//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with code generation of C++ expressions // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CGCUDARuntime.h" #include "CGCXXABI.h" #include "CGDebugInfo.h" #include "CGObjCRuntime.h" #include "clang/Frontend/CodeGenOptions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Support/CallSite.h" using namespace clang; using namespace CodeGen; RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, SourceLocation CallLoc, llvm::Value *Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, CallExpr::const_arg_iterator ArgBeg, CallExpr::const_arg_iterator ArgEnd) { assert(MD->isInstance() && "Trying to emit a member call expr on a static method!"); // C++11 [class.mfct.non-static]p2: // If a non-static member function of a class X is called for an object that // is not of type X, or of a type derived from X, the behavior is undefined. EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, CallLoc, This, getContext().getRecordType(MD->getParent())); CallArgList Args; // Push the this ptr. Args.add(RValue::get(This), MD->getThisType(getContext())); // If there is an implicit parameter (e.g. VTT), emit it. if (ImplicitParam) { Args.add(RValue::get(ImplicitParam), ImplicitParamTy); } const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); // And the rest of the call args. EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee, ReturnValue, Args, MD); } // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do // quite what we want. static const Expr *skipNoOpCastsAndParens(const Expr *E) { while (true) { if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { E = PE->getSubExpr(); continue; } if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { if (CE->getCastKind() == CK_NoOp) { E = CE->getSubExpr(); continue; } } if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { if (UO->getOpcode() == UO_Extension) { E = UO->getSubExpr(); continue; } } return E; } } /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given /// expr can be devirtualized. static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, const Expr *Base, const CXXMethodDecl *MD) { // When building with -fapple-kext, all calls must go through the vtable since // the kernel linker can do runtime patching of vtables. if (Context.getLangOpts().AppleKext) return false; // If the most derived class is marked final, we know that no subclass can // override this member function and so we can devirtualize it. For example: // // struct A { virtual void f(); } // struct B final : A { }; // // void f(B *b) { // b->f(); // } // const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); if (MostDerivedClassDecl->hasAttr<FinalAttr>()) return true; // If the member function is marked 'final', we know that it can't be // overridden and can therefore devirtualize it. if (MD->hasAttr<FinalAttr>()) return true; // Similarly, if the class itself is marked 'final' it can't be overridden // and we can therefore devirtualize the member function call. if (MD->getParent()->hasAttr<FinalAttr>()) return true; Base = skipNoOpCastsAndParens(Base); if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { // This is a record decl. We know the type and can devirtualize it. return VD->getType()->isRecordType(); } return false; } // We can devirtualize calls on an object accessed by a class member access // expression, since by C++11 [basic.life]p6 we know that it can't refer to // a derived class object constructed in the same location. if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) return VD->getType()->isRecordType(); // We can always devirtualize calls on temporary object expressions. if (isa<CXXConstructExpr>(Base)) return true; // And calls on bound temporaries. if (isa<CXXBindTemporaryExpr>(Base)) return true; // Check if this is a call expr that returns a record type. if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) return CE->getCallReturnType()->isRecordType(); // We can't devirtualize the call. return false; } static CXXRecordDecl *getCXXRecord(const Expr *E) { QualType T = E->getType(); if (const PointerType *PTy = T->getAs<PointerType>()) T = PTy->getPointeeType(); const RecordType *Ty = T->castAs<RecordType>(); return cast<CXXRecordDecl>(Ty->getDecl()); } // Note: This function also emit constructor calls to support a MSVC // extensions allowing explicit constructor function call. RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, ReturnValueSlot ReturnValue) { const Expr *callee = CE->getCallee()->IgnoreParens(); if (isa<BinaryOperator>(callee)) return EmitCXXMemberPointerCallExpr(CE, ReturnValue); const MemberExpr *ME = cast<MemberExpr>(callee); const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); if (MD->isStatic()) { // The method is static, emit it as we would a regular call. llvm::Value *Callee = CGM.GetAddrOfFunction(MD); return EmitCall(getContext().getPointerType(MD->getType()), Callee, ReturnValue, CE->arg_begin(), CE->arg_end()); } // Compute the object pointer. const Expr *Base = ME->getBase(); bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); const CXXMethodDecl *DevirtualizedMethod = NULL; if (CanUseVirtualCall && canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) { const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); assert(DevirtualizedMethod); const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); const Expr *Inner = Base->ignoreParenBaseCasts(); if (getCXXRecord(Inner) == DevirtualizedClass) // If the class of the Inner expression is where the dynamic method // is defined, build the this pointer from it. Base = Inner; else if (getCXXRecord(Base) != DevirtualizedClass) { // If the method is defined in a class that is not the best dynamic // one or the one of the full expression, we would have to build // a derived-to-base cast to compute the correct this pointer, but // we don't have support for that yet, so do a virtual call. DevirtualizedMethod = NULL; } // If the return types are not the same, this might be a case where more // code needs to run to compensate for it. For example, the derived // method might return a type that inherits form from the return // type of MD and has a prefix. // For now we just avoid devirtualizing these covariant cases. if (DevirtualizedMethod && DevirtualizedMethod->getResultType().getCanonicalType() != MD->getResultType().getCanonicalType()) DevirtualizedMethod = NULL; } llvm::Value *This; if (ME->isArrow()) This = EmitScalarExpr(Base); else This = EmitLValue(Base).getAddress(); if (MD->isTrivial()) { if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); if (isa<CXXConstructorDecl>(MD) && cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) return RValue::get(0); if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { // We don't like to generate the trivial copy/move assignment operator // when it isn't necessary; just produce the proper effect here. llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); EmitAggregateAssign(This, RHS, CE->getType()); return RValue::get(This); } if (isa<CXXConstructorDecl>(MD) && cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { // Trivial move and copy ctor are the same. llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, CE->arg_begin(), CE->arg_end()); return RValue::get(This); } llvm_unreachable("unknown trivial member function"); } // Compute the function type we're calling. const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD; const CGFunctionInfo *FInfo = 0; if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete); else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, Ctor_Complete); else FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); // C++ [class.virtual]p12: // Explicit qualification with the scope operator (5.1) suppresses the // virtual call mechanism. // // We also don't emit a virtual call if the base expression has a record type // because then we know what the type is. bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; llvm::Value *Callee; if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { assert(CE->arg_begin() == CE->arg_end() && "Destructor shouldn't have explicit parameters"); assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); if (UseVirtualCall) { CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, CE->getExprLoc(), This); } else { if (getLangOpts().AppleKext && MD->isVirtual() && ME->hasQualifier()) Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); else if (!DevirtualizedMethod) Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty); else { const CXXDestructorDecl *DDtor = cast<CXXDestructorDecl>(DevirtualizedMethod); Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); } EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, /*ImplicitParam=*/0, QualType(), 0, 0); } return RValue::get(0); } if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); } else if (UseVirtualCall) { Callee = BuildVirtualCall(MD, This, Ty); } else { if (getLangOpts().AppleKext && MD->isVirtual() && ME->hasQualifier()) Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); else if (!DevirtualizedMethod) Callee = CGM.GetAddrOfFunction(MD, Ty); else { Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); } } return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, /*ImplicitParam=*/0, QualType(), CE->arg_begin(), CE->arg_end()); } RValue CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue) { const BinaryOperator *BO = cast<BinaryOperator>(E->getCallee()->IgnoreParens()); const Expr *BaseExpr = BO->getLHS(); const Expr *MemFnExpr = BO->getRHS(); const MemberPointerType *MPT = MemFnExpr->getType()->castAs<MemberPointerType>(); const FunctionProtoType *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>(); const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); // Get the member function pointer. llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); // Emit the 'this' pointer. llvm::Value *This; if (BO->getOpcode() == BO_PtrMemI) This = EmitScalarExpr(BaseExpr); else This = EmitLValue(BaseExpr).getAddress(); EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, QualType(MPT->getClass(), 0)); // Ask the ABI to load the callee. Note that This is modified. llvm::Value *Callee = CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); CallArgList Args; QualType ThisType = getContext().getPointerType(getContext().getTagDeclType(RD)); // Push the this ptr. Args.add(RValue::get(This), ThisType); RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); // And the rest of the call args EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee, ReturnValue, Args); } RValue CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue) { assert(MD->isInstance() && "Trying to emit a member call expr on a static method!"); LValue LV = EmitLValue(E->getArg(0)); llvm::Value *This = LV.getAddress(); if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && MD->isTrivial()) { llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); QualType Ty = E->getType(); EmitAggregateAssign(This, Src, Ty); return RValue::get(This); } llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This, /*ImplicitParam=*/0, QualType(), E->arg_begin() + 1, E->arg_end()); } RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, ReturnValueSlot ReturnValue) { return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); } static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, llvm::Value *DestPtr, const CXXRecordDecl *Base) { if (Base->isEmpty()) return; DestPtr = CGF.EmitCastToVoidPtr(DestPtr); const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); CharUnits Size = Layout.getNonVirtualSize(); CharUnits Align = Layout.getNonVirtualAlign(); llvm::Value *SizeVal = CGF.CGM.getSize(Size); // If the type contains a pointer to data member we can't memset it to zero. // Instead, create a null constant and copy it to the destination. // TODO: there are other patterns besides zero that we can usefully memset, // like -1, which happens to be the pattern used by member-pointers. // TODO: isZeroInitializable can be over-conservative in the case where a // virtual base contains a member pointer. if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, NullConstant, Twine()); NullVariable->setAlignment(Align.getQuantity()); llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); // Get and call the appropriate llvm.memcpy overload. CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); return; } // Otherwise, just memset the whole thing to zero. This is legal // because in LLVM, all default initializers (other than the ones we just // handled above) are guaranteed to have a bit pattern of all zeros. CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, Align.getQuantity()); } void CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest) { assert(!Dest.isIgnored() && "Must have a destination!"); const CXXConstructorDecl *CD = E->getConstructor(); // If we require zero initialization before (or instead of) calling the // constructor, as can be the case with a non-user-provided default // constructor, emit the zero initialization now, unless destination is // already zeroed. if (E->requiresZeroInitialization() && !Dest.isZeroed()) { switch (E->getConstructionKind()) { case CXXConstructExpr::CK_Delegating: case CXXConstructExpr::CK_Complete: EmitNullInitialization(Dest.getAddr(), E->getType()); break; case CXXConstructExpr::CK_VirtualBase: case CXXConstructExpr::CK_NonVirtualBase: EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); break; } } // If this is a call to a trivial default constructor, do nothing. if (CD->isTrivial() && CD->isDefaultConstructor()) return; // Elide the constructor if we're constructing from a temporary. // The temporary check is required because Sema sets this on NRVO // returns. if (getLangOpts().ElideConstructors && E->isElidable()) { assert(getContext().hasSameUnqualifiedType(E->getType(), E->getArg(0)->getType())); if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { EmitAggExpr(E->getArg(0), Dest); return; } } if (const ConstantArrayType *arrayType = getContext().getAsConstantArrayType(E->getType())) { EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E->arg_begin(), E->arg_end()); } else { CXXCtorType Type = Ctor_Complete; bool ForVirtualBase = false; bool Delegating = false; switch (E->getConstructionKind()) { case CXXConstructExpr::CK_Delegating: // We should be emitting a constructor; GlobalDecl will assert this Type = CurGD.getCtorType(); Delegating = true; break; case CXXConstructExpr::CK_Complete: Type = Ctor_Complete; break; case CXXConstructExpr::CK_VirtualBase: ForVirtualBase = true; // fall-through case CXXConstructExpr::CK_NonVirtualBase: Type = Ctor_Base; } // Call the constructor. EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), E->arg_begin(), E->arg_end()); } } void CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, const Expr *Exp) { if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) Exp = E->getSubExpr(); assert(isa<CXXConstructExpr>(Exp) && "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); const CXXConstructorDecl *CD = E->getConstructor(); RunCleanupsScope Scope(*this); // If we require zero initialization before (or instead of) calling the // constructor, as can be the case with a non-user-provided default // constructor, emit the zero initialization now. // FIXME. Do I still need this for a copy ctor synthesis? if (E->requiresZeroInitialization()) EmitNullInitialization(Dest, E->getType()); assert(!getContext().getAsConstantArrayType(E->getType()) && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E->arg_begin(), E->arg_end()); } static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, const CXXNewExpr *E) { if (!E->isArray()) return CharUnits::Zero(); // No cookie is required if the operator new[] being used is the // reserved placement operator new[]. if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) return CharUnits::Zero(); return CGF.CGM.getCXXABI().GetArrayCookieSize(E); } static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, const CXXNewExpr *e, unsigned minElements, llvm::Value *&numElements, llvm::Value *&sizeWithoutCookie) { QualType type = e->getAllocatedType(); if (!e->isArray()) { CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); return sizeWithoutCookie; } // The width of size_t. unsigned sizeWidth = CGF.SizeTy->getBitWidth(); // Figure out the cookie size. llvm::APInt cookieSize(sizeWidth, CalculateCookiePadding(CGF, e).getQuantity()); // Emit the array size expression. // We multiply the size of all dimensions for NumElements. // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. numElements = CGF.EmitScalarExpr(e->getArraySize()); assert(isa<llvm::IntegerType>(numElements->getType())); // The number of elements can be have an arbitrary integer type; // essentially, we need to multiply it by a constant factor, add a // cookie size, and verify that the result is representable as a // size_t. That's just a gloss, though, and it's wrong in one // important way: if the count is negative, it's an error even if // the cookie size would bring the total size >= 0. bool isSigned = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); llvm::IntegerType *numElementsType = cast<llvm::IntegerType>(numElements->getType()); unsigned numElementsWidth = numElementsType->getBitWidth(); // Compute the constant factor. llvm::APInt arraySizeMultiplier(sizeWidth, 1); while (const ConstantArrayType *CAT = CGF.getContext().getAsConstantArrayType(type)) { type = CAT->getElementType(); arraySizeMultiplier *= CAT->getSize(); } CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); typeSizeMultiplier *= arraySizeMultiplier; // This will be a size_t. llvm::Value *size; // If someone is doing 'new int[42]' there is no need to do a dynamic check. // Don't bloat the -O0 code. if (llvm::ConstantInt *numElementsC = dyn_cast<llvm::ConstantInt>(numElements)) { const llvm::APInt &count = numElementsC->getValue(); bool hasAnyOverflow = false; // If 'count' was a negative number, it's an overflow. if (isSigned && count.isNegative()) hasAnyOverflow = true; // We want to do all this arithmetic in size_t. If numElements is // wider than that, check whether it's already too big, and if so, // overflow. else if (numElementsWidth > sizeWidth && numElementsWidth - sizeWidth > count.countLeadingZeros()) hasAnyOverflow = true; // Okay, compute a count at the right width. llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); // If there is a brace-initializer, we cannot allocate fewer elements than // there are initializers. If we do, that's treated like an overflow. if (adjustedCount.ult(minElements)) hasAnyOverflow = true; // Scale numElements by that. This might overflow, but we don't // care because it only overflows if allocationSize does, too, and // if that overflows then we shouldn't use this. numElements = llvm::ConstantInt::get(CGF.SizeTy, adjustedCount * arraySizeMultiplier); // Compute the size before cookie, and track whether it overflowed. bool overflow; llvm::APInt allocationSize = adjustedCount.umul_ov(typeSizeMultiplier, overflow); hasAnyOverflow |= overflow; // Add in the cookie, and check whether it's overflowed. if (cookieSize != 0) { // Save the current size without a cookie. This shouldn't be // used if there was overflow. sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); allocationSize = allocationSize.uadd_ov(cookieSize, overflow); hasAnyOverflow |= overflow; } // On overflow, produce a -1 so operator new will fail. if (hasAnyOverflow) { size = llvm::Constant::getAllOnesValue(CGF.SizeTy); } else { size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); } // Otherwise, we might need to use the overflow intrinsics. } else { // There are up to five conditions we need to test for: // 1) if isSigned, we need to check whether numElements is negative; // 2) if numElementsWidth > sizeWidth, we need to check whether // numElements is larger than something representable in size_t; // 3) if minElements > 0, we need to check whether numElements is smaller // than that. // 4) we need to compute // sizeWithoutCookie := numElements * typeSizeMultiplier // and check whether it overflows; and // 5) if we need a cookie, we need to compute // size := sizeWithoutCookie + cookieSize // and check whether it overflows. llvm::Value *hasOverflow = 0; // If numElementsWidth > sizeWidth, then one way or another, we're // going to have to do a comparison for (2), and this happens to // take care of (1), too. if (numElementsWidth > sizeWidth) { llvm::APInt threshold(numElementsWidth, 1); threshold <<= sizeWidth; llvm::Value *thresholdV = llvm::ConstantInt::get(numElementsType, threshold); hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); // Otherwise, if we're signed, we want to sext up to size_t. } else if (isSigned) { if (numElementsWidth < sizeWidth) numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); // If there's a non-1 type size multiplier, then we can do the // signedness check at the same time as we do the multiply // because a negative number times anything will cause an // unsigned overflow. Otherwise, we have to do it here. But at least // in this case, we can subsume the >= minElements check. if (typeSizeMultiplier == 1) hasOverflow = CGF.Builder.CreateICmpSLT(numElements, llvm::ConstantInt::get(CGF.SizeTy, minElements)); // Otherwise, zext up to size_t if necessary. } else if (numElementsWidth < sizeWidth) { numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); } assert(numElements->getType() == CGF.SizeTy); if (minElements) { // Don't allow allocation of fewer elements than we have initializers. if (!hasOverflow) { hasOverflow = CGF.Builder.CreateICmpULT(numElements, llvm::ConstantInt::get(CGF.SizeTy, minElements)); } else if (numElementsWidth > sizeWidth) { // The other existing overflow subsumes this check. // We do an unsigned comparison, since any signed value < -1 is // taken care of either above or below. hasOverflow = CGF.Builder.CreateOr(hasOverflow, CGF.Builder.CreateICmpULT(numElements, llvm::ConstantInt::get(CGF.SizeTy, minElements))); } } size = numElements; // Multiply by the type size if necessary. This multiplier // includes all the factors for nested arrays. // // This step also causes numElements to be scaled up by the // nested-array factor if necessary. Overflow on this computation // can be ignored because the result shouldn't be used if // allocation fails. if (typeSizeMultiplier != 1) { llvm::Value *umul_with_overflow = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); llvm::Value *tsmV = llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); llvm::Value *result = CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); if (hasOverflow) hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); else hasOverflow = overflowed; size = CGF.Builder.CreateExtractValue(result, 0); // Also scale up numElements by the array size multiplier. if (arraySizeMultiplier != 1) { // If the base element type size is 1, then we can re-use the // multiply we just did. if (typeSize.isOne()) { assert(arraySizeMultiplier == typeSizeMultiplier); numElements = size; // Otherwise we need a separate multiply. } else { llvm::Value *asmV = llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); numElements = CGF.Builder.CreateMul(numElements, asmV); } } } else { // numElements doesn't need to be scaled. assert(arraySizeMultiplier == 1); } // Add in the cookie size if necessary. if (cookieSize != 0) { sizeWithoutCookie = size; llvm::Value *uadd_with_overflow = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); llvm::Value *result = CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); if (hasOverflow) hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); else hasOverflow = overflowed; size = CGF.Builder.CreateExtractValue(result, 0); } // If we had any possibility of dynamic overflow, make a select to // overwrite 'size' with an all-ones value, which should cause // operator new to throw. if (hasOverflow) size = CGF.Builder.CreateSelect(hasOverflow, llvm::Constant::getAllOnesValue(CGF.SizeTy), size); } if (cookieSize == 0) sizeWithoutCookie = size; else assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); return size; } static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, QualType AllocType, llvm::Value *NewPtr) { CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); switch (CGF.getEvaluationKind(AllocType)) { case TEK_Scalar: CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, Alignment), false); return; case TEK_Complex: CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, Alignment), /*isInit*/ true); return; case TEK_Aggregate: { AggValueSlot Slot = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased); CGF.EmitAggExpr(Init, Slot); return; } } llvm_unreachable("bad evaluation kind"); } void CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, llvm::Value *beginPtr, llvm::Value *numElements) { if (!E->hasInitializer()) return; // We have a POD type. llvm::Value *explicitPtr = beginPtr; // Find the end of the array, hoisted out of the loop. llvm::Value *endPtr = Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); unsigned initializerElements = 0; const Expr *Init = E->getInitializer(); llvm::AllocaInst *endOfInit = 0; QualType::DestructionKind dtorKind = elementType.isDestructedType(); EHScopeStack::stable_iterator cleanup; llvm::Instruction *cleanupDominator = 0; // If the initializer is an initializer list, first do the explicit elements. if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { initializerElements = ILE->getNumInits(); // Enter a partial-destruction cleanup if necessary. if (needsEHCleanup(dtorKind)) { // In principle we could tell the cleanup where we are more // directly, but the control flow can get so varied here that it // would actually be quite complex. Therefore we go through an // alloca. endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, getDestroyer(dtorKind)); cleanup = EHStack.stable_begin(); } for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { // Tell the cleanup that it needs to destroy up to this // element. TODO: some of these stores can be trivially // observed to be unnecessary. if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); } // The remaining elements are filled with the array filler expression. Init = ILE->getArrayFiller(); } // Create the continuation block. llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); // If the number of elements isn't constant, we have to now check if there is // anything left to initialize. if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { // If all elements have already been initialized, skip the whole loop. if (constNum->getZExtValue() <= initializerElements) { // If there was a cleanup, deactivate it. if (cleanupDominator) DeactivateCleanupBlock(cleanup, cleanupDominator); return; } } else { llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, "array.isempty"); Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); EmitBlock(nonEmptyBB); } // Enter the loop. llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); EmitBlock(loopBB); // Set up the current-element phi. llvm::PHINode *curPtr = Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); curPtr->addIncoming(explicitPtr, entryBB); // Store the new cleanup position for irregular cleanups. if (endOfInit) Builder.CreateStore(curPtr, endOfInit); // Enter a partial-destruction cleanup if necessary. if (!cleanupDominator && needsEHCleanup(dtorKind)) { pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, getDestroyer(dtorKind)); cleanup = EHStack.stable_begin(); cleanupDominator = Builder.CreateUnreachable(); } // Emit the initializer into this element. StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); // Leave the cleanup if we entered one. if (cleanupDominator) { DeactivateCleanupBlock(cleanup, cleanupDominator); cleanupDominator->eraseFromParent(); } // Advance to the next element. llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); // Check whether we've gotten to the end of the array and, if so, // exit the loop. llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); Builder.CreateCondBr(isEnd, contBB, loopBB); curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); EmitBlock(contBB); } static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, llvm::Value *NewPtr, llvm::Value *Size) { CGF.EmitCastToVoidPtr(NewPtr); CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, Alignment.getQuantity(), false); } static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, QualType ElementType, llvm::Value *NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie) { const Expr *Init = E->getInitializer(); if (E->isArray()) { if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ CXXConstructorDecl *Ctor = CCE->getConstructor(); if (Ctor->isTrivial()) { // If new expression did not specify value-initialization, then there // is no initialization. if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) return; if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { // Optimization: since zero initialization will just set the memory // to all zeroes, generate a single memset to do it in one shot. EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); return; } } CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, CCE->arg_begin(), CCE->arg_end(), CCE->requiresZeroInitialization()); return; } else if (Init && isa<ImplicitValueInitExpr>(Init) && CGF.CGM.getTypes().isZeroInitializable(ElementType)) { // Optimization: since zero initialization will just set the memory // to all zeroes, generate a single memset to do it in one shot. EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); return; } CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); return; } if (!Init) return; StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); } /// Emit a call to an operator new or operator delete function, as implicitly /// created by new-expressions and delete-expressions. static RValue EmitNewDeleteCall(CodeGenFunction &CGF, const FunctionDecl *Callee, const FunctionProtoType *CalleeType, const CallArgList &Args) { llvm::Instruction *CallOrInvoke; llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); RValue RV = CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType), CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke); /// C++1y [expr.new]p10: /// [In a new-expression,] an implementation is allowed to omit a call /// to a replaceable global allocation function. /// /// We model such elidable calls with the 'builtin' attribute. llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); if (Callee->isReplaceableGlobalAllocationFunction() && Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { // FIXME: Add addAttribute to CallSite. if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) CI->addAttribute(llvm::AttributeSet::FunctionIndex, llvm::Attribute::Builtin); else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) II->addAttribute(llvm::AttributeSet::FunctionIndex, llvm::Attribute::Builtin); else llvm_unreachable("unexpected kind of call instruction"); } return RV; } namespace { /// A cleanup to call the given 'operator delete' function upon /// abnormal exit from a new expression. class CallDeleteDuringNew : public EHScopeStack::Cleanup { size_t NumPlacementArgs; const FunctionDecl *OperatorDelete; llvm::Value *Ptr; llvm::Value *AllocSize; RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } public: static size_t getExtraSize(size_t NumPlacementArgs) { return NumPlacementArgs * sizeof(RValue); } CallDeleteDuringNew(size_t NumPlacementArgs, const FunctionDecl *OperatorDelete, llvm::Value *Ptr, llvm::Value *AllocSize) : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize) {} void setPlacementArg(unsigned I, RValue Arg) { assert(I < NumPlacementArgs && "index out of range"); getPlacementArgs()[I] = Arg; } void Emit(CodeGenFunction &CGF, Flags flags) { const FunctionProtoType *FPT = OperatorDelete->getType()->getAs<FunctionProtoType>(); assert(FPT->getNumArgs() == NumPlacementArgs + 1 || (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); CallArgList DeleteArgs; // The first argument is always a void*. FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); DeleteArgs.add(RValue::get(Ptr), *AI++); // A member 'operator delete' can take an extra 'size_t' argument. if (FPT->getNumArgs() == NumPlacementArgs + 2) DeleteArgs.add(RValue::get(AllocSize), *AI++); // Pass the rest of the arguments, which must match exactly. for (unsigned I = 0; I != NumPlacementArgs; ++I) DeleteArgs.add(getPlacementArgs()[I], *AI++); // Call 'operator delete'. EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); } }; /// A cleanup to call the given 'operator delete' function upon /// abnormal exit from a new expression when the new expression is /// conditional. class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { size_t NumPlacementArgs; const FunctionDecl *OperatorDelete; DominatingValue<RValue>::saved_type Ptr; DominatingValue<RValue>::saved_type AllocSize; DominatingValue<RValue>::saved_type *getPlacementArgs() { return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); } public: static size_t getExtraSize(size_t NumPlacementArgs) { return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); } CallDeleteDuringConditionalNew(size_t NumPlacementArgs, const FunctionDecl *OperatorDelete, DominatingValue<RValue>::saved_type Ptr, DominatingValue<RValue>::saved_type AllocSize) : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize) {} void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { assert(I < NumPlacementArgs && "index out of range"); getPlacementArgs()[I] = Arg; } void Emit(CodeGenFunction &CGF, Flags flags) { const FunctionProtoType *FPT = OperatorDelete->getType()->getAs<FunctionProtoType>(); assert(FPT->getNumArgs() == NumPlacementArgs + 1 || (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); CallArgList DeleteArgs; // The first argument is always a void*. FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); DeleteArgs.add(Ptr.restore(CGF), *AI++); // A member 'operator delete' can take an extra 'size_t' argument. if (FPT->getNumArgs() == NumPlacementArgs + 2) { RValue RV = AllocSize.restore(CGF); DeleteArgs.add(RV, *AI++); } // Pass the rest of the arguments, which must match exactly. for (unsigned I = 0; I != NumPlacementArgs; ++I) { RValue RV = getPlacementArgs()[I].restore(CGF); DeleteArgs.add(RV, *AI++); } // Call 'operator delete'. EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); } }; } /// Enter a cleanup to call 'operator delete' if the initializer in a /// new-expression throws. static void EnterNewDeleteCleanup(CodeGenFunction &CGF, const CXXNewExpr *E, llvm::Value *NewPtr, llvm::Value *AllocSize, const CallArgList &NewArgs) { // If we're not inside a conditional branch, then the cleanup will // dominate and we can do the easier (and more efficient) thing. if (!CGF.isInConditionalBranch()) { CallDeleteDuringNew *Cleanup = CGF.EHStack .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, E->getNumPlacementArgs(), E->getOperatorDelete(), NewPtr, AllocSize); for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) Cleanup->setPlacementArg(I, NewArgs[I+1].RV); return; } // Otherwise, we need to save all this stuff. DominatingValue<RValue>::saved_type SavedNewPtr = DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); DominatingValue<RValue>::saved_type SavedAllocSize = DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, E->getNumPlacementArgs(), E->getOperatorDelete(), SavedNewPtr, SavedAllocSize); for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); CGF.initFullExprCleanup(); } llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { // The element type being allocated. QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); // 1. Build a call to the allocation function. FunctionDecl *allocator = E->getOperatorNew(); const FunctionProtoType *allocatorType = allocator->getType()->castAs<FunctionProtoType>(); CallArgList allocatorArgs; // The allocation size is the first argument. QualType sizeType = getContext().getSizeType(); // If there is a brace-initializer, cannot allocate fewer elements than inits. unsigned minElements = 0; if (E->isArray() && E->hasInitializer()) { if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) minElements = ILE->getNumInits(); } llvm::Value *numElements = 0; llvm::Value *allocSizeWithoutCookie = 0; llvm::Value *allocSize = EmitCXXNewAllocSize(*this, E, minElements, numElements, allocSizeWithoutCookie); allocatorArgs.add(RValue::get(allocSize), sizeType); // Emit the rest of the arguments. // FIXME: Ideally, this should just use EmitCallArgs. CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); // First, use the types from the function type. // We start at 1 here because the first argument (the allocation size) // has already been emitted. for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; ++i, ++placementArg) { QualType argType = allocatorType->getArgType(i); assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), placementArg->getType()) && "type mismatch in call argument!"); EmitCallArg(allocatorArgs, *placementArg, argType); } // Either we've emitted all the call args, or we have a call to a // variadic function. assert((placementArg == E->placement_arg_end() || allocatorType->isVariadic()) && "Extra arguments to non-variadic function!"); // If we still have any arguments, emit them using the type of the argument. for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); placementArg != placementArgsEnd; ++placementArg) { EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); } // Emit the allocation call. If the allocator is a global placement // operator, just "inline" it directly. RValue RV; if (allocator->isReservedGlobalPlacementOperator()) { assert(allocatorArgs.size() == 2); RV = allocatorArgs[1].RV; // TODO: kill any unnecessary computations done for the size // argument. } else { RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); } // Emit a null check on the allocation result if the allocation // function is allowed to return null (because it has a non-throwing // exception spec; for this part, we inline // CXXNewExpr::shouldNullCheckAllocation()) and we have an // interesting initializer. bool nullCheck = allocatorType->isNothrow(getContext()) && (!allocType.isPODType(getContext()) || E->hasInitializer()); llvm::BasicBlock *nullCheckBB = 0; llvm::BasicBlock *contBB = 0; llvm::Value *allocation = RV.getScalarVal(); unsigned AS = allocation->getType()->getPointerAddressSpace(); // The null-check means that the initializer is conditionally // evaluated. ConditionalEvaluation conditional(*this); if (nullCheck) { conditional.begin(*this); nullCheckBB = Builder.GetInsertBlock(); llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); contBB = createBasicBlock("new.cont"); llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); Builder.CreateCondBr(isNull, contBB, notNullBB); EmitBlock(notNullBB); } // If there's an operator delete, enter a cleanup to call it if an // exception is thrown. EHScopeStack::stable_iterator operatorDeleteCleanup; llvm::Instruction *cleanupDominator = 0; if (E->getOperatorDelete() && !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); operatorDeleteCleanup = EHStack.stable_begin(); cleanupDominator = Builder.CreateUnreachable(); } assert((allocSize == allocSizeWithoutCookie) == CalculateCookiePadding(*this, E).isZero()); if (allocSize != allocSizeWithoutCookie) { assert(E->isArray()); allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, numElements, E, allocType); } llvm::Type *elementPtrTy = ConvertTypeForMem(allocType)->getPointerTo(AS); llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); EmitNewInitializer(*this, E, allocType, result, numElements, allocSizeWithoutCookie); if (E->isArray()) { // NewPtr is a pointer to the base element type. If we're // allocating an array of arrays, we'll need to cast back to the // array pointer type. llvm::Type *resultType = ConvertTypeForMem(E->getType()); if (result->getType() != resultType) result = Builder.CreateBitCast(result, resultType); } // Deactivate the 'operator delete' cleanup if we finished // initialization. if (operatorDeleteCleanup.isValid()) { DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); cleanupDominator->eraseFromParent(); } if (nullCheck) { conditional.end(*this); llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); EmitBlock(contBB); llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); PHI->addIncoming(result, notNullBB); PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), nullCheckBB); result = PHI; } return result; } void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy) { assert(DeleteFD->getOverloadedOperator() == OO_Delete); const FunctionProtoType *DeleteFTy = DeleteFD->getType()->getAs<FunctionProtoType>(); CallArgList DeleteArgs; // Check if we need to pass the size to the delete operator. llvm::Value *Size = 0; QualType SizeTy; if (DeleteFTy->getNumArgs() == 2) { SizeTy = DeleteFTy->getArgType(1); CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); Size = llvm::ConstantInt::get(ConvertType(SizeTy), DeleteTypeSize.getQuantity()); } QualType ArgTy = DeleteFTy->getArgType(0); llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); DeleteArgs.add(RValue::get(DeletePtr), ArgTy); if (Size) DeleteArgs.add(RValue::get(Size), SizeTy); // Emit the call to delete. EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); } namespace { /// Calls the given 'operator delete' on a single object. struct CallObjectDelete : EHScopeStack::Cleanup { llvm::Value *Ptr; const FunctionDecl *OperatorDelete; QualType ElementType; CallObjectDelete(llvm::Value *Ptr, const FunctionDecl *OperatorDelete, QualType ElementType) : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} void Emit(CodeGenFunction &CGF, Flags flags) { CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); } }; } /// Emit the code for deleting a single object. static void EmitObjectDelete(CodeGenFunction &CGF, const FunctionDecl *OperatorDelete, llvm::Value *Ptr, QualType ElementType, bool UseGlobalDelete) { // Find the destructor for the type, if applicable. If the // destructor is virtual, we'll just emit the vcall and return. const CXXDestructorDecl *Dtor = 0; if (const RecordType *RT = ElementType->getAs<RecordType>()) { CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { Dtor = RD->getDestructor(); if (Dtor->isVirtual()) { if (UseGlobalDelete) { // If we're supposed to call the global delete, make sure we do so // even if the destructor throws. // Derive the complete-object pointer, which is what we need // to pass to the deallocation function. llvm::Value *completePtr = CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType); CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, completePtr, OperatorDelete, ElementType); } // FIXME: Provide a source location here. CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType, SourceLocation(), Ptr); if (UseGlobalDelete) { CGF.PopCleanupBlock(); } return; } } } // Make sure that we call delete even if the dtor throws. // This doesn't have to a conditional cleanup because we're going // to pop it off in a second. CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, Ptr, OperatorDelete, ElementType); if (Dtor) CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, /*Delegating=*/false, Ptr); else if (CGF.getLangOpts().ObjCAutoRefCount && ElementType->isObjCLifetimeType()) { switch (ElementType.getObjCLifetime()) { case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: break; case Qualifiers::OCL_Strong: { // Load the pointer value. llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, ElementType.isVolatileQualified()); CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); break; } case Qualifiers::OCL_Weak: CGF.EmitARCDestroyWeak(Ptr); break; } } CGF.PopCleanupBlock(); } namespace { /// Calls the given 'operator delete' on an array of objects. struct CallArrayDelete : EHScopeStack::Cleanup { llvm::Value *Ptr; const FunctionDecl *OperatorDelete; llvm::Value *NumElements; QualType ElementType; CharUnits CookieSize; CallArrayDelete(llvm::Value *Ptr, const FunctionDecl *OperatorDelete, llvm::Value *NumElements, QualType ElementType, CharUnits CookieSize) : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), ElementType(ElementType), CookieSize(CookieSize) {} void Emit(CodeGenFunction &CGF, Flags flags) { const FunctionProtoType *DeleteFTy = OperatorDelete->getType()->getAs<FunctionProtoType>(); assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); CallArgList Args; // Pass the pointer as the first argument. QualType VoidPtrTy = DeleteFTy->getArgType(0); llvm::Value *DeletePtr = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); Args.add(RValue::get(DeletePtr), VoidPtrTy); // Pass the original requested size as the second argument. if (DeleteFTy->getNumArgs() == 2) { QualType size_t = DeleteFTy->getArgType(1); llvm::IntegerType *SizeTy = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); CharUnits ElementTypeSize = CGF.CGM.getContext().getTypeSizeInChars(ElementType); // The size of an element, multiplied by the number of elements. llvm::Value *Size = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); Size = CGF.Builder.CreateMul(Size, NumElements); // Plus the size of the cookie if applicable. if (!CookieSize.isZero()) { llvm::Value *CookieSizeV = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); Size = CGF.Builder.CreateAdd(Size, CookieSizeV); } Args.add(RValue::get(Size), size_t); } // Emit the call to delete. EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); } }; } /// Emit the code for deleting an array of objects. static void EmitArrayDelete(CodeGenFunction &CGF, const CXXDeleteExpr *E, llvm::Value *deletedPtr, QualType elementType) { llvm::Value *numElements = 0; llvm::Value *allocatedPtr = 0; CharUnits cookieSize; CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, numElements, allocatedPtr, cookieSize); assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); // Make sure that we call delete even if one of the dtors throws. const FunctionDecl *operatorDelete = E->getOperatorDelete(); CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, allocatedPtr, operatorDelete, numElements, elementType, cookieSize); // Destroy the elements. if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { assert(numElements && "no element count for a type with a destructor!"); llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); // Note that it is legal to allocate a zero-length array, and we // can never fold the check away because the length should always // come from a cookie. CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, CGF.getDestroyer(dtorKind), /*checkZeroLength*/ true, CGF.needsEHCleanup(dtorKind)); } // Pop the cleanup block. CGF.PopCleanupBlock(); } void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { const Expr *Arg = E->getArgument(); llvm::Value *Ptr = EmitScalarExpr(Arg); // Null check the pointer. llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); EmitBlock(DeleteNotNull); // We might be deleting a pointer to array. If so, GEP down to the // first non-array element. // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); if (DeleteTy->isConstantArrayType()) { llvm::Value *Zero = Builder.getInt32(0); SmallVector<llvm::Value*,8> GEP; GEP.push_back(Zero); // point at the outermost array // For each layer of array type we're pointing at: while (const ConstantArrayType *Arr = getContext().getAsConstantArrayType(DeleteTy)) { // 1. Unpeel the array type. DeleteTy = Arr->getElementType(); // 2. GEP to the first element of the array. GEP.push_back(Zero); } Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); } assert(ConvertTypeForMem(DeleteTy) == cast<llvm::PointerType>(Ptr->getType())->getElementType()); if (E->isArrayForm()) { EmitArrayDelete(*this, E, Ptr, DeleteTy); } else { EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, E->isGlobalDelete()); } EmitBlock(DeleteEnd); } static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { // void __cxa_bad_typeid(); llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); } static void EmitBadTypeidCall(CodeGenFunction &CGF) { llvm::Value *Fn = getBadTypeidFn(CGF); CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); CGF.Builder.CreateUnreachable(); } static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, llvm::Type *StdTypeInfoPtrTy) { // Get the vtable pointer. llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); // C++ [expr.typeid]p2: // If the glvalue expression is obtained by applying the unary * operator to // a pointer and the pointer is a null pointer value, the typeid expression // throws the std::bad_typeid exception. if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { if (UO->getOpcode() == UO_Deref) { llvm::BasicBlock *BadTypeidBlock = CGF.createBasicBlock("typeid.bad_typeid"); llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); CGF.EmitBlock(BadTypeidBlock); EmitBadTypeidCall(CGF); CGF.EmitBlock(EndBlock); } } llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, StdTypeInfoPtrTy->getPointerTo()); // Load the type info. Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); return CGF.Builder.CreateLoad(Value); } llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { llvm::Type *StdTypeInfoPtrTy = ConvertType(E->getType())->getPointerTo(); if (E->isTypeOperand()) { llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); } // C++ [expr.typeid]p2: // When typeid is applied to a glvalue expression whose type is a // polymorphic class type, the result refers to a std::type_info object // representing the type of the most derived object (that is, the dynamic // type) to which the glvalue refers. if (E->isPotentiallyEvaluated()) return EmitTypeidFromVTable(*this, E->getExprOperand(), StdTypeInfoPtrTy); QualType OperandTy = E->getExprOperand()->getType(); return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), StdTypeInfoPtrTy); } static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { // void *__dynamic_cast(const void *sub, // const abi::__class_type_info *src, // const abi::__class_type_info *dst, // std::ptrdiff_t src2dst_offset); llvm::Type *Int8PtrTy = CGF.Int8PtrTy; llvm::Type *PtrDiffTy = CGF.ConvertType(CGF.getContext().getPointerDiffType()); llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); // Mark the function as nounwind readonly. llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind, llvm::Attribute::ReadOnly }; llvm::AttributeSet Attrs = llvm::AttributeSet::get( CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs); return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); } static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { // void __cxa_bad_cast(); llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); } static void EmitBadCastCall(CodeGenFunction &CGF) { llvm::Value *Fn = getBadCastFn(CGF); CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); CGF.Builder.CreateUnreachable(); } /// \brief Compute the src2dst_offset hint as described in the /// Itanium C++ ABI [2.9.7] static CharUnits computeOffsetHint(ASTContext &Context, const CXXRecordDecl *Src, const CXXRecordDecl *Dst) { CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); // If Dst is not derived from Src we can skip the whole computation below and // return that Src is not a public base of Dst. Record all inheritance paths. if (!Dst->isDerivedFrom(Src, Paths)) return CharUnits::fromQuantity(-2ULL); unsigned NumPublicPaths = 0; CharUnits Offset; // Now walk all possible inheritance paths. for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end(); I != E; ++I) { if (I->Access != AS_public) // Ignore non-public inheritance. continue; ++NumPublicPaths; for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) { // If the path contains a virtual base class we can't give any hint. // -1: no hint. if (J->Base->isVirtual()) return CharUnits::fromQuantity(-1ULL); if (NumPublicPaths > 1) // Won't use offsets, skip computation. continue; // Accumulate the base class offsets. const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class); Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl()); } } // -2: Src is not a public base of Dst. if (NumPublicPaths == 0) return CharUnits::fromQuantity(-2ULL); // -3: Src is a multiple public base type but never a virtual base type. if (NumPublicPaths > 1) return CharUnits::fromQuantity(-3ULL); // Otherwise, the Src type is a unique public nonvirtual base type of Dst. // Return the offset of Src from the origin of Dst. return Offset; } static llvm::Value * EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, QualType SrcTy, QualType DestTy, llvm::BasicBlock *CastEnd) { llvm::Type *PtrDiffLTy = CGF.ConvertType(CGF.getContext().getPointerDiffType()); llvm::Type *DestLTy = CGF.ConvertType(DestTy); if (const PointerType *PTy = DestTy->getAs<PointerType>()) { if (PTy->getPointeeType()->isVoidType()) { // C++ [expr.dynamic.cast]p7: // If T is "pointer to cv void," then the result is a pointer to the // most derived object pointed to by v. // Get the vtable pointer. llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); // Get the offset-to-top from the vtable. llvm::Value *OffsetToTop = CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); // Finally, add the offset to the pointer. Value = CGF.EmitCastToVoidPtr(Value); Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); return CGF.Builder.CreateBitCast(Value, DestLTy); } } QualType SrcRecordTy; QualType DestRecordTy; if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); DestRecordTy = DestPTy->getPointeeType(); } else { SrcRecordTy = SrcTy; DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); } assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); llvm::Value *SrcRTTI = CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); llvm::Value *DestRTTI = CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); // Compute the offset hint. const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, computeOffsetHint(CGF.getContext(), SrcDecl, DestDecl).getQuantity()); // Emit the call to __dynamic_cast. Value = CGF.EmitCastToVoidPtr(Value); llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint }; Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args); Value = CGF.Builder.CreateBitCast(Value, DestLTy); /// C++ [expr.dynamic.cast]p9: /// A failed cast to reference type throws std::bad_cast if (DestTy->isReferenceType()) { llvm::BasicBlock *BadCastBlock = CGF.createBasicBlock("dynamic_cast.bad_cast"); llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); CGF.EmitBlock(BadCastBlock); EmitBadCastCall(CGF); } return Value; } static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, QualType DestTy) { llvm::Type *DestLTy = CGF.ConvertType(DestTy); if (DestTy->isPointerType()) return llvm::Constant::getNullValue(DestLTy); /// C++ [expr.dynamic.cast]p9: /// A failed cast to reference type throws std::bad_cast EmitBadCastCall(CGF); CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); return llvm::UndefValue::get(DestLTy); } llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, const CXXDynamicCastExpr *DCE) { QualType DestTy = DCE->getTypeAsWritten(); if (DCE->isAlwaysNull()) return EmitDynamicCastToNull(*this, DestTy); QualType SrcTy = DCE->getSubExpr()->getType(); // C++ [expr.dynamic.cast]p4: // If the value of v is a null pointer value in the pointer case, the result // is the null pointer value of type T. bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); llvm::BasicBlock *CastNull = 0; llvm::BasicBlock *CastNotNull = 0; llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); if (ShouldNullCheckSrcValue) { CastNull = createBasicBlock("dynamic_cast.null"); CastNotNull = createBasicBlock("dynamic_cast.notnull"); llvm::Value *IsNull = Builder.CreateIsNull(Value); Builder.CreateCondBr(IsNull, CastNull, CastNotNull); EmitBlock(CastNotNull); } Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); if (ShouldNullCheckSrcValue) { EmitBranch(CastEnd); EmitBlock(CastNull); EmitBranch(CastEnd); } EmitBlock(CastEnd); if (ShouldNullCheckSrcValue) { llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); PHI->addIncoming(Value, CastNotNull); PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); Value = PHI; } return Value; } void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { RunCleanupsScope Scope(*this); LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), Slot.getAlignment()); CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), e = E->capture_init_end(); i != e; ++i, ++CurField) { // Emit initialization LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); ArrayRef<VarDecl *> ArrayIndexes; if (CurField->getType()->isArrayType()) ArrayIndexes = E->getCaptureInitIndexVars(i); EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); } }