//===--- Decl.cpp - Declaration AST Node Implementation -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Decl subclasses. // //===----------------------------------------------------------------------===// #include "clang/AST/Decl.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/Attr.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/PrettyPrinter.h" #include "clang/AST/Stmt.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/Module.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TargetInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/type_traits.h" #include <algorithm> using namespace clang; //===----------------------------------------------------------------------===// // NamedDecl Implementation //===----------------------------------------------------------------------===// // Visibility rules aren't rigorously externally specified, but here // are the basic principles behind what we implement: // // 1. An explicit visibility attribute is generally a direct expression // of the user's intent and should be honored. Only the innermost // visibility attribute applies. If no visibility attribute applies, // global visibility settings are considered. // // 2. There is one caveat to the above: on or in a template pattern, // an explicit visibility attribute is just a default rule, and // visibility can be decreased by the visibility of template // arguments. But this, too, has an exception: an attribute on an // explicit specialization or instantiation causes all the visibility // restrictions of the template arguments to be ignored. // // 3. A variable that does not otherwise have explicit visibility can // be restricted by the visibility of its type. // // 4. A visibility restriction is explicit if it comes from an // attribute (or something like it), not a global visibility setting. // When emitting a reference to an external symbol, visibility // restrictions are ignored unless they are explicit. // // 5. When computing the visibility of a non-type, including a // non-type member of a class, only non-type visibility restrictions // are considered: the 'visibility' attribute, global value-visibility // settings, and a few special cases like __private_extern. // // 6. When computing the visibility of a type, including a type member // of a class, only type visibility restrictions are considered: // the 'type_visibility' attribute and global type-visibility settings. // However, a 'visibility' attribute counts as a 'type_visibility' // attribute on any declaration that only has the former. // // The visibility of a "secondary" entity, like a template argument, // is computed using the kind of that entity, not the kind of the // primary entity for which we are computing visibility. For example, // the visibility of a specialization of either of these templates: // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); // template <class T, bool (&compare)(T, X)> class matcher; // is restricted according to the type visibility of the argument 'T', // the type visibility of 'bool(&)(T,X)', and the value visibility of // the argument function 'compare'. That 'has_match' is a value // and 'matcher' is a type only matters when looking for attributes // and settings from the immediate context. const unsigned IgnoreExplicitVisibilityBit = 2; const unsigned IgnoreAllVisibilityBit = 4; /// Kinds of LV computation. The linkage side of the computation is /// always the same, but different things can change how visibility is /// computed. enum LVComputationKind { /// Do an LV computation for, ultimately, a type. /// Visibility may be restricted by type visibility settings and /// the visibility of template arguments. LVForType = NamedDecl::VisibilityForType, /// Do an LV computation for, ultimately, a non-type declaration. /// Visibility may be restricted by value visibility settings and /// the visibility of template arguments. LVForValue = NamedDecl::VisibilityForValue, /// Do an LV computation for, ultimately, a type that already has /// some sort of explicit visibility. Visibility may only be /// restricted by the visibility of template arguments. LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit), /// Do an LV computation for, ultimately, a non-type declaration /// that already has some sort of explicit visibility. Visibility /// may only be restricted by the visibility of template arguments. LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit), /// Do an LV computation when we only care about the linkage. LVForLinkageOnly = LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit }; /// Does this computation kind permit us to consider additional /// visibility settings from attributes and the like? static bool hasExplicitVisibilityAlready(LVComputationKind computation) { return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0); } /// Given an LVComputationKind, return one of the same type/value sort /// that records that it already has explicit visibility. static LVComputationKind withExplicitVisibilityAlready(LVComputationKind oldKind) { LVComputationKind newKind = static_cast<LVComputationKind>(unsigned(oldKind) | IgnoreExplicitVisibilityBit); assert(oldKind != LVForType || newKind == LVForExplicitType); assert(oldKind != LVForValue || newKind == LVForExplicitValue); assert(oldKind != LVForExplicitType || newKind == LVForExplicitType); assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue); return newKind; } static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, LVComputationKind kind) { assert(!hasExplicitVisibilityAlready(kind) && "asking for explicit visibility when we shouldn't be"); return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind); } /// Is the given declaration a "type" or a "value" for the purposes of /// visibility computation? static bool usesTypeVisibility(const NamedDecl *D) { return isa<TypeDecl>(D) || isa<ClassTemplateDecl>(D) || isa<ObjCInterfaceDecl>(D); } /// Does the given declaration have member specialization information, /// and if so, is it an explicit specialization? template <class T> static typename llvm::enable_if_c<!llvm::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type isExplicitMemberSpecialization(const T *D) { if (const MemberSpecializationInfo *member = D->getMemberSpecializationInfo()) { return member->isExplicitSpecialization(); } return false; } /// For templates, this question is easier: a member template can't be /// explicitly instantiated, so there's a single bit indicating whether /// or not this is an explicit member specialization. static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { return D->isMemberSpecialization(); } /// Given a visibility attribute, return the explicit visibility /// associated with it. template <class T> static Visibility getVisibilityFromAttr(const T *attr) { switch (attr->getVisibility()) { case T::Default: return DefaultVisibility; case T::Hidden: return HiddenVisibility; case T::Protected: return ProtectedVisibility; } llvm_unreachable("bad visibility kind"); } /// Return the explicit visibility of the given declaration. static Optional<Visibility> getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) { // If we're ultimately computing the visibility of a type, look for // a 'type_visibility' attribute before looking for 'visibility'. if (kind == NamedDecl::VisibilityForType) { if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) { return getVisibilityFromAttr(A); } } // If this declaration has an explicit visibility attribute, use it. if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) { return getVisibilityFromAttr(A); } // If we're on Mac OS X, an 'availability' for Mac OS X attribute // implies visibility(default). if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) { for (specific_attr_iterator<AvailabilityAttr> A = D->specific_attr_begin<AvailabilityAttr>(), AEnd = D->specific_attr_end<AvailabilityAttr>(); A != AEnd; ++A) if ((*A)->getPlatform()->getName().equals("macosx")) return DefaultVisibility; } return None; } static LinkageInfo getLVForType(const Type &T, LVComputationKind computation) { if (computation == LVForLinkageOnly) return LinkageInfo(T.getLinkage(), DefaultVisibility, true); return T.getLinkageAndVisibility(); } /// \brief Get the most restrictive linkage for the types in the given /// template parameter list. For visibility purposes, template /// parameters are part of the signature of a template. static LinkageInfo getLVForTemplateParameterList(const TemplateParameterList *params, LVComputationKind computation) { LinkageInfo LV; for (TemplateParameterList::const_iterator P = params->begin(), PEnd = params->end(); P != PEnd; ++P) { // Template type parameters are the most common and never // contribute to visibility, pack or not. if (isa<TemplateTypeParmDecl>(*P)) continue; // Non-type template parameters can be restricted by the value type, e.g. // template <enum X> class A { ... }; // We have to be careful here, though, because we can be dealing with // dependent types. if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { // Handle the non-pack case first. if (!NTTP->isExpandedParameterPack()) { if (!NTTP->getType()->isDependentType()) { LV.merge(getLVForType(*NTTP->getType(), computation)); } continue; } // Look at all the types in an expanded pack. for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { QualType type = NTTP->getExpansionType(i); if (!type->isDependentType()) LV.merge(type->getLinkageAndVisibility()); } continue; } // Template template parameters can be restricted by their // template parameters, recursively. TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P); // Handle the non-pack case first. if (!TTP->isExpandedParameterPack()) { LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), computation)); continue; } // Look at all expansions in an expanded pack. for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); i != n; ++i) { LV.merge(getLVForTemplateParameterList( TTP->getExpansionTemplateParameters(i), computation)); } } return LV; } /// getLVForDecl - Get the linkage and visibility for the given declaration. static LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation); static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { const Decl *Ret = NULL; const DeclContext *DC = D->getDeclContext(); while (DC->getDeclKind() != Decl::TranslationUnit) { if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) Ret = cast<Decl>(DC); DC = DC->getParent(); } return Ret; } /// \brief Get the most restrictive linkage for the types and /// declarations in the given template argument list. /// /// Note that we don't take an LVComputationKind because we always /// want to honor the visibility of template arguments in the same way. static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args, LVComputationKind computation) { LinkageInfo LV; for (unsigned i = 0, e = args.size(); i != e; ++i) { const TemplateArgument &arg = args[i]; switch (arg.getKind()) { case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Expression: continue; case TemplateArgument::Type: LV.merge(getLVForType(*arg.getAsType(), computation)); continue; case TemplateArgument::Declaration: if (NamedDecl *ND = dyn_cast<NamedDecl>(arg.getAsDecl())) { assert(!usesTypeVisibility(ND)); LV.merge(getLVForDecl(ND, computation)); } continue; case TemplateArgument::NullPtr: LV.merge(arg.getNullPtrType()->getLinkageAndVisibility()); continue; case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: if (TemplateDecl *Template = arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) LV.merge(getLVForDecl(Template, computation)); continue; case TemplateArgument::Pack: LV.merge(getLVForTemplateArgumentList(arg.getPackAsArray(), computation)); continue; } llvm_unreachable("bad template argument kind"); } return LV; } static LinkageInfo getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, LVComputationKind computation) { return getLVForTemplateArgumentList(TArgs.asArray(), computation); } static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, const FunctionTemplateSpecializationInfo *specInfo) { // Include visibility from the template parameters and arguments // only if this is not an explicit instantiation or specialization // with direct explicit visibility. (Implicit instantiations won't // have a direct attribute.) if (!specInfo->isExplicitInstantiationOrSpecialization()) return true; return !fn->hasAttr<VisibilityAttr>(); } /// Merge in template-related linkage and visibility for the given /// function template specialization. /// /// We don't need a computation kind here because we can assume /// LVForValue. /// /// \param[out] LV the computation to use for the parent static void mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn, const FunctionTemplateSpecializationInfo *specInfo, LVComputationKind computation) { bool considerVisibility = shouldConsiderTemplateVisibility(fn, specInfo); // Merge information from the template parameters. FunctionTemplateDecl *temp = specInfo->getTemplate(); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility); // Merge information from the template arguments. const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); LV.mergeMaybeWithVisibility(argsLV, considerVisibility); } /// Does the given declaration have a direct visibility attribute /// that would match the given rules? static bool hasDirectVisibilityAttribute(const NamedDecl *D, LVComputationKind computation) { switch (computation) { case LVForType: case LVForExplicitType: if (D->hasAttr<TypeVisibilityAttr>()) return true; // fallthrough case LVForValue: case LVForExplicitValue: if (D->hasAttr<VisibilityAttr>()) return true; return false; case LVForLinkageOnly: return false; } llvm_unreachable("bad visibility computation kind"); } /// Should we consider visibility associated with the template /// arguments and parameters of the given class template specialization? static bool shouldConsiderTemplateVisibility( const ClassTemplateSpecializationDecl *spec, LVComputationKind computation) { // Include visibility from the template parameters and arguments // only if this is not an explicit instantiation or specialization // with direct explicit visibility (and note that implicit // instantiations won't have a direct attribute). // // Furthermore, we want to ignore template parameters and arguments // for an explicit specialization when computing the visibility of a // member thereof with explicit visibility. // // This is a bit complex; let's unpack it. // // An explicit class specialization is an independent, top-level // declaration. As such, if it or any of its members has an // explicit visibility attribute, that must directly express the // user's intent, and we should honor it. The same logic applies to // an explicit instantiation of a member of such a thing. // Fast path: if this is not an explicit instantiation or // specialization, we always want to consider template-related // visibility restrictions. if (!spec->isExplicitInstantiationOrSpecialization()) return true; // This is the 'member thereof' check. if (spec->isExplicitSpecialization() && hasExplicitVisibilityAlready(computation)) return false; return !hasDirectVisibilityAttribute(spec, computation); } /// Merge in template-related linkage and visibility for the given /// class template specialization. static void mergeTemplateLV(LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, LVComputationKind computation) { bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); // Merge information from the template parameters, but ignore // visibility if we're only considering template arguments. ClassTemplateDecl *temp = spec->getSpecializedTemplate(); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility && !hasExplicitVisibilityAlready(computation)); // Merge information from the template arguments. We ignore // template-argument visibility if we've got an explicit // instantiation with a visibility attribute. const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); if (considerVisibility) LV.mergeVisibility(argsLV); LV.mergeExternalVisibility(argsLV); } static bool useInlineVisibilityHidden(const NamedDecl *D) { // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. const LangOptions &Opts = D->getASTContext().getLangOpts(); if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) return false; const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); if (!FD) return false; TemplateSpecializationKind TSK = TSK_Undeclared; if (FunctionTemplateSpecializationInfo *spec = FD->getTemplateSpecializationInfo()) { TSK = spec->getTemplateSpecializationKind(); } else if (MemberSpecializationInfo *MSI = FD->getMemberSpecializationInfo()) { TSK = MSI->getTemplateSpecializationKind(); } const FunctionDecl *Def = 0; // InlineVisibilityHidden only applies to definitions, and // isInlined() only gives meaningful answers on definitions // anyway. return TSK != TSK_ExplicitInstantiationDeclaration && TSK != TSK_ExplicitInstantiationDefinition && FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); } template <typename T> static bool isFirstInExternCContext(T *D) { const T *First = D->getFirstDeclaration(); return First->isInExternCContext(); } static bool isSingleLineExternC(const Decl &D) { if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) if (SD->getLanguage() == LinkageSpecDecl::lang_c && !SD->hasBraces()) return true; return false; } static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D, LVComputationKind computation) { assert(D->getDeclContext()->getRedeclContext()->isFileContext() && "Not a name having namespace scope"); ASTContext &Context = D->getASTContext(); // C++ [basic.link]p3: // A name having namespace scope (3.3.6) has internal linkage if it // is the name of // - an object, reference, function or function template that is // explicitly declared static; or, // (This bullet corresponds to C99 6.2.2p3.) if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { // Explicitly declared static. if (Var->getStorageClass() == SC_Static) return LinkageInfo::internal(); // - a non-volatile object or reference that is explicitly declared const // or constexpr and neither explicitly declared extern nor previously // declared to have external linkage; or (there is no equivalent in C99) if (Context.getLangOpts().CPlusPlus && Var->getType().isConstQualified() && !Var->getType().isVolatileQualified()) { const VarDecl *PrevVar = Var->getPreviousDecl(); if (PrevVar) return getLVForDecl(PrevVar, computation); if (Var->getStorageClass() != SC_Extern && Var->getStorageClass() != SC_PrivateExtern && !isSingleLineExternC(*Var)) return LinkageInfo::internal(); } for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; PrevVar = PrevVar->getPreviousDecl()) { if (PrevVar->getStorageClass() == SC_PrivateExtern && Var->getStorageClass() == SC_None) return PrevVar->getLinkageAndVisibility(); // Explicitly declared static. if (PrevVar->getStorageClass() == SC_Static) return LinkageInfo::internal(); } } else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) { // C++ [temp]p4: // A non-member function template can have internal linkage; any // other template name shall have external linkage. const FunctionDecl *Function = 0; if (const FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) Function = FunTmpl->getTemplatedDecl(); else Function = cast<FunctionDecl>(D); // Explicitly declared static. if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) return LinkageInfo(InternalLinkage, DefaultVisibility, false); } else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) { // - a data member of an anonymous union. if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()) return LinkageInfo::internal(); } if (D->isInAnonymousNamespace()) { const VarDecl *Var = dyn_cast<VarDecl>(D); const FunctionDecl *Func = dyn_cast<FunctionDecl>(D); if ((!Var || !isFirstInExternCContext(Var)) && (!Func || !isFirstInExternCContext(Func))) return LinkageInfo::uniqueExternal(); } // Set up the defaults. // C99 6.2.2p5: // If the declaration of an identifier for an object has file // scope and no storage-class specifier, its linkage is // external. LinkageInfo LV; if (!hasExplicitVisibilityAlready(computation)) { if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { LV.mergeVisibility(*Vis, true); } else { // If we're declared in a namespace with a visibility attribute, // use that namespace's visibility, and it still counts as explicit. for (const DeclContext *DC = D->getDeclContext(); !isa<TranslationUnitDecl>(DC); DC = DC->getParent()) { const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC); if (!ND) continue; if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { LV.mergeVisibility(*Vis, true); break; } } } // Add in global settings if the above didn't give us direct visibility. if (!LV.isVisibilityExplicit()) { // Use global type/value visibility as appropriate. Visibility globalVisibility; if (computation == LVForValue) { globalVisibility = Context.getLangOpts().getValueVisibilityMode(); } else { assert(computation == LVForType); globalVisibility = Context.getLangOpts().getTypeVisibilityMode(); } LV.mergeVisibility(globalVisibility, /*explicit*/ false); // If we're paying attention to global visibility, apply // -finline-visibility-hidden if this is an inline method. if (useInlineVisibilityHidden(D)) LV.mergeVisibility(HiddenVisibility, true); } } // C++ [basic.link]p4: // A name having namespace scope has external linkage if it is the // name of // // - an object or reference, unless it has internal linkage; or if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { // GCC applies the following optimization to variables and static // data members, but not to functions: // // Modify the variable's LV by the LV of its type unless this is // C or extern "C". This follows from [basic.link]p9: // A type without linkage shall not be used as the type of a // variable or function with external linkage unless // - the entity has C language linkage, or // - the entity is declared within an unnamed namespace, or // - the entity is not used or is defined in the same // translation unit. // and [basic.link]p10: // ...the types specified by all declarations referring to a // given variable or function shall be identical... // C does not have an equivalent rule. // // Ignore this if we've got an explicit attribute; the user // probably knows what they're doing. // // Note that we don't want to make the variable non-external // because of this, but unique-external linkage suits us. if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) { LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); if (TypeLV.getLinkage() != ExternalLinkage) return LinkageInfo::uniqueExternal(); if (!LV.isVisibilityExplicit()) LV.mergeVisibility(TypeLV); } if (Var->getStorageClass() == SC_PrivateExtern) LV.mergeVisibility(HiddenVisibility, true); // Note that Sema::MergeVarDecl already takes care of implementing // C99 6.2.2p4 and propagating the visibility attribute, so we don't have // to do it here. // - a function, unless it has internal linkage; or } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { // In theory, we can modify the function's LV by the LV of its // type unless it has C linkage (see comment above about variables // for justification). In practice, GCC doesn't do this, so it's // just too painful to make work. if (Function->getStorageClass() == SC_PrivateExtern) LV.mergeVisibility(HiddenVisibility, true); // Note that Sema::MergeCompatibleFunctionDecls already takes care of // merging storage classes and visibility attributes, so we don't have to // look at previous decls in here. // In C++, then if the type of the function uses a type with // unique-external linkage, it's not legally usable from outside // this translation unit. However, we should use the C linkage // rules instead for extern "C" declarations. if (Context.getLangOpts().CPlusPlus && !Function->isInExternCContext()) { // Only look at the type-as-written. If this function has an auto-deduced // return type, we can't compute the linkage of that type because it could // require looking at the linkage of this function, and we don't need this // for correctness because the type is not part of the function's // signature. // FIXME: This is a hack. We should be able to solve this circularity some // other way. QualType TypeAsWritten = Function->getType(); if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) TypeAsWritten = TSI->getType(); if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) return LinkageInfo::uniqueExternal(); } // Consider LV from the template and the template arguments. // We're at file scope, so we do not need to worry about nested // specializations. if (FunctionTemplateSpecializationInfo *specInfo = Function->getTemplateSpecializationInfo()) { mergeTemplateLV(LV, Function, specInfo, computation); } // - a named class (Clause 9), or an unnamed class defined in a // typedef declaration in which the class has the typedef name // for linkage purposes (7.1.3); or // - a named enumeration (7.2), or an unnamed enumeration // defined in a typedef declaration in which the enumeration // has the typedef name for linkage purposes (7.1.3); or } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) { // Unnamed tags have no linkage. if (!Tag->hasNameForLinkage()) return LinkageInfo::none(); // If this is a class template specialization, consider the // linkage of the template and template arguments. We're at file // scope, so we do not need to worry about nested specializations. if (const ClassTemplateSpecializationDecl *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { mergeTemplateLV(LV, spec, computation); } // - an enumerator belonging to an enumeration with external linkage; } else if (isa<EnumConstantDecl>(D)) { LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), computation); if (!isExternalFormalLinkage(EnumLV.getLinkage())) return LinkageInfo::none(); LV.merge(EnumLV); // - a template, unless it is a function template that has // internal linkage (Clause 14); } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) { bool considerVisibility = !hasExplicitVisibilityAlready(computation); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility); // - a namespace (7.3), unless it is declared within an unnamed // namespace. } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) { return LV; // By extension, we assign external linkage to Objective-C // interfaces. } else if (isa<ObjCInterfaceDecl>(D)) { // fallout // Everything not covered here has no linkage. } else { return LinkageInfo::none(); } // If we ended up with non-external linkage, visibility should // always be default. if (LV.getLinkage() != ExternalLinkage) return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); return LV; } static LinkageInfo getLVForClassMember(const NamedDecl *D, LVComputationKind computation) { // Only certain class members have linkage. Note that fields don't // really have linkage, but it's convenient to say they do for the // purposes of calculating linkage of pointer-to-data-member // template arguments. if (!(isa<CXXMethodDecl>(D) || isa<VarDecl>(D) || isa<FieldDecl>(D) || isa<TagDecl>(D))) return LinkageInfo::none(); LinkageInfo LV; // If we have an explicit visibility attribute, merge that in. if (!hasExplicitVisibilityAlready(computation)) { if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) LV.mergeVisibility(*Vis, true); // If we're paying attention to global visibility, apply // -finline-visibility-hidden if this is an inline method. // // Note that we do this before merging information about // the class visibility. if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) LV.mergeVisibility(HiddenVisibility, true); } // If this class member has an explicit visibility attribute, the only // thing that can change its visibility is the template arguments, so // only look for them when processing the class. LVComputationKind classComputation = computation; if (LV.isVisibilityExplicit()) classComputation = withExplicitVisibilityAlready(computation); LinkageInfo classLV = getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); // If the class already has unique-external linkage, we can't improve. if (classLV.getLinkage() == UniqueExternalLinkage) return LinkageInfo::uniqueExternal(); if (!isExternallyVisible(classLV.getLinkage())) return LinkageInfo::none(); // Otherwise, don't merge in classLV yet, because in certain cases // we need to completely ignore the visibility from it. // Specifically, if this decl exists and has an explicit attribute. const NamedDecl *explicitSpecSuppressor = 0; if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { // If the type of the function uses a type with unique-external // linkage, it's not legally usable from outside this translation unit. if (MD->getType()->getLinkage() == UniqueExternalLinkage) return LinkageInfo::uniqueExternal(); // If this is a method template specialization, use the linkage for // the template parameters and arguments. if (FunctionTemplateSpecializationInfo *spec = MD->getTemplateSpecializationInfo()) { mergeTemplateLV(LV, MD, spec, computation); if (spec->isExplicitSpecialization()) { explicitSpecSuppressor = MD; } else if (isExplicitMemberSpecialization(spec->getTemplate())) { explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); } } else if (isExplicitMemberSpecialization(MD)) { explicitSpecSuppressor = MD; } } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { if (const ClassTemplateSpecializationDecl *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { mergeTemplateLV(LV, spec, computation); if (spec->isExplicitSpecialization()) { explicitSpecSuppressor = spec; } else { const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); if (isExplicitMemberSpecialization(temp)) { explicitSpecSuppressor = temp->getTemplatedDecl(); } } } else if (isExplicitMemberSpecialization(RD)) { explicitSpecSuppressor = RD; } // Static data members. } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { // Modify the variable's linkage by its type, but ignore the // type's visibility unless it's a definition. LinkageInfo typeLV = getLVForType(*VD->getType(), computation); if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) LV.mergeVisibility(typeLV); LV.mergeExternalVisibility(typeLV); if (isExplicitMemberSpecialization(VD)) { explicitSpecSuppressor = VD; } // Template members. } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) { bool considerVisibility = (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit() && !hasExplicitVisibilityAlready(computation)); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility); if (const RedeclarableTemplateDecl *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { if (isExplicitMemberSpecialization(redeclTemp)) { explicitSpecSuppressor = temp->getTemplatedDecl(); } } } // We should never be looking for an attribute directly on a template. assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); // If this member is an explicit member specialization, and it has // an explicit attribute, ignore visibility from the parent. bool considerClassVisibility = true; if (explicitSpecSuppressor && // optimization: hasDVA() is true only with explicit visibility. LV.isVisibilityExplicit() && classLV.getVisibility() != DefaultVisibility && hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { considerClassVisibility = false; } // Finally, merge in information from the class. LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); return LV; } void NamedDecl::anchor() { } static LinkageInfo computeLVForDecl(const NamedDecl *D, LVComputationKind computation); bool NamedDecl::isLinkageValid() const { if (!hasCachedLinkage()) return true; return computeLVForDecl(this, LVForLinkageOnly).getLinkage() == getCachedLinkage(); } Linkage NamedDecl::getLinkageInternal() const { // We don't care about visibility here, so ask for the cheapest // possible visibility analysis. return getLVForDecl(this, LVForLinkageOnly).getLinkage(); } LinkageInfo NamedDecl::getLinkageAndVisibility() const { LVComputationKind computation = (usesTypeVisibility(this) ? LVForType : LVForValue); return getLVForDecl(this, computation); } Optional<Visibility> NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { // Check the declaration itself first. if (Optional<Visibility> V = getVisibilityOf(this, kind)) return V; // If this is a member class of a specialization of a class template // and the corresponding decl has explicit visibility, use that. if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(this)) { CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); if (InstantiatedFrom) return getVisibilityOf(InstantiatedFrom, kind); } // If there wasn't explicit visibility there, and this is a // specialization of a class template, check for visibility // on the pattern. if (const ClassTemplateSpecializationDecl *spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(), kind); // Use the most recent declaration. const NamedDecl *MostRecent = cast<NamedDecl>(this->getMostRecentDecl()); if (MostRecent != this) return MostRecent->getExplicitVisibility(kind); if (const VarDecl *Var = dyn_cast<VarDecl>(this)) { if (Var->isStaticDataMember()) { VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); if (InstantiatedFrom) return getVisibilityOf(InstantiatedFrom, kind); } return None; } // Also handle function template specializations. if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) { // If the function is a specialization of a template with an // explicit visibility attribute, use that. if (FunctionTemplateSpecializationInfo *templateInfo = fn->getTemplateSpecializationInfo()) return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), kind); // If the function is a member of a specialization of a class template // and the corresponding decl has explicit visibility, use that. FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); if (InstantiatedFrom) return getVisibilityOf(InstantiatedFrom, kind); return None; } // The visibility of a template is stored in the templated decl. if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(this)) return getVisibilityOf(TD->getTemplatedDecl(), kind); return None; } static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl, LVComputationKind computation) { // This lambda has its linkage/visibility determined by its owner. if (ContextDecl) { if (isa<ParmVarDecl>(ContextDecl)) DC = ContextDecl->getDeclContext()->getRedeclContext(); else return getLVForDecl(cast<NamedDecl>(ContextDecl), computation); } if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC)) return getLVForDecl(ND, computation); return LinkageInfo::external(); } static LinkageInfo getLVForLocalDecl(const NamedDecl *D, LVComputationKind computation) { if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { if (Function->isInAnonymousNamespace() && !Function->isInExternCContext()) return LinkageInfo::uniqueExternal(); // This is a "void f();" which got merged with a file static. if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) return LinkageInfo::internal(); LinkageInfo LV; if (!hasExplicitVisibilityAlready(computation)) { if (Optional<Visibility> Vis = getExplicitVisibility(Function, computation)) LV.mergeVisibility(*Vis, true); } // Note that Sema::MergeCompatibleFunctionDecls already takes care of // merging storage classes and visibility attributes, so we don't have to // look at previous decls in here. return LV; } if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { if (Var->hasExternalStorage()) { if (Var->isInAnonymousNamespace() && !Var->isInExternCContext()) return LinkageInfo::uniqueExternal(); LinkageInfo LV; if (Var->getStorageClass() == SC_PrivateExtern) LV.mergeVisibility(HiddenVisibility, true); else if (!hasExplicitVisibilityAlready(computation)) { if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) LV.mergeVisibility(*Vis, true); } if (const VarDecl *Prev = Var->getPreviousDecl()) { LinkageInfo PrevLV = getLVForDecl(Prev, computation); if (PrevLV.getLinkage()) LV.setLinkage(PrevLV.getLinkage()); LV.mergeVisibility(PrevLV); } return LV; } if (!Var->isStaticLocal()) return LinkageInfo::none(); } ASTContext &Context = D->getASTContext(); if (!Context.getLangOpts().CPlusPlus) return LinkageInfo::none(); const Decl *OuterD = getOutermostFuncOrBlockContext(D); if (!OuterD) return LinkageInfo::none(); LinkageInfo LV; if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) { if (!BD->getBlockManglingNumber()) return LinkageInfo::none(); LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), BD->getBlockManglingContextDecl(), computation); } else { const FunctionDecl *FD = cast<FunctionDecl>(OuterD); if (!FD->isInlined() && FD->getTemplateSpecializationKind() == TSK_Undeclared) return LinkageInfo::none(); LV = getLVForDecl(FD, computation); } if (!isExternallyVisible(LV.getLinkage())) return LinkageInfo::none(); return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), LV.isVisibilityExplicit()); } static LinkageInfo computeLVForDecl(const NamedDecl *D, LVComputationKind computation) { // Objective-C: treat all Objective-C declarations as having external // linkage. switch (D->getKind()) { default: break; case Decl::ParmVar: return LinkageInfo::none(); case Decl::TemplateTemplateParm: // count these as external case Decl::NonTypeTemplateParm: case Decl::ObjCAtDefsField: case Decl::ObjCCategory: case Decl::ObjCCategoryImpl: case Decl::ObjCCompatibleAlias: case Decl::ObjCImplementation: case Decl::ObjCMethod: case Decl::ObjCProperty: case Decl::ObjCPropertyImpl: case Decl::ObjCProtocol: return LinkageInfo::external(); case Decl::CXXRecord: { const CXXRecordDecl *Record = cast<CXXRecordDecl>(D); if (Record->isLambda()) { if (!Record->getLambdaManglingNumber()) { // This lambda has no mangling number, so it's internal. return LinkageInfo::internal(); } // This lambda has its linkage/visibility determined by its owner. return getLVForClosure(D->getDeclContext()->getRedeclContext(), Record->getLambdaContextDecl(), computation); } break; } } // Handle linkage for namespace-scope names. if (D->getDeclContext()->getRedeclContext()->isFileContext()) return getLVForNamespaceScopeDecl(D, computation); // C++ [basic.link]p5: // In addition, a member function, static data member, a named // class or enumeration of class scope, or an unnamed class or // enumeration defined in a class-scope typedef declaration such // that the class or enumeration has the typedef name for linkage // purposes (7.1.3), has external linkage if the name of the class // has external linkage. if (D->getDeclContext()->isRecord()) return getLVForClassMember(D, computation); // C++ [basic.link]p6: // The name of a function declared in block scope and the name of // an object declared by a block scope extern declaration have // linkage. If there is a visible declaration of an entity with // linkage having the same name and type, ignoring entities // declared outside the innermost enclosing namespace scope, the // block scope declaration declares that same entity and receives // the linkage of the previous declaration. If there is more than // one such matching entity, the program is ill-formed. Otherwise, // if no matching entity is found, the block scope entity receives // external linkage. if (D->getDeclContext()->isFunctionOrMethod()) return getLVForLocalDecl(D, computation); // C++ [basic.link]p6: // Names not covered by these rules have no linkage. return LinkageInfo::none(); } namespace clang { class LinkageComputer { public: static LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation) { if (computation == LVForLinkageOnly && D->hasCachedLinkage()) return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); LinkageInfo LV = computeLVForDecl(D, computation); if (D->hasCachedLinkage()) assert(D->getCachedLinkage() == LV.getLinkage()); D->setCachedLinkage(LV.getLinkage()); #ifndef NDEBUG // In C (because of gnu inline) and in c++ with microsoft extensions an // static can follow an extern, so we can have two decls with different // linkages. const LangOptions &Opts = D->getASTContext().getLangOpts(); if (!Opts.CPlusPlus || Opts.MicrosoftExt) return LV; // We have just computed the linkage for this decl. By induction we know // that all other computed linkages match, check that the one we just // computed // also does. NamedDecl *Old = NULL; for (NamedDecl::redecl_iterator I = D->redecls_begin(), E = D->redecls_end(); I != E; ++I) { NamedDecl *T = cast<NamedDecl>(*I); if (T == D) continue; if (T->hasCachedLinkage()) { Old = T; break; } } assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); #endif return LV; } }; } static LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation) { return clang::LinkageComputer::getLVForDecl(D, computation); } std::string NamedDecl::getQualifiedNameAsString() const { return getQualifiedNameAsString(getASTContext().getPrintingPolicy()); } std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const { std::string QualName; llvm::raw_string_ostream OS(QualName); printQualifiedName(OS, P); return OS.str(); } void NamedDecl::printQualifiedName(raw_ostream &OS) const { printQualifiedName(OS, getASTContext().getPrintingPolicy()); } void NamedDecl::printQualifiedName(raw_ostream &OS, const PrintingPolicy &P) const { const DeclContext *Ctx = getDeclContext(); if (Ctx->isFunctionOrMethod()) { printName(OS); return; } typedef SmallVector<const DeclContext *, 8> ContextsTy; ContextsTy Contexts; // Collect contexts. while (Ctx && isa<NamedDecl>(Ctx)) { Contexts.push_back(Ctx); Ctx = Ctx->getParent(); } for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend(); I != E; ++I) { if (const ClassTemplateSpecializationDecl *Spec = dyn_cast<ClassTemplateSpecializationDecl>(*I)) { OS << Spec->getName(); const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); TemplateSpecializationType::PrintTemplateArgumentList(OS, TemplateArgs.data(), TemplateArgs.size(), P); } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) { if (ND->isAnonymousNamespace()) OS << "<anonymous namespace>"; else OS << *ND; } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) { if (!RD->getIdentifier()) OS << "<anonymous " << RD->getKindName() << '>'; else OS << *RD; } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { const FunctionProtoType *FT = 0; if (FD->hasWrittenPrototype()) FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); OS << *FD << '('; if (FT) { unsigned NumParams = FD->getNumParams(); for (unsigned i = 0; i < NumParams; ++i) { if (i) OS << ", "; OS << FD->getParamDecl(i)->getType().stream(P); } if (FT->isVariadic()) { if (NumParams > 0) OS << ", "; OS << "..."; } } OS << ')'; } else { OS << *cast<NamedDecl>(*I); } OS << "::"; } if (getDeclName()) OS << *this; else OS << "<anonymous>"; } void NamedDecl::getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { if (Qualified) printQualifiedName(OS, Policy); else printName(OS); } bool NamedDecl::declarationReplaces(NamedDecl *OldD) const { assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); // UsingDirectiveDecl's are not really NamedDecl's, and all have same name. // We want to keep it, unless it nominates same namespace. if (getKind() == Decl::UsingDirective) { return cast<UsingDirectiveDecl>(this)->getNominatedNamespace() ->getOriginalNamespace() == cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace() ->getOriginalNamespace(); } if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this)) // For function declarations, we keep track of redeclarations. return FD->getPreviousDecl() == OldD; // For function templates, the underlying function declarations are linked. if (const FunctionTemplateDecl *FunctionTemplate = dyn_cast<FunctionTemplateDecl>(this)) if (const FunctionTemplateDecl *OldFunctionTemplate = dyn_cast<FunctionTemplateDecl>(OldD)) return FunctionTemplate->getTemplatedDecl() ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl()); // For method declarations, we keep track of redeclarations. if (isa<ObjCMethodDecl>(this)) return false; if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD)) return true; if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD)) return cast<UsingShadowDecl>(this)->getTargetDecl() == cast<UsingShadowDecl>(OldD)->getTargetDecl(); if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) { ASTContext &Context = getASTContext(); return Context.getCanonicalNestedNameSpecifier( cast<UsingDecl>(this)->getQualifier()) == Context.getCanonicalNestedNameSpecifier( cast<UsingDecl>(OldD)->getQualifier()); } // A typedef of an Objective-C class type can replace an Objective-C class // declaration or definition, and vice versa. if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) || (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD))) return true; // For non-function declarations, if the declarations are of the // same kind then this must be a redeclaration, or semantic analysis // would not have given us the new declaration. return this->getKind() == OldD->getKind(); } bool NamedDecl::hasLinkage() const { return getFormalLinkage() != NoLinkage; } NamedDecl *NamedDecl::getUnderlyingDeclImpl() { NamedDecl *ND = this; while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND)) ND = UD->getTargetDecl(); if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) return AD->getClassInterface(); return ND; } bool NamedDecl::isCXXInstanceMember() const { if (!isCXXClassMember()) return false; const NamedDecl *D = this; if (isa<UsingShadowDecl>(D)) D = cast<UsingShadowDecl>(D)->getTargetDecl(); if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) return true; if (isa<CXXMethodDecl>(D)) return cast<CXXMethodDecl>(D)->isInstance(); if (isa<FunctionTemplateDecl>(D)) return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D) ->getTemplatedDecl())->isInstance(); return false; } //===----------------------------------------------------------------------===// // DeclaratorDecl Implementation //===----------------------------------------------------------------------===// template <typename DeclT> static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { if (decl->getNumTemplateParameterLists() > 0) return decl->getTemplateParameterList(0)->getTemplateLoc(); else return decl->getInnerLocStart(); } SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { TypeSourceInfo *TSI = getTypeSourceInfo(); if (TSI) return TSI->getTypeLoc().getBeginLoc(); return SourceLocation(); } void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { if (QualifierLoc) { // Make sure the extended decl info is allocated. if (!hasExtInfo()) { // Save (non-extended) type source info pointer. TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); // Allocate external info struct. DeclInfo = new (getASTContext()) ExtInfo; // Restore savedTInfo into (extended) decl info. getExtInfo()->TInfo = savedTInfo; } // Set qualifier info. getExtInfo()->QualifierLoc = QualifierLoc; } else { // Here Qualifier == 0, i.e., we are removing the qualifier (if any). if (hasExtInfo()) { if (getExtInfo()->NumTemplParamLists == 0) { // Save type source info pointer. TypeSourceInfo *savedTInfo = getExtInfo()->TInfo; // Deallocate the extended decl info. getASTContext().Deallocate(getExtInfo()); // Restore savedTInfo into (non-extended) decl info. DeclInfo = savedTInfo; } else getExtInfo()->QualifierLoc = QualifierLoc; } } } void DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists, TemplateParameterList **TPLists) { assert(NumTPLists > 0); // Make sure the extended decl info is allocated. if (!hasExtInfo()) { // Save (non-extended) type source info pointer. TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); // Allocate external info struct. DeclInfo = new (getASTContext()) ExtInfo; // Restore savedTInfo into (extended) decl info. getExtInfo()->TInfo = savedTInfo; } // Set the template parameter lists info. getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists); } SourceLocation DeclaratorDecl::getOuterLocStart() const { return getTemplateOrInnerLocStart(this); } namespace { // Helper function: returns true if QT is or contains a type // having a postfix component. bool typeIsPostfix(clang::QualType QT) { while (true) { const Type* T = QT.getTypePtr(); switch (T->getTypeClass()) { default: return false; case Type::Pointer: QT = cast<PointerType>(T)->getPointeeType(); break; case Type::BlockPointer: QT = cast<BlockPointerType>(T)->getPointeeType(); break; case Type::MemberPointer: QT = cast<MemberPointerType>(T)->getPointeeType(); break; case Type::LValueReference: case Type::RValueReference: QT = cast<ReferenceType>(T)->getPointeeType(); break; case Type::PackExpansion: QT = cast<PackExpansionType>(T)->getPattern(); break; case Type::Paren: case Type::ConstantArray: case Type::DependentSizedArray: case Type::IncompleteArray: case Type::VariableArray: case Type::FunctionProto: case Type::FunctionNoProto: return true; } } } } // namespace SourceRange DeclaratorDecl::getSourceRange() const { SourceLocation RangeEnd = getLocation(); if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { if (typeIsPostfix(TInfo->getType())) RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); } return SourceRange(getOuterLocStart(), RangeEnd); } void QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists, TemplateParameterList **TPLists) { assert((NumTPLists == 0 || TPLists != 0) && "Empty array of template parameters with positive size!"); // Free previous template parameters (if any). if (NumTemplParamLists > 0) { Context.Deallocate(TemplParamLists); TemplParamLists = 0; NumTemplParamLists = 0; } // Set info on matched template parameter lists (if any). if (NumTPLists > 0) { TemplParamLists = new (Context) TemplateParameterList*[NumTPLists]; NumTemplParamLists = NumTPLists; for (unsigned i = NumTPLists; i-- > 0; ) TemplParamLists[i] = TPLists[i]; } } //===----------------------------------------------------------------------===// // VarDecl Implementation //===----------------------------------------------------------------------===// const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { switch (SC) { case SC_None: break; case SC_Auto: return "auto"; case SC_Extern: return "extern"; case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>"; case SC_PrivateExtern: return "__private_extern__"; case SC_Register: return "register"; case SC_Static: return "static"; } llvm_unreachable("Invalid storage class"); } VarDecl::VarDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass SC) : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), Init() { assert(sizeof(VarDeclBitfields) <= sizeof(unsigned)); assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned)); AllBits = 0; VarDeclBits.SClass = SC; // Everything else is implicitly initialized to false. } VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL, SourceLocation IdL, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S) { return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S); } VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl)); return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0, QualType(), 0, SC_None); } void VarDecl::setStorageClass(StorageClass SC) { assert(isLegalForVariable(SC)); VarDeclBits.SClass = SC; } SourceRange VarDecl::getSourceRange() const { if (const Expr *Init = getInit()) { SourceLocation InitEnd = Init->getLocEnd(); // If Init is implicit, ignore its source range and fallback on // DeclaratorDecl::getSourceRange() to handle postfix elements. if (InitEnd.isValid() && InitEnd != getLocation()) return SourceRange(getOuterLocStart(), InitEnd); } return DeclaratorDecl::getSourceRange(); } template<typename T> static LanguageLinkage getLanguageLinkageTemplate(const T &D) { // C++ [dcl.link]p1: All function types, function names with external linkage, // and variable names with external linkage have a language linkage. if (!D.hasExternalFormalLinkage()) return NoLanguageLinkage; // Language linkage is a C++ concept, but saying that everything else in C has // C language linkage fits the implementation nicely. ASTContext &Context = D.getASTContext(); if (!Context.getLangOpts().CPlusPlus) return CLanguageLinkage; // C++ [dcl.link]p4: A C language linkage is ignored in determining the // language linkage of the names of class members and the function type of // class member functions. const DeclContext *DC = D.getDeclContext(); if (DC->isRecord()) return CXXLanguageLinkage; // If the first decl is in an extern "C" context, any other redeclaration // will have C language linkage. If the first one is not in an extern "C" // context, we would have reported an error for any other decl being in one. if (isFirstInExternCContext(&D)) return CLanguageLinkage; return CXXLanguageLinkage; } template<typename T> static bool isExternCTemplate(const T &D) { // Since the context is ignored for class members, they can only have C++ // language linkage or no language linkage. const DeclContext *DC = D.getDeclContext(); if (DC->isRecord()) { assert(D.getASTContext().getLangOpts().CPlusPlus); return false; } return D.getLanguageLinkage() == CLanguageLinkage; } LanguageLinkage VarDecl::getLanguageLinkage() const { return getLanguageLinkageTemplate(*this); } bool VarDecl::isExternC() const { return isExternCTemplate(*this); } static bool isLinkageSpecContext(const DeclContext *DC, LinkageSpecDecl::LanguageIDs ID) { while (DC->getDeclKind() != Decl::TranslationUnit) { if (DC->getDeclKind() == Decl::LinkageSpec) return cast<LinkageSpecDecl>(DC)->getLanguage() == ID; DC = DC->getParent(); } return false; } template <typename T> static bool isInLanguageSpecContext(T *D, LinkageSpecDecl::LanguageIDs ID) { return isLinkageSpecContext(D->getLexicalDeclContext(), ID); } bool VarDecl::isInExternCContext() const { return isInLanguageSpecContext(this, LinkageSpecDecl::lang_c); } bool VarDecl::isInExternCXXContext() const { return isInLanguageSpecContext(this, LinkageSpecDecl::lang_cxx); } VarDecl *VarDecl::getCanonicalDecl() { return getFirstDeclaration(); } VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition( ASTContext &C) const { // C++ [basic.def]p2: // A declaration is a definition unless [...] it contains the 'extern' // specifier or a linkage-specification and neither an initializer [...], // it declares a static data member in a class declaration [...]. // C++ [temp.expl.spec]p15: // An explicit specialization of a static data member of a template is a // definition if the declaration includes an initializer; otherwise, it is // a declaration. if (isStaticDataMember()) { if (isOutOfLine() && (hasInit() || getTemplateSpecializationKind() != TSK_ExplicitSpecialization)) return Definition; else return DeclarationOnly; } // C99 6.7p5: // A definition of an identifier is a declaration for that identifier that // [...] causes storage to be reserved for that object. // Note: that applies for all non-file-scope objects. // C99 6.9.2p1: // If the declaration of an identifier for an object has file scope and an // initializer, the declaration is an external definition for the identifier if (hasInit()) return Definition; if (hasExternalStorage()) return DeclarationOnly; // [dcl.link] p7: // A declaration directly contained in a linkage-specification is treated // as if it contains the extern specifier for the purpose of determining // the linkage of the declared name and whether it is a definition. if (isSingleLineExternC(*this)) return DeclarationOnly; // C99 6.9.2p2: // A declaration of an object that has file scope without an initializer, // and without a storage class specifier or the scs 'static', constitutes // a tentative definition. // No such thing in C++. if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) return TentativeDefinition; // What's left is (in C, block-scope) declarations without initializers or // external storage. These are definitions. return Definition; } VarDecl *VarDecl::getActingDefinition() { DefinitionKind Kind = isThisDeclarationADefinition(); if (Kind != TentativeDefinition) return 0; VarDecl *LastTentative = 0; VarDecl *First = getFirstDeclaration(); for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end(); I != E; ++I) { Kind = (*I)->isThisDeclarationADefinition(); if (Kind == Definition) return 0; else if (Kind == TentativeDefinition) LastTentative = *I; } return LastTentative; } VarDecl *VarDecl::getDefinition(ASTContext &C) { VarDecl *First = getFirstDeclaration(); for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end(); I != E; ++I) { if ((*I)->isThisDeclarationADefinition(C) == Definition) return *I; } return 0; } VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { DefinitionKind Kind = DeclarationOnly; const VarDecl *First = getFirstDeclaration(); for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end(); I != E; ++I) { Kind = std::max(Kind, (*I)->isThisDeclarationADefinition(C)); if (Kind == Definition) break; } return Kind; } const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { redecl_iterator I = redecls_begin(), E = redecls_end(); while (I != E && !I->getInit()) ++I; if (I != E) { D = *I; return I->getInit(); } return 0; } bool VarDecl::isOutOfLine() const { if (Decl::isOutOfLine()) return true; if (!isStaticDataMember()) return false; // If this static data member was instantiated from a static data member of // a class template, check whether that static data member was defined // out-of-line. if (VarDecl *VD = getInstantiatedFromStaticDataMember()) return VD->isOutOfLine(); return false; } VarDecl *VarDecl::getOutOfLineDefinition() { if (!isStaticDataMember()) return 0; for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end(); RD != RDEnd; ++RD) { if (RD->getLexicalDeclContext()->isFileContext()) return *RD; } return 0; } void VarDecl::setInit(Expr *I) { if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) { Eval->~EvaluatedStmt(); getASTContext().Deallocate(Eval); } Init = I; } bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const { const LangOptions &Lang = C.getLangOpts(); if (!Lang.CPlusPlus) return false; // In C++11, any variable of reference type can be used in a constant // expression if it is initialized by a constant expression. if (Lang.CPlusPlus11 && getType()->isReferenceType()) return true; // Only const objects can be used in constant expressions in C++. C++98 does // not require the variable to be non-volatile, but we consider this to be a // defect. if (!getType().isConstQualified() || getType().isVolatileQualified()) return false; // In C++, const, non-volatile variables of integral or enumeration types // can be used in constant expressions. if (getType()->isIntegralOrEnumerationType()) return true; // Additionally, in C++11, non-volatile constexpr variables can be used in // constant expressions. return Lang.CPlusPlus11 && isConstexpr(); } /// Convert the initializer for this declaration to the elaborated EvaluatedStmt /// form, which contains extra information on the evaluated value of the /// initializer. EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>(); if (!Eval) { Stmt *S = Init.get<Stmt *>(); // Note: EvaluatedStmt contains an APValue, which usually holds // resources not allocated from the ASTContext. We need to do some // work to avoid leaking those, but we do so in VarDecl::evaluateValue // where we can detect whether there's anything to clean up or not. Eval = new (getASTContext()) EvaluatedStmt; Eval->Value = S; Init = Eval; } return Eval; } APValue *VarDecl::evaluateValue() const { SmallVector<PartialDiagnosticAt, 8> Notes; return evaluateValue(Notes); } namespace { // Destroy an APValue that was allocated in an ASTContext. void DestroyAPValue(void* UntypedValue) { static_cast<APValue*>(UntypedValue)->~APValue(); } } // namespace APValue *VarDecl::evaluateValue( SmallVectorImpl<PartialDiagnosticAt> &Notes) const { EvaluatedStmt *Eval = ensureEvaluatedStmt(); // We only produce notes indicating why an initializer is non-constant the // first time it is evaluated. FIXME: The notes won't always be emitted the // first time we try evaluation, so might not be produced at all. if (Eval->WasEvaluated) return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated; const Expr *Init = cast<Expr>(Eval->Value); assert(!Init->isValueDependent()); if (Eval->IsEvaluating) { // FIXME: Produce a diagnostic for self-initialization. Eval->CheckedICE = true; Eval->IsICE = false; return 0; } Eval->IsEvaluating = true; bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), this, Notes); // Ensure the computed APValue is cleaned up later if evaluation succeeded, // or that it's empty (so that there's nothing to clean up) if evaluation // failed. if (!Result) Eval->Evaluated = APValue(); else if (Eval->Evaluated.needsCleanup()) getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated); Eval->IsEvaluating = false; Eval->WasEvaluated = true; // In C++11, we have determined whether the initializer was a constant // expression as a side-effect. if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { Eval->CheckedICE = true; Eval->IsICE = Result && Notes.empty(); } return Result ? &Eval->Evaluated : 0; } bool VarDecl::checkInitIsICE() const { // Initializers of weak variables are never ICEs. if (isWeak()) return false; EvaluatedStmt *Eval = ensureEvaluatedStmt(); if (Eval->CheckedICE) // We have already checked whether this subexpression is an // integral constant expression. return Eval->IsICE; const Expr *Init = cast<Expr>(Eval->Value); assert(!Init->isValueDependent()); // In C++11, evaluate the initializer to check whether it's a constant // expression. if (getASTContext().getLangOpts().CPlusPlus11) { SmallVector<PartialDiagnosticAt, 8> Notes; evaluateValue(Notes); return Eval->IsICE; } // It's an ICE whether or not the definition we found is // out-of-line. See DR 721 and the discussion in Clang PR // 6206 for details. if (Eval->CheckingICE) return false; Eval->CheckingICE = true; Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); Eval->CheckingICE = false; Eval->CheckedICE = true; return Eval->IsICE; } VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) return cast<VarDecl>(MSI->getInstantiatedFrom()); return 0; } TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { if (const VarTemplateSpecializationDecl *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) return Spec->getSpecializationKind(); if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) return MSI->getTemplateSpecializationKind(); return TSK_Undeclared; } VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { return getASTContext().getTemplateOrSpecializationInfo(this) .dyn_cast<VarTemplateDecl *>(); } void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { getASTContext().setTemplateOrSpecializationInfo(this, Template); } MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { if (isStaticDataMember()) // FIXME: Remove ? // return getASTContext().getInstantiatedFromStaticDataMember(this); return getASTContext().getTemplateOrSpecializationInfo(this) .dyn_cast<MemberSpecializationInfo *>(); return 0; } void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation) { if (VarTemplateSpecializationDecl *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) { Spec->setSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && Spec->getPointOfInstantiation().isInvalid()) Spec->setPointOfInstantiation(PointOfInstantiation); return; } if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { MSI->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && MSI->getPointOfInstantiation().isInvalid()) MSI->setPointOfInstantiation(PointOfInstantiation); return; } llvm_unreachable( "Not a variable or static data member template specialization"); } void VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, TemplateSpecializationKind TSK) { assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && "Previous template or instantiation?"); getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); } //===----------------------------------------------------------------------===// // ParmVarDecl Implementation //===----------------------------------------------------------------------===// ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg) { return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo, S, DefArg); } QualType ParmVarDecl::getOriginalType() const { TypeSourceInfo *TSI = getTypeSourceInfo(); QualType T = TSI ? TSI->getType() : getType(); if (const DecayedType *DT = dyn_cast<DecayedType>(T)) return DT->getOriginalType(); return T; } ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl)); return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(), 0, QualType(), 0, SC_None, 0); } SourceRange ParmVarDecl::getSourceRange() const { if (!hasInheritedDefaultArg()) { SourceRange ArgRange = getDefaultArgRange(); if (ArgRange.isValid()) return SourceRange(getOuterLocStart(), ArgRange.getEnd()); } // DeclaratorDecl considers the range of postfix types as overlapping with the // declaration name, but this is not the case with parameters in ObjC methods. if (isa<ObjCMethodDecl>(getDeclContext())) return SourceRange(DeclaratorDecl::getLocStart(), getLocation()); return DeclaratorDecl::getSourceRange(); } Expr *ParmVarDecl::getDefaultArg() { assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); assert(!hasUninstantiatedDefaultArg() && "Default argument is not yet instantiated!"); Expr *Arg = getInit(); if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg)) return E->getSubExpr(); return Arg; } SourceRange ParmVarDecl::getDefaultArgRange() const { if (const Expr *E = getInit()) return E->getSourceRange(); if (hasUninstantiatedDefaultArg()) return getUninstantiatedDefaultArg()->getSourceRange(); return SourceRange(); } bool ParmVarDecl::isParameterPack() const { return isa<PackExpansionType>(getType()); } void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { getASTContext().setParameterIndex(this, parameterIndex); ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; } unsigned ParmVarDecl::getParameterIndexLarge() const { return getASTContext().getParameterIndex(this); } //===----------------------------------------------------------------------===// // FunctionDecl Implementation //===----------------------------------------------------------------------===// void FunctionDecl::getNameForDiagnostic( raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); if (TemplateArgs) TemplateSpecializationType::PrintTemplateArgumentList( OS, TemplateArgs->data(), TemplateArgs->size(), Policy); } bool FunctionDecl::isVariadic() const { if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>()) return FT->isVariadic(); return false; } bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) { if (I->Body || I->IsLateTemplateParsed) { Definition = *I; return true; } } return false; } bool FunctionDecl::hasTrivialBody() const { Stmt *S = getBody(); if (!S) { // Since we don't have a body for this function, we don't know if it's // trivial or not. return false; } if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) return true; return false; } bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) { if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed) { Definition = I->IsDeleted ? I->getCanonicalDecl() : *I; return true; } } return false; } Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) { if (I->Body) { Definition = *I; return I->Body.get(getASTContext().getExternalSource()); } else if (I->IsLateTemplateParsed) { Definition = *I; return 0; } } return 0; } void FunctionDecl::setBody(Stmt *B) { Body = B; if (B) EndRangeLoc = B->getLocEnd(); } void FunctionDecl::setPure(bool P) { IsPure = P; if (P) if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) Parent->markedVirtualFunctionPure(); } template<std::size_t Len> static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { IdentifierInfo *II = ND->getIdentifier(); return II && II->isStr(Str); } bool FunctionDecl::isMain() const { const TranslationUnitDecl *tunit = dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); return tunit && !tunit->getASTContext().getLangOpts().Freestanding && isNamed(this, "main"); } bool FunctionDecl::isReservedGlobalPlacementOperator() const { assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); assert(getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); if (isa<CXXRecordDecl>(getDeclContext())) return false; assert(getDeclContext()->getRedeclContext()->isTranslationUnit()); const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>(); if (proto->getNumArgs() != 2 || proto->isVariadic()) return false; ASTContext &Context = cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) ->getASTContext(); // The result type and first argument type are constant across all // these operators. The second argument must be exactly void*. return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy); } static bool isNamespaceStd(const DeclContext *DC) { const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC->getRedeclContext()); return ND && isNamed(ND, "std") && ND->getParent()->getRedeclContext()->isTranslationUnit(); } bool FunctionDecl::isReplaceableGlobalAllocationFunction() const { if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) return false; if (getDeclName().getCXXOverloadedOperator() != OO_New && getDeclName().getCXXOverloadedOperator() != OO_Delete && getDeclName().getCXXOverloadedOperator() != OO_Array_New && getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) return false; if (isa<CXXRecordDecl>(getDeclContext())) return false; assert(getDeclContext()->getRedeclContext()->isTranslationUnit()); const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>(); if (FPT->getNumArgs() > 2 || FPT->isVariadic()) return false; // If this is a single-parameter function, it must be a replaceable global // allocation or deallocation function. if (FPT->getNumArgs() == 1) return true; // Otherwise, we're looking for a second parameter whose type is // 'const std::nothrow_t &'. QualType Ty = FPT->getArgType(1); if (!Ty->isReferenceType()) return false; Ty = Ty->getPointeeType(); if (Ty.getCVRQualifiers() != Qualifiers::Const) return false; // FIXME: Recognise nothrow_t in an inline namespace inside std? const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); return RD && isNamed(RD, "nothrow_t") && isNamespaceStd(RD->getDeclContext()); } LanguageLinkage FunctionDecl::getLanguageLinkage() const { // Users expect to be able to write // extern "C" void *__builtin_alloca (size_t); // so consider builtins as having C language linkage. if (getBuiltinID()) return CLanguageLinkage; return getLanguageLinkageTemplate(*this); } bool FunctionDecl::isExternC() const { return isExternCTemplate(*this); } bool FunctionDecl::isInExternCContext() const { return isInLanguageSpecContext(this, LinkageSpecDecl::lang_c); } bool FunctionDecl::isInExternCXXContext() const { return isInLanguageSpecContext(this, LinkageSpecDecl::lang_cxx); } bool FunctionDecl::isGlobal() const { if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this)) return Method->isStatic(); if (getCanonicalDecl()->getStorageClass() == SC_Static) return false; for (const DeclContext *DC = getDeclContext(); DC->isNamespace(); DC = DC->getParent()) { if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) { if (!Namespace->getDeclName()) return false; break; } } return true; } bool FunctionDecl::isNoReturn() const { return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || hasAttr<C11NoReturnAttr>() || getType()->getAs<FunctionType>()->getNoReturnAttr(); } void FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { redeclarable_base::setPreviousDeclaration(PrevDecl); if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { FunctionTemplateDecl *PrevFunTmpl = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0; assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); FunTmpl->setPreviousDeclaration(PrevFunTmpl); } if (PrevDecl && PrevDecl->IsInline) IsInline = true; } const FunctionDecl *FunctionDecl::getCanonicalDecl() const { return getFirstDeclaration(); } FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDeclaration(); } /// \brief Returns a value indicating whether this function /// corresponds to a builtin function. /// /// The function corresponds to a built-in function if it is /// declared at translation scope or within an extern "C" block and /// its name matches with the name of a builtin. The returned value /// will be 0 for functions that do not correspond to a builtin, a /// value of type \c Builtin::ID if in the target-independent range /// \c [1,Builtin::First), or a target-specific builtin value. unsigned FunctionDecl::getBuiltinID() const { if (!getIdentifier()) return 0; unsigned BuiltinID = getIdentifier()->getBuiltinID(); if (!BuiltinID) return 0; ASTContext &Context = getASTContext(); if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) return BuiltinID; // This function has the name of a known C library // function. Determine whether it actually refers to the C library // function or whether it just has the same name. // If this is a static function, it's not a builtin. if (getStorageClass() == SC_Static) return 0; // If this function is at translation-unit scope and we're not in // C++, it refers to the C library function. if (!Context.getLangOpts().CPlusPlus && getDeclContext()->isTranslationUnit()) return BuiltinID; // If the function is in an extern "C" linkage specification and is // not marked "overloadable", it's the real function. if (isa<LinkageSpecDecl>(getDeclContext()) && cast<LinkageSpecDecl>(getDeclContext())->getLanguage() == LinkageSpecDecl::lang_c && !getAttr<OverloadableAttr>()) return BuiltinID; // Not a builtin return 0; } /// getNumParams - Return the number of parameters this function must have /// based on its FunctionType. This is the length of the ParamInfo array /// after it has been created. unsigned FunctionDecl::getNumParams() const { const FunctionType *FT = getType()->castAs<FunctionType>(); if (isa<FunctionNoProtoType>(FT)) return 0; return cast<FunctionProtoType>(FT)->getNumArgs(); } void FunctionDecl::setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo) { assert(ParamInfo == 0 && "Already has param info!"); assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); // Zero params -> null pointer. if (!NewParamInfo.empty()) { ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); } } void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) { assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!"); if (!NewDecls.empty()) { NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()]; std::copy(NewDecls.begin(), NewDecls.end(), A); DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size()); } } /// getMinRequiredArguments - Returns the minimum number of arguments /// needed to call this function. This may be fewer than the number of /// function parameters, if some of the parameters have default /// arguments (in C++) or the last parameter is a parameter pack. unsigned FunctionDecl::getMinRequiredArguments() const { if (!getASTContext().getLangOpts().CPlusPlus) return getNumParams(); unsigned NumRequiredArgs = getNumParams(); // If the last parameter is a parameter pack, we don't need an argument for // it. if (NumRequiredArgs > 0 && getParamDecl(NumRequiredArgs - 1)->isParameterPack()) --NumRequiredArgs; // If this parameter has a default argument, we don't need an argument for // it. while (NumRequiredArgs > 0 && getParamDecl(NumRequiredArgs-1)->hasDefaultArg()) --NumRequiredArgs; // We might have parameter packs before the end. These can't be deduced, // but they can still handle multiple arguments. unsigned ArgIdx = NumRequiredArgs; while (ArgIdx > 0) { if (getParamDecl(ArgIdx - 1)->isParameterPack()) NumRequiredArgs = ArgIdx; --ArgIdx; } return NumRequiredArgs; } static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { // Only consider file-scope declarations in this test. if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) return false; // Only consider explicit declarations; the presence of a builtin for a // libcall shouldn't affect whether a definition is externally visible. if (Redecl->isImplicit()) return false; if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) return true; // Not an inline definition return false; } /// \brief For a function declaration in C or C++, determine whether this /// declaration causes the definition to be externally visible. /// /// Specifically, this determines if adding the current declaration to the set /// of redeclarations of the given functions causes /// isInlineDefinitionExternallyVisible to change from false to true. bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { assert(!doesThisDeclarationHaveABody() && "Must have a declaration without a body."); ASTContext &Context = getASTContext(); if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { // With GNU inlining, a declaration with 'inline' but not 'extern', forces // an externally visible definition. // // FIXME: What happens if gnu_inline gets added on after the first // declaration? if (!isInlineSpecified() || getStorageClass() == SC_Extern) return false; const FunctionDecl *Prev = this; bool FoundBody = false; while ((Prev = Prev->getPreviousDecl())) { FoundBody |= Prev->Body.isValid(); if (Prev->Body) { // If it's not the case that both 'inline' and 'extern' are // specified on the definition, then it is always externally visible. if (!Prev->isInlineSpecified() || Prev->getStorageClass() != SC_Extern) return false; } else if (Prev->isInlineSpecified() && Prev->getStorageClass() != SC_Extern) { return false; } } return FoundBody; } if (Context.getLangOpts().CPlusPlus) return false; // C99 6.7.4p6: // [...] If all of the file scope declarations for a function in a // translation unit include the inline function specifier without extern, // then the definition in that translation unit is an inline definition. if (isInlineSpecified() && getStorageClass() != SC_Extern) return false; const FunctionDecl *Prev = this; bool FoundBody = false; while ((Prev = Prev->getPreviousDecl())) { FoundBody |= Prev->Body.isValid(); if (RedeclForcesDefC99(Prev)) return false; } return FoundBody; } /// \brief For an inline function definition in C, or for a gnu_inline function /// in C++, determine whether the definition will be externally visible. /// /// Inline function definitions are always available for inlining optimizations. /// However, depending on the language dialect, declaration specifiers, and /// attributes, the definition of an inline function may or may not be /// "externally" visible to other translation units in the program. /// /// In C99, inline definitions are not externally visible by default. However, /// if even one of the global-scope declarations is marked "extern inline", the /// inline definition becomes externally visible (C99 6.7.4p6). /// /// In GNU89 mode, or if the gnu_inline attribute is attached to the function /// definition, we use the GNU semantics for inline, which are nearly the /// opposite of C99 semantics. In particular, "inline" by itself will create /// an externally visible symbol, but "extern inline" will not create an /// externally visible symbol. bool FunctionDecl::isInlineDefinitionExternallyVisible() const { assert(doesThisDeclarationHaveABody() && "Must have the function definition"); assert(isInlined() && "Function must be inline"); ASTContext &Context = getASTContext(); if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { // Note: If you change the logic here, please change // doesDeclarationForceExternallyVisibleDefinition as well. // // If it's not the case that both 'inline' and 'extern' are // specified on the definition, then this inline definition is // externally visible. if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) return true; // If any declaration is 'inline' but not 'extern', then this definition // is externally visible. for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end(); Redecl != RedeclEnd; ++Redecl) { if (Redecl->isInlineSpecified() && Redecl->getStorageClass() != SC_Extern) return true; } return false; } // The rest of this function is C-only. assert(!Context.getLangOpts().CPlusPlus && "should not use C inline rules in C++"); // C99 6.7.4p6: // [...] If all of the file scope declarations for a function in a // translation unit include the inline function specifier without extern, // then the definition in that translation unit is an inline definition. for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end(); Redecl != RedeclEnd; ++Redecl) { if (RedeclForcesDefC99(*Redecl)) return true; } // C99 6.7.4p6: // An inline definition does not provide an external definition for the // function, and does not forbid an external definition in another // translation unit. return false; } /// getOverloadedOperator - Which C++ overloaded operator this /// function represents, if any. OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) return getDeclName().getCXXOverloadedOperator(); else return OO_None; } /// getLiteralIdentifier - The literal suffix identifier this function /// represents, if any. const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) return getDeclName().getCXXLiteralIdentifier(); else return 0; } FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { if (TemplateOrSpecialization.isNull()) return TK_NonTemplate; if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) return TK_FunctionTemplate; if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) return TK_MemberSpecialization; if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) return TK_FunctionTemplateSpecialization; if (TemplateOrSpecialization.is <DependentFunctionTemplateSpecializationInfo*>()) return TK_DependentFunctionTemplateSpecialization; llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); } FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) return cast<FunctionDecl>(Info->getInstantiatedFrom()); return 0; } void FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD, TemplateSpecializationKind TSK) { assert(TemplateOrSpecialization.isNull() && "Member function is already a specialization"); MemberSpecializationInfo *Info = new (C) MemberSpecializationInfo(FD, TSK); TemplateOrSpecialization = Info; } bool FunctionDecl::isImplicitlyInstantiable() const { // If the function is invalid, it can't be implicitly instantiated. if (isInvalidDecl()) return false; switch (getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitInstantiationDefinition: return false; case TSK_ImplicitInstantiation: return true; // It is possible to instantiate TSK_ExplicitSpecialization kind // if the FunctionDecl has a class scope specialization pattern. case TSK_ExplicitSpecialization: return getClassScopeSpecializationPattern() != 0; case TSK_ExplicitInstantiationDeclaration: // Handled below. break; } // Find the actual template from which we will instantiate. const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); bool HasPattern = false; if (PatternDecl) HasPattern = PatternDecl->hasBody(PatternDecl); // C++0x [temp.explicit]p9: // Except for inline functions, other explicit instantiation declarations // have the effect of suppressing the implicit instantiation of the entity // to which they refer. if (!HasPattern || !PatternDecl) return true; return PatternDecl->isInlined(); } bool FunctionDecl::isTemplateInstantiation() const { switch (getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: return false; case TSK_ImplicitInstantiation: case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitInstantiationDefinition: return true; } llvm_unreachable("All TSK values handled."); } FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { // Handle class scope explicit specialization special case. if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization) return getClassScopeSpecializationPattern(); if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { while (Primary->getInstantiatedFromMemberTemplate()) { // If we have hit a point where the user provided a specialization of // this template, we're done looking. if (Primary->isMemberSpecialization()) break; Primary = Primary->getInstantiatedFromMemberTemplate(); } return Primary->getTemplatedDecl(); } return getInstantiatedFromMemberFunction(); } FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { if (FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization .dyn_cast<FunctionTemplateSpecializationInfo*>()) { return Info->Template.getPointer(); } return 0; } FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const { return getASTContext().getClassScopeSpecializationPattern(this); } const TemplateArgumentList * FunctionDecl::getTemplateSpecializationArgs() const { if (FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization .dyn_cast<FunctionTemplateSpecializationInfo*>()) { return Info->TemplateArguments; } return 0; } const ASTTemplateArgumentListInfo * FunctionDecl::getTemplateSpecializationArgsAsWritten() const { if (FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization .dyn_cast<FunctionTemplateSpecializationInfo*>()) { return Info->TemplateArgumentsAsWritten; } return 0; } void FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, FunctionTemplateDecl *Template, const TemplateArgumentList *TemplateArgs, void *InsertPos, TemplateSpecializationKind TSK, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation PointOfInstantiation) { assert(TSK != TSK_Undeclared && "Must specify the type of function template specialization"); FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); if (!Info) Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, PointOfInstantiation); TemplateOrSpecialization = Info; Template->addSpecialization(Info, InsertPos); } void FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, const UnresolvedSetImpl &Templates, const TemplateArgumentListInfo &TemplateArgs) { assert(TemplateOrSpecialization.isNull()); size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo); Size += Templates.size() * sizeof(FunctionTemplateDecl*); Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc); void *Buffer = Context.Allocate(Size); DependentFunctionTemplateSpecializationInfo *Info = new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates, TemplateArgs); TemplateOrSpecialization = Info; } DependentFunctionTemplateSpecializationInfo:: DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, const TemplateArgumentListInfo &TArgs) : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { d.NumTemplates = Ts.size(); d.NumArgs = TArgs.size(); FunctionTemplateDecl **TsArray = const_cast<FunctionTemplateDecl**>(getTemplates()); for (unsigned I = 0, E = Ts.size(); I != E; ++I) TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); TemplateArgumentLoc *ArgsArray = const_cast<TemplateArgumentLoc*>(getTemplateArgs()); for (unsigned I = 0, E = TArgs.size(); I != E; ++I) new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); } TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { // For a function template specialization, query the specialization // information object. FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); if (FTSInfo) return FTSInfo->getTemplateSpecializationKind(); MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>(); if (MSInfo) return MSInfo->getTemplateSpecializationKind(); return TSK_Undeclared; } void FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation) { if (FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization.dyn_cast< FunctionTemplateSpecializationInfo*>()) { FTSInfo->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && FTSInfo->getPointOfInstantiation().isInvalid()) FTSInfo->setPointOfInstantiation(PointOfInstantiation); } else if (MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { MSInfo->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && MSInfo->getPointOfInstantiation().isInvalid()) MSInfo->setPointOfInstantiation(PointOfInstantiation); } else llvm_unreachable("Function cannot have a template specialization kind"); } SourceLocation FunctionDecl::getPointOfInstantiation() const { if (FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization.dyn_cast< FunctionTemplateSpecializationInfo*>()) return FTSInfo->getPointOfInstantiation(); else if (MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) return MSInfo->getPointOfInstantiation(); return SourceLocation(); } bool FunctionDecl::isOutOfLine() const { if (Decl::isOutOfLine()) return true; // If this function was instantiated from a member function of a // class template, check whether that member function was defined out-of-line. if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { const FunctionDecl *Definition; if (FD->hasBody(Definition)) return Definition->isOutOfLine(); } // If this function was instantiated from a function template, // check whether that function template was defined out-of-line. if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { const FunctionDecl *Definition; if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) return Definition->isOutOfLine(); } return false; } SourceRange FunctionDecl::getSourceRange() const { return SourceRange(getOuterLocStart(), EndRangeLoc); } unsigned FunctionDecl::getMemoryFunctionKind() const { IdentifierInfo *FnInfo = getIdentifier(); if (!FnInfo) return 0; // Builtin handling. switch (getBuiltinID()) { case Builtin::BI__builtin_memset: case Builtin::BI__builtin___memset_chk: case Builtin::BImemset: return Builtin::BImemset; case Builtin::BI__builtin_memcpy: case Builtin::BI__builtin___memcpy_chk: case Builtin::BImemcpy: return Builtin::BImemcpy; case Builtin::BI__builtin_memmove: case Builtin::BI__builtin___memmove_chk: case Builtin::BImemmove: return Builtin::BImemmove; case Builtin::BIstrlcpy: return Builtin::BIstrlcpy; case Builtin::BIstrlcat: return Builtin::BIstrlcat; case Builtin::BI__builtin_memcmp: case Builtin::BImemcmp: return Builtin::BImemcmp; case Builtin::BI__builtin_strncpy: case Builtin::BI__builtin___strncpy_chk: case Builtin::BIstrncpy: return Builtin::BIstrncpy; case Builtin::BI__builtin_strncmp: case Builtin::BIstrncmp: return Builtin::BIstrncmp; case Builtin::BI__builtin_strncasecmp: case Builtin::BIstrncasecmp: return Builtin::BIstrncasecmp; case Builtin::BI__builtin_strncat: case Builtin::BI__builtin___strncat_chk: case Builtin::BIstrncat: return Builtin::BIstrncat; case Builtin::BI__builtin_strndup: case Builtin::BIstrndup: return Builtin::BIstrndup; case Builtin::BI__builtin_strlen: case Builtin::BIstrlen: return Builtin::BIstrlen; default: if (isExternC()) { if (FnInfo->isStr("memset")) return Builtin::BImemset; else if (FnInfo->isStr("memcpy")) return Builtin::BImemcpy; else if (FnInfo->isStr("memmove")) return Builtin::BImemmove; else if (FnInfo->isStr("memcmp")) return Builtin::BImemcmp; else if (FnInfo->isStr("strncpy")) return Builtin::BIstrncpy; else if (FnInfo->isStr("strncmp")) return Builtin::BIstrncmp; else if (FnInfo->isStr("strncasecmp")) return Builtin::BIstrncasecmp; else if (FnInfo->isStr("strncat")) return Builtin::BIstrncat; else if (FnInfo->isStr("strndup")) return Builtin::BIstrndup; else if (FnInfo->isStr("strlen")) return Builtin::BIstrlen; } break; } return 0; } //===----------------------------------------------------------------------===// // FieldDecl Implementation //===----------------------------------------------------------------------===// FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle) { return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, BW, Mutable, InitStyle); } FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl)); return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(), 0, QualType(), 0, 0, false, ICIS_NoInit); } bool FieldDecl::isAnonymousStructOrUnion() const { if (!isImplicit() || getDeclName()) return false; if (const RecordType *Record = getType()->getAs<RecordType>()) return Record->getDecl()->isAnonymousStructOrUnion(); return false; } unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { assert(isBitField() && "not a bitfield"); Expr *BitWidth = InitializerOrBitWidth.getPointer(); return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue(); } unsigned FieldDecl::getFieldIndex() const { if (CachedFieldIndex) return CachedFieldIndex - 1; unsigned Index = 0; const RecordDecl *RD = getParent(); for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Index) I->CachedFieldIndex = Index + 1; assert(CachedFieldIndex && "failed to find field in parent"); return CachedFieldIndex - 1; } SourceRange FieldDecl::getSourceRange() const { if (const Expr *E = InitializerOrBitWidth.getPointer()) return SourceRange(getInnerLocStart(), E->getLocEnd()); return DeclaratorDecl::getSourceRange(); } void FieldDecl::setBitWidth(Expr *Width) { assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() && "bit width or initializer already set"); InitializerOrBitWidth.setPointer(Width); } void FieldDecl::setInClassInitializer(Expr *Init) { assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() && "bit width or initializer already set"); InitializerOrBitWidth.setPointer(Init); } //===----------------------------------------------------------------------===// // TagDecl Implementation //===----------------------------------------------------------------------===// SourceLocation TagDecl::getOuterLocStart() const { return getTemplateOrInnerLocStart(this); } SourceRange TagDecl::getSourceRange() const { SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); return SourceRange(getOuterLocStart(), E); } TagDecl* TagDecl::getCanonicalDecl() { return getFirstDeclaration(); } void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { TypedefNameDeclOrQualifier = TDD; if (TypeForDecl) assert(TypeForDecl->isLinkageValid()); assert(isLinkageValid()); } void TagDecl::startDefinition() { IsBeingDefined = true; if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) { struct CXXRecordDecl::DefinitionData *Data = new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) cast<CXXRecordDecl>(*I)->DefinitionData = Data; } } void TagDecl::completeDefinition() { assert((!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && "definition completed but not started"); IsCompleteDefinition = true; IsBeingDefined = false; if (ASTMutationListener *L = getASTMutationListener()) L->CompletedTagDefinition(this); } TagDecl *TagDecl::getDefinition() const { if (isCompleteDefinition()) return const_cast<TagDecl *>(this); // If it's possible for us to have an out-of-date definition, check now. if (MayHaveOutOfDateDef) { if (IdentifierInfo *II = getIdentifier()) { if (II->isOutOfDate()) { updateOutOfDate(*II); } } } if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this)) return CXXRD->getDefinition(); for (redecl_iterator R = redecls_begin(), REnd = redecls_end(); R != REnd; ++R) if (R->isCompleteDefinition()) return *R; return 0; } void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { if (QualifierLoc) { // Make sure the extended qualifier info is allocated. if (!hasExtInfo()) TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; // Set qualifier info. getExtInfo()->QualifierLoc = QualifierLoc; } else { // Here Qualifier == 0, i.e., we are removing the qualifier (if any). if (hasExtInfo()) { if (getExtInfo()->NumTemplParamLists == 0) { getASTContext().Deallocate(getExtInfo()); TypedefNameDeclOrQualifier = (TypedefNameDecl*) 0; } else getExtInfo()->QualifierLoc = QualifierLoc; } } } void TagDecl::setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists, TemplateParameterList **TPLists) { assert(NumTPLists > 0); // Make sure the extended decl info is allocated. if (!hasExtInfo()) // Allocate external info struct. TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; // Set the template parameter lists info. getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists); } //===----------------------------------------------------------------------===// // EnumDecl Implementation //===----------------------------------------------------------------------===// void EnumDecl::anchor() { } EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, bool IsScoped, bool IsScopedUsingClassTag, bool IsFixed) { EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl, IsScoped, IsScopedUsingClassTag, IsFixed); Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; C.getTypeDeclType(Enum, PrevDecl); return Enum; } EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl)); EnumDecl *Enum = new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(), 0, 0, false, false, false); Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; return Enum; } void EnumDecl::completeDefinition(QualType NewType, QualType NewPromotionType, unsigned NumPositiveBits, unsigned NumNegativeBits) { assert(!isCompleteDefinition() && "Cannot redefine enums!"); if (!IntegerType) IntegerType = NewType.getTypePtr(); PromotionType = NewPromotionType; setNumPositiveBits(NumPositiveBits); setNumNegativeBits(NumNegativeBits); TagDecl::completeDefinition(); } TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) return MSI->getTemplateSpecializationKind(); return TSK_Undeclared; } void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation) { MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); assert(MSI && "Not an instantiated member enumeration?"); MSI->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && MSI->getPointOfInstantiation().isInvalid()) MSI->setPointOfInstantiation(PointOfInstantiation); } EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { if (SpecializationInfo) return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); return 0; } void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, TemplateSpecializationKind TSK) { assert(!SpecializationInfo && "Member enum is already a specialization"); SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); } //===----------------------------------------------------------------------===// // RecordDecl Implementation //===----------------------------------------------------------------------===// RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl) : TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) { HasFlexibleArrayMember = false; AnonymousStructOrUnion = false; HasObjectMember = false; HasVolatileMember = false; LoadedFieldsFromExternalStorage = false; assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!"); } RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl* PrevDecl) { RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id, PrevDecl); R->MayHaveOutOfDateDef = C.getLangOpts().Modules; C.getTypeDeclType(R, PrevDecl); return R; } RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl)); RecordDecl *R = new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(), SourceLocation(), 0, 0); R->MayHaveOutOfDateDef = C.getLangOpts().Modules; return R; } bool RecordDecl::isInjectedClassName() const { return isImplicit() && getDeclName() && getDeclContext()->isRecord() && cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); } RecordDecl::field_iterator RecordDecl::field_begin() const { if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage) LoadFieldsFromExternalStorage(); return field_iterator(decl_iterator(FirstDecl)); } /// completeDefinition - Notes that the definition of this type is now /// complete. void RecordDecl::completeDefinition() { assert(!isCompleteDefinition() && "Cannot redefine record!"); TagDecl::completeDefinition(); } /// isMsStruct - Get whether or not this record uses ms_struct layout. /// This which can be turned on with an attribute, pragma, or the /// -mms-bitfields command-line option. bool RecordDecl::isMsStruct(const ASTContext &C) const { return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1; } static bool isFieldOrIndirectField(Decl::Kind K) { return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); } void RecordDecl::LoadFieldsFromExternalStorage() const { ExternalASTSource *Source = getASTContext().getExternalSource(); assert(hasExternalLexicalStorage() && Source && "No external storage?"); // Notify that we have a RecordDecl doing some initialization. ExternalASTSource::Deserializing TheFields(Source); SmallVector<Decl*, 64> Decls; LoadedFieldsFromExternalStorage = true; switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField, Decls)) { case ELR_Success: break; case ELR_AlreadyLoaded: case ELR_Failure: return; } #ifndef NDEBUG // Check that all decls we got were FieldDecls. for (unsigned i=0, e=Decls.size(); i != e; ++i) assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); #endif if (Decls.empty()) return; llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, /*FieldsAlreadyLoaded=*/false); } //===----------------------------------------------------------------------===// // BlockDecl Implementation //===----------------------------------------------------------------------===// void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { assert(ParamInfo == 0 && "Already has param info!"); // Zero params -> null pointer. if (!NewParamInfo.empty()) { NumParams = NewParamInfo.size(); ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); } } void BlockDecl::setCaptures(ASTContext &Context, const Capture *begin, const Capture *end, bool capturesCXXThis) { CapturesCXXThis = capturesCXXThis; if (begin == end) { NumCaptures = 0; Captures = 0; return; } NumCaptures = end - begin; // Avoid new Capture[] because we don't want to provide a default // constructor. size_t allocationSize = NumCaptures * sizeof(Capture); void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*)); memcpy(buffer, begin, allocationSize); Captures = static_cast<Capture*>(buffer); } bool BlockDecl::capturesVariable(const VarDecl *variable) const { for (capture_const_iterator i = capture_begin(), e = capture_end(); i != e; ++i) // Only auto vars can be captured, so no redeclaration worries. if (i->getVariable() == variable) return true; return false; } SourceRange BlockDecl::getSourceRange() const { return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation()); } //===----------------------------------------------------------------------===// // Other Decl Allocation/Deallocation Method Implementations //===----------------------------------------------------------------------===// void TranslationUnitDecl::anchor() { } TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { return new (C) TranslationUnitDecl(C); } void LabelDecl::anchor() { } LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II) { return new (C) LabelDecl(DC, IdentL, II, 0, IdentL); } LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II, SourceLocation GnuLabelL) { assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL); } LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl)); return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation()); } void ValueDecl::anchor() { } bool ValueDecl::isWeak() const { for (attr_iterator I = attr_begin(), E = attr_end(); I != E; ++I) if (isa<WeakAttr>(*I) || isa<WeakRefAttr>(*I)) return true; return isWeakImported(); } void ImplicitParamDecl::anchor() { } ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType Type) { return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type); } ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl)); return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType()); } FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified, bool hasWrittenPrototype, bool isConstexprSpecified) { FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo, T, TInfo, SC, isInlineSpecified, isConstexprSpecified); New->HasWrittenPrototype = hasWrittenPrototype; return New; } FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl)); return new (Mem) FunctionDecl(Function, 0, SourceLocation(), DeclarationNameInfo(), QualType(), 0, SC_None, false, false); } BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { return new (C) BlockDecl(DC, L); } BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl)); return new (Mem) BlockDecl(0, SourceLocation()); } MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(MSPropertyDecl)); return new (Mem) MSPropertyDecl(0, SourceLocation(), DeclarationName(), QualType(), 0, SourceLocation(), 0, 0); } CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, unsigned NumParams) { unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*); return new (C.Allocate(Size)) CapturedDecl(DC, NumParams); } CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumParams) { unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*); void *Mem = AllocateDeserializedDecl(C, ID, Size); return new (Mem) CapturedDecl(0, NumParams); } EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V) { return new (C) EnumConstantDecl(CD, L, Id, T, E, V); } EnumConstantDecl * EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl)); return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0, llvm::APSInt()); } void IndirectFieldDecl::anchor() { } IndirectFieldDecl * IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, NamedDecl **CH, unsigned CHS) { return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS); } IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl)); return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(), QualType(), 0, 0); } SourceRange EnumConstantDecl::getSourceRange() const { SourceLocation End = getLocation(); if (Init) End = Init->getLocEnd(); return SourceRange(getLocation(), End); } void TypeDecl::anchor() { } TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo) { return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo); } void TypedefNameDecl::anchor() { } TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl)); return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0); } TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo) { return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo); } TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl)); return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0); } SourceRange TypedefDecl::getSourceRange() const { SourceLocation RangeEnd = getLocation(); if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { if (typeIsPostfix(TInfo->getType())) RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); } return SourceRange(getLocStart(), RangeEnd); } SourceRange TypeAliasDecl::getSourceRange() const { SourceLocation RangeEnd = getLocStart(); if (TypeSourceInfo *TInfo = getTypeSourceInfo()) RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); return SourceRange(getLocStart(), RangeEnd); } void FileScopeAsmDecl::anchor() { } FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, StringLiteral *Str, SourceLocation AsmLoc, SourceLocation RParenLoc) { return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); } FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl)); return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation()); } void EmptyDecl::anchor() {} EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { return new (C) EmptyDecl(DC, L); } EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EmptyDecl)); return new (Mem) EmptyDecl(0, SourceLocation()); } //===----------------------------------------------------------------------===// // ImportDecl Implementation //===----------------------------------------------------------------------===// /// \brief Retrieve the number of module identifiers needed to name the given /// module. static unsigned getNumModuleIdentifiers(Module *Mod) { unsigned Result = 1; while (Mod->Parent) { Mod = Mod->Parent; ++Result; } return Result; } ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported, ArrayRef<SourceLocation> IdentifierLocs) : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true), NextLocalImport() { assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1); memcpy(StoredLocs, IdentifierLocs.data(), IdentifierLocs.size() * sizeof(SourceLocation)); } ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported, SourceLocation EndLoc) : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false), NextLocalImport() { *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc; } ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, ArrayRef<SourceLocation> IdentifierLocs) { void *Mem = C.Allocate(sizeof(ImportDecl) + IdentifierLocs.size() * sizeof(SourceLocation)); return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs); } ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, SourceLocation EndLoc) { void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation)); ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc); Import->setImplicit(); return Import; } ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumLocations) { void *Mem = AllocateDeserializedDecl(C, ID, (sizeof(ImportDecl) + NumLocations * sizeof(SourceLocation))); return new (Mem) ImportDecl(EmptyShell()); } ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { if (!ImportedAndComplete.getInt()) return None; const SourceLocation *StoredLocs = reinterpret_cast<const SourceLocation *>(this + 1); return ArrayRef<SourceLocation>(StoredLocs, getNumModuleIdentifiers(getImportedModule())); } SourceRange ImportDecl::getSourceRange() const { if (!ImportedAndComplete.getInt()) return SourceRange(getLocation(), *reinterpret_cast<const SourceLocation *>(this + 1)); return SourceRange(getLocation(), getIdentifierLocs().back()); }