/* epic100.c: A SMC 83c170 EPIC/100 fast ethernet driver for Etherboot */ #define LINUX_OUT_MACROS #include "etherboot.h" #include "nic.h" #include "cards.h" #include "timer.h" #include "epic100.h" #undef virt_to_bus #define virt_to_bus(x) ((unsigned long)x) #define TX_RING_SIZE 2 /* use at least 2 buffers for TX */ #define RX_RING_SIZE 2 #define PKT_BUF_SZ 1536 /* Size of each temporary Tx/Rx buffer.*/ /* #define DEBUG_RX #define DEBUG_TX #define DEBUG_EEPROM */ #define EPIC_DEBUG 0 /* debug level */ /* The EPIC100 Rx and Tx buffer descriptors. */ struct epic_rx_desc { unsigned short status; unsigned short rxlength; unsigned long bufaddr; unsigned short buflength; unsigned short control; unsigned long next; }; /* description of the tx descriptors control bits commonly used */ #define TD_STDFLAGS TD_LASTDESC struct epic_tx_desc { unsigned short status; unsigned short txlength; unsigned long bufaddr; unsigned short buflength; unsigned short control; unsigned long next; }; #define delay(nanosec) do { int _i = 3; while (--_i > 0) \ { __SLOW_DOWN_IO; }} while (0) static void epic100_open(void); static void epic100_init_ring(void); static void epic100_disable(struct nic *nic); static int epic100_poll(struct nic *nic); static void epic100_transmit(struct nic *nic, const char *destaddr, unsigned int type, unsigned int len, const char *data); static int read_eeprom(int location); static int mii_read(int phy_id, int location); static int ioaddr; static int command; static int intstat; static int intmask; static int genctl ; static int eectl ; static int test ; static int mmctl ; static int mmdata ; static int lan0 ; static int rxcon ; static int txcon ; static int prcdar ; static int ptcdar ; static int eththr ; static unsigned int cur_rx, cur_tx; /* The next free ring entry */ #ifdef DEBUG_EEPROM static unsigned short eeprom[64]; #endif static signed char phys[4]; /* MII device addresses. */ static struct epic_rx_desc rx_ring[RX_RING_SIZE]; static struct epic_tx_desc tx_ring[TX_RING_SIZE]; #ifdef USE_LOWMEM_BUFFER #define rx_packet ((char *)0x10000 - PKT_BUF_SZ * RX_RING_SIZE) #define tx_packet ((char *)0x10000 - PKT_BUF_SZ * RX_RING_SIZE - PKT_BUF_SZ * TX_RING_SIZE) #else static char rx_packet[PKT_BUF_SZ * RX_RING_SIZE]; static char tx_packet[PKT_BUF_SZ * TX_RING_SIZE]; #endif /***********************************************************************/ /* Externally visible functions */ /***********************************************************************/ static void epic100_reset(struct nic *nic) { /* Soft reset the chip. */ outl(GC_SOFT_RESET, genctl); } struct nic* epic100_probe(struct nic *nic, unsigned short *probeaddrs) { unsigned short sum = 0; unsigned short value; int i; unsigned short* ap; unsigned int phy, phy_idx; if (probeaddrs == 0 || probeaddrs[0] == 0) return 0; /* Ideally we would detect all network cards in slot order. That would be best done a central PCI probe dispatch, which wouldn't work well with the current structure. So instead we detect just the Epic cards in slot order. */ ioaddr = probeaddrs[0] & ~3; /* Mask the bit that says "this is an io addr" */ /* compute all used static epic100 registers address */ command = ioaddr + COMMAND; /* Control Register */ intstat = ioaddr + INTSTAT; /* Interrupt Status */ intmask = ioaddr + INTMASK; /* Interrupt Mask */ genctl = ioaddr + GENCTL; /* General Control */ eectl = ioaddr + EECTL; /* EEPROM Control */ test = ioaddr + TEST; /* Test register (clocks) */ mmctl = ioaddr + MMCTL; /* MII Management Interface Control */ mmdata = ioaddr + MMDATA; /* MII Management Interface Data */ lan0 = ioaddr + LAN0; /* MAC address. (0x40-0x48) */ rxcon = ioaddr + RXCON; /* Receive Control */ txcon = ioaddr + TXCON; /* Transmit Control */ prcdar = ioaddr + PRCDAR; /* PCI Receive Current Descr Address */ ptcdar = ioaddr + PTCDAR; /* PCI Transmit Current Descr Address */ eththr = ioaddr + ETHTHR; /* Early Transmit Threshold */ /* Reset the chip & bring it out of low-power mode. */ outl(GC_SOFT_RESET, genctl); /* Disable ALL interrupts by setting the interrupt mask. */ outl(INTR_DISABLE, intmask); /* * set the internal clocks: * Application Note 7.15 says: * In order to set the CLOCK TEST bit in the TEST register, * perform the following: * * Write 0x0008 to the test register at least sixteen * consecutive times. * * The CLOCK TEST bit is Write-Only. Writing it several times * consecutively insures a successful write to the bit... */ for (i = 0; i < 16; i++) { outl(0x00000008, test); } #ifdef DEBUG_EEPROM for (i = 0; i < 64; i++) { value = read_eeprom(i); eeprom[i] = value; sum += value; } #if (EPIC_DEBUG > 1) printf("EEPROM contents\n"); for (i = 0; i < 64; i++) { printf(" %hhX%s", eeprom[i], i % 16 == 15 ? "\n" : ""); } #endif #endif /* This could also be read from the EEPROM. */ ap = (unsigned short*)nic->node_addr; for (i = 0; i < 3; i++) *ap++ = inw(lan0 + i*4); printf(" I/O %#hX %! ", ioaddr, nic->node_addr); /* Find the connected MII xcvrs. */ for (phy = 0, phy_idx = 0; phy < 32 && phy_idx < sizeof(phys); phy++) { int mii_status = mii_read(phy, 0); if (mii_status != 0xffff && mii_status != 0x0000) { phys[phy_idx++] = phy; #if (EPIC_DEBUG > 1) printf("MII transceiver found at address %d.\n", phy); #endif } } if (phy_idx == 0) { #if (EPIC_DEBUG > 1) printf("***WARNING***: No MII transceiver found!\n"); #endif /* Use the known PHY address of the EPII. */ phys[0] = 3; } epic100_open(); nic->reset = epic100_reset; nic->poll = epic100_poll; nic->transmit = epic100_transmit; nic->disable = epic100_disable; return nic; } static void epic100_open(void) { int mii_reg5; int full_duplex = 0; unsigned long tmp; epic100_init_ring(); /* Pull the chip out of low-power mode, and set for PCI read multiple. */ outl(GC_RX_FIFO_THR_64 | GC_MRC_READ_MULT | GC_ONE_COPY, genctl); outl(TX_FIFO_THRESH, eththr); tmp = TC_EARLY_TX_ENABLE | TX_SLOT_TIME; mii_reg5 = mii_read(phys[0], 5); if (mii_reg5 != 0xffff && (mii_reg5 & 0x0100)) { full_duplex = 1; printf(" full-duplex mode"); tmp |= TC_LM_FULL_DPX; } else tmp |= TC_LM_NORMAL; outl(tmp, txcon); /* Give adress of RX and TX ring to the chip */ outl(virt_to_bus(&rx_ring), prcdar); outl(virt_to_bus(&tx_ring), ptcdar); /* Start the chip's Rx process: receive unicast and broadcast */ outl(0x04, rxcon); outl(CR_START_RX | CR_QUEUE_RX, command); putchar('\n'); } /* Initialize the Rx and Tx rings. */ static void epic100_init_ring(void) { int i; char* p; cur_rx = cur_tx = 0; p = &rx_packet[0]; for (i = 0; i < RX_RING_SIZE; i++) { rx_ring[i].status = RRING_OWN; /* Owned by Epic chip */ rx_ring[i].buflength = PKT_BUF_SZ; rx_ring[i].bufaddr = virt_to_bus(p + (PKT_BUF_SZ * i)); rx_ring[i].control = 0; rx_ring[i].next = virt_to_bus(&(rx_ring[i + 1]) ); } /* Mark the last entry as wrapping the ring. */ rx_ring[i-1].next = virt_to_bus(&rx_ring[0]); /* *The Tx buffer descriptor is filled in as needed, * but we do need to clear the ownership bit. */ p = &tx_packet[0]; for (i = 0; i < TX_RING_SIZE; i++) { tx_ring[i].status = 0; /* Owned by CPU */ tx_ring[i].bufaddr = virt_to_bus(p + (PKT_BUF_SZ * i)); tx_ring[i].control = TD_STDFLAGS; tx_ring[i].next = virt_to_bus(&(tx_ring[i + 1]) ); } tx_ring[i-1].next = virt_to_bus(&tx_ring[0]); } /* function: epic100_transmit * This transmits a packet. * * Arguments: char d[6]: destination ethernet address. * unsigned short t: ethernet protocol type. * unsigned short s: size of the data-part of the packet. * char *p: the data for the packet. * returns: void. */ static void epic100_transmit(struct nic *nic, const char *destaddr, unsigned int type, unsigned int len, const char *data) { unsigned short nstype; char* txp; int entry; /* Calculate the next Tx descriptor entry. */ entry = cur_tx % TX_RING_SIZE; if ((tx_ring[entry].status & TRING_OWN) == TRING_OWN) { printf("eth_transmit: Unable to transmit. status=%hX. Resetting...\n", tx_ring[entry].status); epic100_open(); return; } txp = (char*)tx_ring[entry].bufaddr; memcpy(txp, destaddr, ETH_ALEN); memcpy(txp + ETH_ALEN, nic->node_addr, ETH_ALEN); nstype = htons(type); memcpy(txp + 12, (char*)&nstype, 2); memcpy(txp + ETH_HLEN, data, len); len += ETH_HLEN; /* * Caution: the write order is important here, * set the base address with the "ownership" * bits last. */ tx_ring[entry].txlength = (len >= 60 ? len : 60); tx_ring[entry].buflength = len; tx_ring[entry].status = TRING_OWN; /* Pass ownership to the chip. */ cur_tx++; /* Trigger an immediate transmit demand. */ outl(CR_QUEUE_TX, command); load_timer2(10*TICKS_PER_MS); /* timeout 10 ms for transmit */ while ((tx_ring[entry].status & TRING_OWN) && timer2_running()) /* Wait */; if ((tx_ring[entry].status & TRING_OWN) != 0) printf("Oops, transmitter timeout, status=%hX\n", tx_ring[entry].status); } /* function: epic100_poll / eth_poll * This receives a packet from the network. * * Arguments: none * * returns: 1 if a packet was received. * 0 if no pacet was received. * side effects: * returns the packet in the array nic->packet. * returns the length of the packet in nic->packetlen. */ static int epic100_poll(struct nic *nic) { int entry; int status; int retcode; entry = cur_rx % RX_RING_SIZE; if ((status = rx_ring[entry].status & RRING_OWN) == RRING_OWN) return (0); /* We own the next entry, it's a new packet. Send it up. */ #if (EPIC_DEBUG > 4) printf("epic_poll: entry %d status %hX\n", entry, status); #endif cur_rx++; if (status & 0x2000) { printf("epic_poll: Giant packet\n"); retcode = 0; } else if (status & 0x0006) { /* Rx Frame errors are counted in hardware. */ printf("epic_poll: Frame received with errors\n"); retcode = 0; } else { /* Omit the four octet CRC from the length. */ nic->packetlen = rx_ring[entry].rxlength - 4; memcpy(nic->packet, (char*)rx_ring[entry].bufaddr, nic->packetlen); retcode = 1; } /* Clear all error sources. */ outl(status & INTR_CLEARERRS, intstat); /* Give the descriptor back to the chip */ rx_ring[entry].status = RRING_OWN; /* Restart Receiver */ outl(CR_START_RX | CR_QUEUE_RX, command); return retcode; } static void epic100_disable(struct nic *nic) { } #ifdef DEBUG_EEPROM /* Serial EEPROM section. */ /* EEPROM_Ctrl bits. */ #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ #define EE_CS 0x02 /* EEPROM chip select. */ #define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */ #define EE_WRITE_0 0x01 #define EE_WRITE_1 0x09 #define EE_DATA_READ 0x10 /* EEPROM chip data out. */ #define EE_ENB (0x0001 | EE_CS) /* The EEPROM commands include the alway-set leading bit. */ #define EE_WRITE_CMD (5 << 6) #define EE_READ_CMD (6 << 6) #define EE_ERASE_CMD (7 << 6) #define eeprom_delay(n) delay(n) static int read_eeprom(int location) { int i; int retval = 0; int read_cmd = location | EE_READ_CMD; outl(EE_ENB & ~EE_CS, eectl); outl(EE_ENB, eectl); /* Shift the read command bits out. */ for (i = 10; i >= 0; i--) { short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; outl(EE_ENB | dataval, eectl); eeprom_delay(100); outl(EE_ENB | dataval | EE_SHIFT_CLK, eectl); eeprom_delay(150); outl(EE_ENB | dataval, eectl); /* Finish EEPROM a clock tick. */ eeprom_delay(250); } outl(EE_ENB, eectl); for (i = 16; i > 0; i--) { outl(EE_ENB | EE_SHIFT_CLK, eectl); eeprom_delay(100); retval = (retval << 1) | ((inl(eectl) & EE_DATA_READ) ? 1 : 0); outl(EE_ENB, eectl); eeprom_delay(100); } /* Terminate the EEPROM access. */ outl(EE_ENB & ~EE_CS, eectl); return retval; } #endif #define MII_READOP 1 #define MII_WRITEOP 2 static int mii_read(int phy_id, int location) { int i; outl((phy_id << 9) | (location << 4) | MII_READOP, mmctl); /* Typical operation takes < 50 ticks. */ for (i = 4000; i > 0; i--) if ((inl(mmctl) & MII_READOP) == 0) break; return inw(mmdata); }