//== CallGraph.cpp - AST-based Call graph ----------------------*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the AST-based CallGraph. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "CallGraph" #include "clang/Analysis/CallGraph.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/StmtVisitor.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/GraphWriter.h" using namespace clang; STATISTIC(NumObjCCallEdges, "Number of Objective-C method call edges"); STATISTIC(NumBlockCallEdges, "Number of block call edges"); namespace { /// A helper class, which walks the AST and locates all the call sites in the /// given function body. class CGBuilder : public StmtVisitor<CGBuilder> { CallGraph *G; CallGraphNode *CallerNode; public: CGBuilder(CallGraph *g, CallGraphNode *N) : G(g), CallerNode(N) {} void VisitStmt(Stmt *S) { VisitChildren(S); } Decl *getDeclFromCall(CallExpr *CE) { if (FunctionDecl *CalleeDecl = CE->getDirectCallee()) return CalleeDecl; // Simple detection of a call through a block. Expr *CEE = CE->getCallee()->IgnoreParenImpCasts(); if (BlockExpr *Block = dyn_cast<BlockExpr>(CEE)) { NumBlockCallEdges++; return Block->getBlockDecl(); } return 0; } void addCalledDecl(Decl *D) { if (G->includeInGraph(D)) { CallGraphNode *CalleeNode = G->getOrInsertNode(D); CallerNode->addCallee(CalleeNode, G); } } void VisitCallExpr(CallExpr *CE) { if (Decl *D = getDeclFromCall(CE)) addCalledDecl(D); } // Adds may-call edges for the ObjC message sends. void VisitObjCMessageExpr(ObjCMessageExpr *ME) { if (ObjCInterfaceDecl *IDecl = ME->getReceiverInterface()) { Selector Sel = ME->getSelector(); // Find the callee definition within the same translation unit. Decl *D = 0; if (ME->isInstanceMessage()) D = IDecl->lookupPrivateMethod(Sel); else D = IDecl->lookupPrivateClassMethod(Sel); if (D) { addCalledDecl(D); NumObjCCallEdges++; } } } void VisitChildren(Stmt *S) { for (Stmt::child_range I = S->children(); I; ++I) if (*I) static_cast<CGBuilder*>(this)->Visit(*I); } }; } // end anonymous namespace void CallGraph::addNodesForBlocks(DeclContext *D) { if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) addNodeForDecl(BD, true); for (DeclContext::decl_iterator I = D->decls_begin(), E = D->decls_end(); I!=E; ++I) if (DeclContext *DC = dyn_cast<DeclContext>(*I)) addNodesForBlocks(DC); } CallGraph::CallGraph() { Root = getOrInsertNode(0); } CallGraph::~CallGraph() { if (!FunctionMap.empty()) { for (FunctionMapTy::iterator I = FunctionMap.begin(), E = FunctionMap.end(); I != E; ++I) delete I->second; FunctionMap.clear(); } } bool CallGraph::includeInGraph(const Decl *D) { assert(D); if (!D->getBody()) return false; if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { // We skip function template definitions, as their semantics is // only determined when they are instantiated. if (!FD->isThisDeclarationADefinition() || FD->isDependentContext()) return false; IdentifierInfo *II = FD->getIdentifier(); if (II && II->getName().startswith("__inline")) return false; } if (const ObjCMethodDecl *ID = dyn_cast<ObjCMethodDecl>(D)) { if (!ID->isThisDeclarationADefinition()) return false; } return true; } void CallGraph::addNodeForDecl(Decl* D, bool IsGlobal) { assert(D); // Allocate a new node, mark it as root, and process it's calls. CallGraphNode *Node = getOrInsertNode(D); // Process all the calls by this function as well. CGBuilder builder(this, Node); if (Stmt *Body = D->getBody()) builder.Visit(Body); } CallGraphNode *CallGraph::getNode(const Decl *F) const { FunctionMapTy::const_iterator I = FunctionMap.find(F); if (I == FunctionMap.end()) return 0; return I->second; } CallGraphNode *CallGraph::getOrInsertNode(Decl *F) { CallGraphNode *&Node = FunctionMap[F]; if (Node) return Node; Node = new CallGraphNode(F); // Make Root node a parent of all functions to make sure all are reachable. if (F != 0) Root->addCallee(Node, this); return Node; } void CallGraph::print(raw_ostream &OS) const { OS << " --- Call graph Dump --- \n"; // We are going to print the graph in reverse post order, partially, to make // sure the output is deterministic. llvm::ReversePostOrderTraversal<const clang::CallGraph*> RPOT(this); for (llvm::ReversePostOrderTraversal<const clang::CallGraph*>::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { const CallGraphNode *N = *I; OS << " Function: "; if (N == Root) OS << "< root >"; else N->print(OS); OS << " calls: "; for (CallGraphNode::const_iterator CI = N->begin(), CE = N->end(); CI != CE; ++CI) { assert(*CI != Root && "No one can call the root node."); (*CI)->print(OS); OS << " "; } OS << '\n'; } OS.flush(); } void CallGraph::dump() const { print(llvm::errs()); } void CallGraph::viewGraph() const { llvm::ViewGraph(this, "CallGraph"); } void CallGraphNode::print(raw_ostream &os) const { if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(FD)) return ND->printName(os); os << "< >"; } void CallGraphNode::dump() const { print(llvm::errs()); } namespace llvm { template <> struct DOTGraphTraits<const CallGraph*> : public DefaultDOTGraphTraits { DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} static std::string getNodeLabel(const CallGraphNode *Node, const CallGraph *CG) { if (CG->getRoot() == Node) { return "< root >"; } if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Node->getDecl())) return ND->getNameAsString(); else return "< >"; } }; }