsLen << 24 | src->parsedToken.charsOffset; key.rulesToParseHdl = &(src->source); sourceToken = (UColToken *)uhash_get(src->tailored, &key); } if(sourceToken != NULL) { expandNext = (src->parsedToken.charsLen - searchCharsLen) << 24 | (src->parsedToken.charsOffset + searchCharsLen); } } if((specs & UCOL_TOK_BEFORE) != 0) { /* we're doing before */ if(top == FALSE) { /* there is no indirection */ uint8_t strength = (specs & UCOL_TOK_BEFORE) - 1; if(sourceToken != NULL && sourceToken->strength != UCOL_TOK_RESET) { /* this is a before that is already ordered in the UCA - so we need to get the previous with good strength */ while(sourceToken->strength > strength && sourceToken->previous != NULL) { sourceToken = sourceToken->previous; } /* here, either we hit the strength or NULL */ if(sourceToken->strength == strength) { if(sourceToken->previous != NULL) { sourceToken = sourceToken->previous; } else { /* start of list */ sourceToken = sourceToken->listHeader->reset; } } else { /* we hit NULL */ /* we should be doing the else part */ sourceToken = sourceToken->listHeader->reset; sourceToken = getVirginBefore(src, sourceToken, strength, parseError, status); } } else { sourceToken = getVirginBefore(src, sourceToken, strength, parseError, status); } } else { /* this is both before and indirection */ top = FALSE; ListList[src->resultLen].previousCE = 0; ListList[src->resultLen].previousContCE = 0; ListList[src->resultLen].indirect = TRUE; /* we need to do slightly more work. we need to get the baseCE using the */ /* inverse UCA & getPrevious. The next bound is not set, and will be decided */ /* in ucol_bld */ uint8_t strength = (specs & UCOL_TOK_BEFORE) - 1; uint32_t baseCE = ucolIndirectBoundaries[src->parsedToken.indirectIndex].startCE; uint32_t baseContCE = ucolIndirectBoundaries[src->parsedToken.indirectIndex].startContCE;//&0xFFFFFF3F; uint32_t CE = UCOL_NOT_FOUND, SecondCE = UCOL_NOT_FOUND; UCAConstants *consts = (UCAConstants *)((uint8_t *)src->UCA->image + src->UCA->image->UCAConsts); if((baseCE & 0xFF000000) >= (consts->UCA_PRIMARY_IMPLICIT_MIN<<24) && (baseCE & 0xFF000000) <= (consts->UCA_PRIMARY_IMPLICIT_MAX<<24) ) { /* implicits - */ uint32_t primary = (baseCE & UCOL_PRIMARYMASK) | ((baseContCE & UCOL_PRIMARYMASK) >> 16); uint32_t raw = uprv_uca_getRawFromImplicit(primary); uint32_t primaryCE = uprv_uca_getImplicitFromRaw(raw-1); CE = (primaryCE & UCOL_PRIMARYMASK) | 0x0505; SecondCE = ((primaryCE << 16) & UCOL_PRIMARYMASK) | UCOL_CONTINUATION_MARKER; } else { /*int32_t invPos = ucol_inv_getPrevCE(baseCE, baseContCE, &CE, &SecondCE, strength);*/ ucol_inv_getPrevCE(src, baseCE, baseContCE, &CE, &SecondCE, strength); } ListList[src->resultLen].baseCE = CE; ListList[src->resultLen].baseContCE = SecondCE; ListList[src->resultLen].nextCE = 0; ListList[src->resultLen].nextContCE = 0; sourceToken = ucol_tok_initAReset(src, 0, &expandNext, parseError, status); } } /* 5 If the relation is a reset: If sourceToken is null Create new list, create new sourceToken, make the baseCE from source, put the sourceToken in ListHeader of the new list */ if(sourceToken == NULL) { /* 3 Consider each item: relation, source, and expansion: e.g. ...< x / y ... First convert all expansions into normal form. Examples: If "xy" doesn't occur earlier in the list or in the UCA, convert &xy * c * d * ... into &x * c/y * d * ... Note: reset values can never have expansions, although they can cause the very next item to have one. They may be contractions, if they are found earlier in the list. */ if(top == FALSE) { collIterate s; uint32_t CE = UCOL_NOT_FOUND, SecondCE = UCOL_NOT_FOUND; uprv_init_collIterate(src->UCA, src->source+src->parsedToken.charsOffset, src->parsedToken.charsLen, &s, status); CE = ucol_getNextCE(src->UCA, &s, status); const UChar *expand = s.pos; SecondCE = ucol_getNextCE(src->UCA, &s, status); ListList[src->resultLen].baseCE = CE & 0xFFFFFF3F; if(isContinuation(SecondCE)) { ListList[src->resultLen].baseContCE = SecondCE; } else { ListList[src->resultLen].baseContCE = 0; } ListList[src->resultLen].nextCE = 0; ListList[src->resultLen].nextContCE = 0; ListList[src->resultLen].previousCE = 0; ListList[src->resultLen].previousContCE = 0; ListList[src->resultLen].indirect = FALSE; sourceToken = ucol_tok_initAReset(src, expand, &expandNext, parseError, status); } else { /* top == TRUE */ /* just use the supplied values */ top = FALSE; ListList[src->resultLen].previousCE = 0; ListList[src->resultLen].previousContCE = 0; ListList[src->resultLen].indirect = TRUE; ListList[src->resultLen].baseCE = ucolIndirectBoundaries[src->parsedToken.indirectIndex].startCE; ListList[src->resultLen].baseContCE = ucolIndirectBoundaries[src->parsedToken.indirectIndex].startContCE; ListList[src->resultLen].nextCE = ucolIndirectBoundaries[src->parsedToken.indirectIndex].limitCE; ListList[src->resultLen].nextContCE = ucolIndirectBoundaries[src->parsedToken.indirectIndex].limitContCE; sourceToken = ucol_tok_initAReset(src, 0, &expandNext, parseError, status); } } else { /* reset to something already in rules */ top = FALSE; } } /* 7 After all this, set LAST to point to sourceToken, and goto step 3. */ lastToken = sourceToken; } else { if(U_FAILURE(*status)) { return 0; } } } #ifdef DEBUG_FOR_CODE_POINTS fclose(dfcp_fp); #endif if(src->resultLen > 0 && ListList[src->resultLen-1].first == NULL) { src->resultLen--; } return src->resultLen; } const UChar* ucol_tok_getRulesFromBundle( void* /*context*/, const char* locale, const char* type, int32_t* pLength, UErrorCode* status) { const UChar* rules = NULL; UResourceBundle* bundle; UResourceBundle* collations; UResourceBundle* collation; *pLength = 0; bundle = ures_open(U_ICUDATA_COLL, locale, status); if(U_SUCCESS(*status)){ collations = ures_getByKey(bundle, "collations", NULL, status); if(U_SUCCESS(*status)){ collation = ures_getByKey(collations, type, NULL, status); if(U_SUCCESS(*status)){ rules = ures_getStringByKey(collation, "Sequence", pLength, status); if(U_FAILURE(*status)){ *pLength = 0; rules = NULL; } ures_close(collation); } ures_close(collations); } } ures_close(bundle); return rules; } void ucol_tok_initTokenList( UColTokenParser *src, const UChar *rules, uint32_t rulesLength, const UCollator *UCA, GetCollationRulesFunction importFunc, void* context, UErrorCode *status) { U_NAMESPACE_USE uint32_t nSize = 0; uint32_t estimatedSize = (2*rulesLength+UCOL_TOK_EXTRA_RULE_SPACE_SIZE); bool needToDeallocRules = false; if(U_FAILURE(*status)) { return; } // set everything to zero, so that we can clean up gracefully uprv_memset(src, 0, sizeof(UColTokenParser)); // first we need to find options that don't like to be normalized, // like copy and remove... //const UChar *openBrace = rules; int32_t optionNumber = -1; const UChar *setStart = NULL; uint32_t i = 0; while(i < rulesLength) { if(rules[i] == 0x005B) { // '[': start of an option /* Gets the following: optionNumber: The index of the option. setStart: The pointer at which the option arguments start. */ optionNumber = ucol_uprv_tok_readOption(rules+i+1, rules+rulesLength, &setStart); if(optionNumber == OPTION_OPTIMIZE) { /* copy - parts of UCA to tailoring */ // [optimize] USet *newSet = ucol_uprv_tok_readAndSetUnicodeSet(setStart, rules+rulesLength, status); if(U_SUCCESS(*status)) { if(src->copySet == NULL) { src->copySet = newSet; } else { uset_addAll(src->copySet, newSet); uset_close(newSet); } } else { return; } } else if(optionNumber == OPTION_SUPPRESS_CONTRACTIONS) { USet *newSet = ucol_uprv_tok_readAndSetUnicodeSet(setStart, rules+rulesLength, status); if(U_SUCCESS(*status)) { if(src->removeSet == NULL) { src->removeSet = newSet; } else { uset_addAll(src->removeSet, newSet); uset_close(newSet); } } else { return; } } else if(optionNumber == OPTION_IMPORT){ // [import <collation-name>] // Find the address of the closing ]. UChar* import_end = u_strchr(setStart, 0x005D); int32_t optionEndOffset = (int32_t)(import_end + 1 - rules); // Ignore trailing whitespace. while(PatternProps::isWhiteSpace(*(import_end-1))) { --import_end; } int32_t optionLength = (int32_t)(import_end - setStart); char option[50]; if(optionLength >= (int32_t)sizeof(option)) { *status = U_ILLEGAL_ARGUMENT_ERROR; return; } u_UCharsToChars(setStart, option, optionLength); option[optionLength] = 0; *status = U_ZERO_ERROR; char locale[50]; int32_t templ; uloc_forLanguageTag(option, locale, (int32_t)sizeof(locale), &templ, status); if(U_FAILURE(*status)) { *status = U_ILLEGAL_ARGUMENT_ERROR; return; } char type[50]; if (uloc_getKeywordValue(locale, "collation", type, (int32_t)sizeof(type), status) <= 0 || U_FAILURE(*status) ) { *status = U_ZERO_ERROR; uprv_strcpy(type, "standard"); } // TODO: Use public functions when available, see ticket #8134. char *keywords = (char *)locale_getKeywordsStart(locale); if(keywords != NULL) { *keywords = 0; } int32_t importRulesLength = 0; const UChar* importRules = importFunc(context, locale, type, &importRulesLength, status); #ifdef DEBUG_FOR_COLL_RULES std::string s; UnicodeString(importRules).toUTF8String(s); std::cout << "Import rules = " << s << std::endl; #endif // Add the length of the imported rules to length of the original rules, // and subtract the length of the import option. uint32_t newRulesLength = rulesLength + importRulesLength - (optionEndOffset - i); UChar* newRules = (UChar*)uprv_malloc(newRulesLength*sizeof(UChar)); #ifdef DEBUG_FOR_COLL_RULES std::string s1; UnicodeString(rules).toUTF8String(s1); std::cout << "Original rules = " << s1 << std::endl; #endif // Copy the section of the original rules leading up to the import uprv_memcpy(newRules, rules, i*sizeof(UChar)); // Copy the imported rules uprv_memcpy(newRules+i, importRules, importRulesLength*sizeof(UChar)); // Copy the rest of the original rules (minus the import option itself) uprv_memcpy(newRules+i+importRulesLength, rules+optionEndOffset, (rulesLength-optionEndOffset)*sizeof(UChar)); #ifdef DEBUG_FOR_COLL_RULES std::string s2; UnicodeString(newRules).toUTF8String(s2); std::cout << "Resulting rules = " << s2 << std::endl; #endif if(needToDeallocRules){ // if needToDeallocRules is set, then we allocated rules, so it's safe to cast and free uprv_free((void*)rules); } needToDeallocRules = true; rules = newRules; rulesLength = newRulesLength; estimatedSize += importRulesLength*2; // First character of the new rules needs to be processed i--; } } //openBrace++; i++; } src->source = (UChar *)uprv_malloc(estimatedSize*sizeof(UChar)); /* test for NULL */ if (src->source == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return; } uprv_memset(src->source, 0, estimatedSize*sizeof(UChar)); nSize = unorm_normalize(rules, rulesLength, UNORM_NFD, 0, src->source, estimatedSize, status); if(nSize > estimatedSize || *status == U_BUFFER_OVERFLOW_ERROR) { *status = U_ZERO_ERROR; src->source = (UChar *)uprv_realloc(src->source, (nSize+UCOL_TOK_EXTRA_RULE_SPACE_SIZE)*sizeof(UChar)); /* test for NULL */ if (src->source == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return; } nSize = unorm_normalize(rules, rulesLength, UNORM_NFD, 0, src->source, nSize+UCOL_TOK_EXTRA_RULE_SPACE_SIZE, status); } if(needToDeallocRules){ // if needToDeallocRules is set, then we allocated rules, so it's safe to cast and free uprv_free((void*)rules); } src->current = src->source; src->end = src->source+nSize; src->sourceCurrent = src->source; src->extraCurrent = src->end+1; // Preserve terminating zero in the rule string so that option scanning works correctly src->extraEnd = src->source+estimatedSize; //src->end+UCOL_TOK_EXTRA_RULE_SPACE_SIZE; src->varTop = NULL; src->UCA = UCA; src->invUCA = ucol_initInverseUCA(status); src->parsedToken.charsLen = 0; src->parsedToken.charsOffset = 0; src->parsedToken.extensionLen = 0; src->parsedToken.extensionOffset = 0; src->parsedToken.prefixLen = 0; src->parsedToken.prefixOffset = 0; src->parsedToken.flags = 0; src->parsedToken.strength = UCOL_TOK_UNSET; src->buildCCTabFlag = FALSE; src->isStarred = FALSE; src->inRange = FALSE; src->lastRangeCp = 0; src->previousCp = 0; if(U_FAILURE(*status)) { return; } src->tailored = uhash_open(uhash_hashTokens, uhash_compareTokens, NULL, status); if(U_FAILURE(*status)) { return; } uhash_setValueDeleter(src->tailored, uprv_free); src->opts = (UColOptionSet *)uprv_malloc(sizeof(UColOptionSet)); /* test for NULL */ if (src->opts == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return; } uprv_memcpy(src->opts, UCA->options, sizeof(UColOptionSet)); src->lh = 0; src->listCapacity = 1024; src->lh = (UColTokListHeader *)uprv_malloc(src->listCapacity*sizeof(UColTokListHeader)); //Test for NULL if (src->lh == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return; } uprv_memset(src->lh, 0, src->listCapacity*sizeof(UColTokListHeader)); src->resultLen = 0; UCAConstants *consts = (UCAConstants *)((uint8_t *)src->UCA->image + src->UCA->image->UCAConsts); // UCOL_RESET_TOP_VALUE setIndirectBoundaries(0, consts->UCA_LAST_NON_VARIABLE, consts->UCA_FIRST_IMPLICIT); // UCOL_FIRST_PRIMARY_IGNORABLE setIndirectBoundaries(1, consts->UCA_FIRST_PRIMARY_IGNORABLE, 0); // UCOL_LAST_PRIMARY_IGNORABLE setIndirectBoundaries(2, consts->UCA_LAST_PRIMARY_IGNORABLE, 0); // UCOL_FIRST_SECONDARY_IGNORABLE setIndirectBoundaries(3, consts->UCA_FIRST_SECONDARY_IGNORABLE, 0); // UCOL_LAST_SECONDARY_IGNORABLE setIndirectBoundaries(4, consts->UCA_LAST_SECONDARY_IGNORABLE, 0); // UCOL_FIRST_TERTIARY_IGNORABLE setIndirectBoundaries(5, consts->UCA_FIRST_TERTIARY_IGNORABLE, 0); // UCOL_LAST_TERTIARY_IGNORABLE setIndirectBoundaries(6, consts->UCA_LAST_TERTIARY_IGNORABLE, 0); // UCOL_FIRST_VARIABLE setIndirectBoundaries(7, consts->UCA_FIRST_VARIABLE, 0); // UCOL_LAST_VARIABLE setIndirectBoundaries(8, consts->UCA_LAST_VARIABLE, 0); // UCOL_FIRST_NON_VARIABLE setIndirectBoundaries(9, consts->UCA_FIRST_NON_VARIABLE, 0); // UCOL_LAST_NON_VARIABLE setIndirectBoundaries(10, consts->UCA_LAST_NON_VARIABLE, consts->UCA_FIRST_IMPLICIT); // UCOL_FIRST_IMPLICIT setIndirectBoundaries(11, consts->UCA_FIRST_IMPLICIT, 0); // UCOL_LAST_IMPLICIT setIndirectBoundaries(12, consts->UCA_LAST_IMPLICIT, consts->UCA_FIRST_TRAILING); // UCOL_FIRST_TRAILING setIndirectBoundaries(13, consts->UCA_FIRST_TRAILING, 0); // UCOL_LAST_TRAILING setIndirectBoundaries(14, consts->UCA_LAST_TRAILING, 0); ucolIndirectBoundaries[14].limitCE = (consts->UCA_PRIMARY_SPECIAL_MIN<<24); } void ucol_tok_closeTokenList(UColTokenParser *src) { if(src->copySet != NULL) { uset_close(src->copySet); } if(src->removeSet != NULL) { uset_close(src->removeSet); } if(src->tailored != NULL) { uhash_close(src->tailored); } if(src->lh != NULL) { uprv_free(src->lh); } if(src->source != NULL) { uprv_free(src->source); } if(src->opts != NULL) { uprv_free(src->opts); } if (src->reorderCodes != NULL) { uprv_free(src->reorderCodes); } } #endif /* #if !UCONFIG_NO_COLLATION */