// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_PROPERTY_DETAILS_H_ #define V8_PROPERTY_DETAILS_H_ #include "../include/v8.h" #include "allocation.h" #include "utils.h" // Ecma-262 3rd 8.6.1 enum PropertyAttributes { NONE = v8::None, READ_ONLY = v8::ReadOnly, DONT_ENUM = v8::DontEnum, DONT_DELETE = v8::DontDelete, SEALED = DONT_DELETE, FROZEN = SEALED | READ_ONLY, SYMBOLIC = 8, // Used to filter symbol names DONT_SHOW = DONT_ENUM | SYMBOLIC, ABSENT = 16 // Used in runtime to indicate a property is absent. // ABSENT can never be stored in or returned from a descriptor's attributes // bitfield. It is only used as a return value meaning the attributes of // a non-existent property. }; namespace v8 { namespace internal { class Smi; class Type; class TypeInfo; // Type of properties. // Order of properties is significant. // Must fit in the BitField PropertyDetails::TypeField. // A copy of this is in mirror-debugger.js. enum PropertyType { // Only in slow mode. NORMAL = 0, // Only in fast mode. FIELD = 1, CONSTANT = 2, CALLBACKS = 3, // Only in lookup results, not in descriptors. HANDLER = 4, INTERCEPTOR = 5, TRANSITION = 6, // Only used as a marker in LookupResult. NONEXISTENT = 7 }; class Representation { public: enum Kind { kNone, kInteger8, kUInteger8, kInteger16, kUInteger16, kSmi, kInteger32, kDouble, kHeapObject, kTagged, kExternal, kNumRepresentations }; Representation() : kind_(kNone) { } static Representation None() { return Representation(kNone); } static Representation Tagged() { return Representation(kTagged); } static Representation Integer8() { return Representation(kInteger8); } static Representation UInteger8() { return Representation(kUInteger8); } static Representation Integer16() { return Representation(kInteger16); } static Representation UInteger16() { return Representation(kUInteger16); } static Representation Smi() { return Representation(kSmi); } static Representation Integer32() { return Representation(kInteger32); } static Representation Double() { return Representation(kDouble); } static Representation HeapObject() { return Representation(kHeapObject); } static Representation External() { return Representation(kExternal); } static Representation FromKind(Kind kind) { return Representation(kind); } // TODO(rossberg): this should die eventually. static Representation FromType(TypeInfo info); static Representation FromType(Handle<Type> type); bool Equals(const Representation& other) const { return kind_ == other.kind_; } bool IsCompatibleForLoad(const Representation& other) const { return (IsDouble() && other.IsDouble()) || (!IsDouble() && !other.IsDouble()); } bool IsCompatibleForStore(const Representation& other) const { return Equals(other); } bool is_more_general_than(const Representation& other) const { if (kind_ == kExternal && other.kind_ == kNone) return true; if (kind_ == kExternal && other.kind_ == kExternal) return false; if (kind_ == kNone && other.kind_ == kExternal) return false; ASSERT(kind_ != kExternal); ASSERT(other.kind_ != kExternal); if (IsHeapObject()) return other.IsNone(); if (kind_ == kUInteger8 && other.kind_ == kInteger8) return false; if (kind_ == kUInteger16 && other.kind_ == kInteger16) return false; return kind_ > other.kind_; } bool fits_into(const Representation& other) const { return other.is_more_general_than(*this) || other.Equals(*this); } Representation generalize(Representation other) { if (other.fits_into(*this)) return *this; if (other.is_more_general_than(*this)) return other; return Representation::Tagged(); } int size() const { ASSERT(!IsNone()); if (IsInteger8() || IsUInteger8()) { return sizeof(uint8_t); } if (IsInteger16() || IsUInteger16()) { return sizeof(uint16_t); } if (IsInteger32()) { return sizeof(uint32_t); } return kPointerSize; } Kind kind() const { return static_cast<Kind>(kind_); } bool IsNone() const { return kind_ == kNone; } bool IsInteger8() const { return kind_ == kInteger8; } bool IsUInteger8() const { return kind_ == kUInteger8; } bool IsInteger16() const { return kind_ == kInteger16; } bool IsUInteger16() const { return kind_ == kUInteger16; } bool IsTagged() const { return kind_ == kTagged; } bool IsSmi() const { return kind_ == kSmi; } bool IsSmiOrTagged() const { return IsSmi() || IsTagged(); } bool IsInteger32() const { return kind_ == kInteger32; } bool IsSmiOrInteger32() const { return IsSmi() || IsInteger32(); } bool IsDouble() const { return kind_ == kDouble; } bool IsHeapObject() const { return kind_ == kHeapObject; } bool IsExternal() const { return kind_ == kExternal; } bool IsSpecialization() const { return IsInteger8() || IsUInteger8() || IsInteger16() || IsUInteger16() || IsSmi() || IsInteger32() || IsDouble(); } const char* Mnemonic() const; private: explicit Representation(Kind k) : kind_(k) { } // Make sure kind fits in int8. STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte)); int8_t kind_; }; static const int kDescriptorIndexBitCount = 10; // The maximum number of descriptors we want in a descriptor array (should // fit in a page). static const int kMaxNumberOfDescriptors = (1 << kDescriptorIndexBitCount) - 2; static const int kInvalidEnumCacheSentinel = (1 << kDescriptorIndexBitCount) - 1; // PropertyDetails captures type and attributes for a property. // They are used both in property dictionaries and instance descriptors. class PropertyDetails BASE_EMBEDDED { public: PropertyDetails(PropertyAttributes attributes, PropertyType type, int index) { value_ = TypeField::encode(type) | AttributesField::encode(attributes) | DictionaryStorageField::encode(index); ASSERT(type == this->type()); ASSERT(attributes == this->attributes()); } PropertyDetails(PropertyAttributes attributes, PropertyType type, Representation representation, int field_index = 0) { value_ = TypeField::encode(type) | AttributesField::encode(attributes) | RepresentationField::encode(EncodeRepresentation(representation)) | FieldIndexField::encode(field_index); } int pointer() { return DescriptorPointer::decode(value_); } PropertyDetails set_pointer(int i) { return PropertyDetails(value_, i); } PropertyDetails CopyWithRepresentation(Representation representation) { return PropertyDetails(value_, representation); } PropertyDetails CopyAddAttributes(PropertyAttributes new_attributes) { new_attributes = static_cast<PropertyAttributes>(attributes() | new_attributes); return PropertyDetails(value_, new_attributes); } // Conversion for storing details as Object*. explicit inline PropertyDetails(Smi* smi); inline Smi* AsSmi(); static uint8_t EncodeRepresentation(Representation representation) { return representation.kind(); } static Representation DecodeRepresentation(uint32_t bits) { return Representation::FromKind(static_cast<Representation::Kind>(bits)); } PropertyType type() { return TypeField::decode(value_); } PropertyAttributes attributes() const { return AttributesField::decode(value_); } int dictionary_index() { return DictionaryStorageField::decode(value_); } Representation representation() { ASSERT(type() != NORMAL); return DecodeRepresentation(RepresentationField::decode(value_)); } int field_index() { return FieldIndexField::decode(value_); } inline PropertyDetails AsDeleted(); static bool IsValidIndex(int index) { return DictionaryStorageField::is_valid(index); } bool IsReadOnly() const { return (attributes() & READ_ONLY) != 0; } bool IsDontDelete() const { return (attributes() & DONT_DELETE) != 0; } bool IsDontEnum() const { return (attributes() & DONT_ENUM) != 0; } bool IsDeleted() const { return DeletedField::decode(value_) != 0;} // Bit fields in value_ (type, shift, size). Must be public so the // constants can be embedded in generated code. class TypeField: public BitField<PropertyType, 0, 3> {}; class AttributesField: public BitField<PropertyAttributes, 3, 3> {}; // Bit fields for normalized objects. class DeletedField: public BitField<uint32_t, 6, 1> {}; class DictionaryStorageField: public BitField<uint32_t, 7, 24> {}; // Bit fields for fast objects. class RepresentationField: public BitField<uint32_t, 6, 4> {}; class DescriptorPointer: public BitField<uint32_t, 10, kDescriptorIndexBitCount> {}; // NOLINT class FieldIndexField: public BitField<uint32_t, 10 + kDescriptorIndexBitCount, kDescriptorIndexBitCount> {}; // NOLINT // All bits for fast objects must fix in a smi. STATIC_ASSERT(10 + kDescriptorIndexBitCount + kDescriptorIndexBitCount <= 31); static const int kInitialIndex = 1; private: PropertyDetails(int value, int pointer) { value_ = DescriptorPointer::update(value, pointer); } PropertyDetails(int value, Representation representation) { value_ = RepresentationField::update( value, EncodeRepresentation(representation)); } PropertyDetails(int value, PropertyAttributes attributes) { value_ = AttributesField::update(value, attributes); } uint32_t value_; }; } } // namespace v8::internal #endif // V8_PROPERTY_DETAILS_H_