// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "common.h" // y = alpha*A*x + beta*y int EIGEN_BLAS_FUNC(symv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) { Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar alpha = *reinterpret_cast<Scalar*>(palpha); Scalar beta = *reinterpret_cast<Scalar*>(pbeta); // check arguments int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*lda<std::max(1,*n)) info = 5; else if(*incx==0) info = 7; else if(*incy==0) info = 10; if(info) return xerbla_(SCALAR_SUFFIX_UP"SYMV ",&info,6); if(*n==0) return 0; Scalar* actual_x = get_compact_vector(x,*n,*incx); Scalar* actual_y = get_compact_vector(y,*n,*incy); if(beta!=Scalar(1)) { if(beta==Scalar(0)) vector(actual_y, *n).setZero(); else vector(actual_y, *n) *= beta; } // TODO performs a direct call to the underlying implementation function if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n)); else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n)); if(actual_x!=x) delete[] actual_x; if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy); return 1; } // C := alpha*x*x' + C int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pc, int *ldc) { // typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar); // static functype func[2]; // static bool init = false; // if(!init) // { // for(int k=0; k<2; ++k) // func[k] = 0; // // func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run); // func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run); // init = true; // } Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* c = reinterpret_cast<Scalar*>(pc); Scalar alpha = *reinterpret_cast<Scalar*>(palpha); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*ldc<std::max(1,*n)) info = 7; if(info) return xerbla_(SCALAR_SUFFIX_UP"SYR ",&info,6); if(*n==0 || alpha==Scalar(0)) return 1; // if the increment is not 1, let's copy it to a temporary vector to enable vectorization Scalar* x_cpy = get_compact_vector(x,*n,*incx); Matrix<Scalar,Dynamic,Dynamic> m2(matrix(c,*n,*n,*ldc)); // TODO check why this is not accurate enough for lapack tests // if(UPLO(*uplo)==LO) matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha); // else if(UPLO(*uplo)==UP) matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha); if(UPLO(*uplo)==LO) for(int j=0;j<*n;++j) matrix(c,*n,*n,*ldc).col(j).tail(*n-j) += alpha * x_cpy[j] * vector(x_cpy+j,*n-j); else for(int j=0;j<*n;++j) matrix(c,*n,*n,*ldc).col(j).head(j+1) += alpha * x_cpy[j] * vector(x_cpy,j+1); if(x_cpy!=x) delete[] x_cpy; return 1; } // C := alpha*x*y' + alpha*y*x' + C int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, int *ldc) { // typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar); // static functype func[2]; // // static bool init = false; // if(!init) // { // for(int k=0; k<2; ++k) // func[k] = 0; // // func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run); // func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run); // // init = true; // } Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar* c = reinterpret_cast<Scalar*>(pc); Scalar alpha = *reinterpret_cast<Scalar*>(palpha); int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*ldc<std::max(1,*n)) info = 9; if(info) return xerbla_(SCALAR_SUFFIX_UP"SYR2 ",&info,6); if(alpha==Scalar(0)) return 1; Scalar* x_cpy = get_compact_vector(x,*n,*incx); Scalar* y_cpy = get_compact_vector(y,*n,*incy); // TODO perform direct calls to underlying implementation if(UPLO(*uplo)==LO) matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha); else if(UPLO(*uplo)==UP) matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha); if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy; // int code = UPLO(*uplo); // if(code>=2 || func[code]==0) // return 0; // func[code](*n, a, *inca, b, *incb, c, *ldc, alpha); return 1; } /** DSBMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric band matrix, with k super-diagonals. */ // int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, // RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) // { // return 1; // } /** DSPMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric matrix, supplied in packed form. * */ // int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) // { // return 1; // } /** DSPR performs the symmetric rank 1 operation * * A := alpha*x*x' + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n symmetric matrix, supplied in packed form. */ // int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *alpha, Scalar *x, int *incx, Scalar *ap) // { // return 1; // } /** DSPR2 performs the symmetric rank 2 operation * * A := alpha*x*y' + alpha*y*x' + A, * * where alpha is a scalar, x and y are n element vectors and A is an * n by n symmetric matrix, supplied in packed form. */ // int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap) // { // return 1; // }