// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/Array> #include <Eigen/QR> template<typename Derived1, typename Derived2> bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = precision<typename Derived1::RealScalar>()) { return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff())); } template<typename MatrixType> void product(const MatrixType& m) { /* this test covers the following files: Identity.h Product.h */ typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::FloatingPoint FloatingPoint; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType; typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType; typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, MatrixType::Options^RowMajor> OtherMajorMatrixType; int rows = m.rows(); int cols = m.cols(); // this test relies a lot on Random.h, and there's not much more that we can do // to test it, hence I consider that we will have tested Random.h MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols); RowSquareMatrixType identity = RowSquareMatrixType::Identity(rows, rows), square = RowSquareMatrixType::Random(rows, rows), res = RowSquareMatrixType::Random(rows, rows); ColSquareMatrixType square2 = ColSquareMatrixType::Random(cols, cols), res2 = ColSquareMatrixType::Random(cols, cols); RowVectorType v1 = RowVectorType::Random(rows), v2 = RowVectorType::Random(rows), vzero = RowVectorType::Zero(rows); ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); OtherMajorMatrixType tm1 = m1; Scalar s1 = ei_random<Scalar>(); int r = ei_random<int>(0, rows-1), c = ei_random<int>(0, cols-1); // begin testing Product.h: only associativity for now // (we use Transpose.h but this doesn't count as a test for it) VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2)); m3 = m1; m3 *= m1.transpose() * m2; VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2)); VERIFY_IS_APPROX(m3, m1.lazy() * (m1.transpose()*m2)); // continue testing Product.h: distributivity VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2); VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2); // continue testing Product.h: compatibility with ScalarMultiple.h VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1); VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1)); // again, test operator() to check const-qualification s1 += (square.lazy() * m1)(r,c); // test Product.h together with Identity.h VERIFY_IS_APPROX(v1, identity*v1); VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity); // again, test operator() to check const-qualification VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c)); if (rows!=cols) VERIFY_RAISES_ASSERT(m3 = m1*m1); // test the previous tests were not screwed up because operator* returns 0 // (we use the more accurate default epsilon) if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1) { VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1)); } // test optimized operator+= path res = square; res += (m1 * m2.transpose()).lazy(); VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1) { VERIFY(areNotApprox(res,square + m2 * m1.transpose())); } vcres = vc2; vcres += (m1.transpose() * v1).lazy(); VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1); tm1 = m1; VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1); VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1); // test submatrix and matrix/vector product for (int i=0; i<rows; ++i) res.row(i) = m1.row(i) * m2.transpose(); VERIFY_IS_APPROX(res, m1 * m2.transpose()); // the other way round: for (int i=0; i<rows; ++i) res.col(i) = m1 * m2.transpose().col(i); VERIFY_IS_APPROX(res, m1 * m2.transpose()); res2 = square2; res2 += (m1.transpose() * m2).lazy(); VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2); if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1) { VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1)); } }