// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Review notes: // // - The use of macros in these inline functions may seem superfluous // but it is absolutely needed to make sure gcc generates optimal // code. gcc is not happy when attempting to inline too deep. // #ifndef V8_OBJECTS_INL_H_ #define V8_OBJECTS_INL_H_ #include "elements.h" #include "objects.h" #include "contexts.h" #include "conversions-inl.h" #include "heap.h" #include "isolate.h" #include "property.h" #include "spaces.h" #include "store-buffer.h" #include "v8memory.h" #include "factory.h" #include "incremental-marking.h" #include "transitions-inl.h" namespace v8 { namespace internal { PropertyDetails::PropertyDetails(Smi* smi) { value_ = smi->value(); } Smi* PropertyDetails::AsSmi() { // Ensure the upper 2 bits have the same value by sign extending it. This is // necessary to be able to use the 31st bit of the property details. int value = value_ << 1; return Smi::FromInt(value >> 1); } PropertyDetails PropertyDetails::AsDeleted() { Smi* smi = Smi::FromInt(value_ | DeletedField::encode(1)); return PropertyDetails(smi); } #define TYPE_CHECKER(type, instancetype) \ bool Object::Is##type() { \ return Object::IsHeapObject() && \ HeapObject::cast(this)->map()->instance_type() == instancetype; \ } #define CAST_ACCESSOR(type) \ type* type::cast(Object* object) { \ SLOW_ASSERT(object->Is##type()); \ return reinterpret_cast<type*>(object); \ } #define INT_ACCESSORS(holder, name, offset) \ int holder::name() { return READ_INT_FIELD(this, offset); } \ void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); } #define ACCESSORS(holder, name, type, offset) \ type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \ void holder::set_##name(type* value, WriteBarrierMode mode) { \ WRITE_FIELD(this, offset, value); \ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); \ } // Getter that returns a tagged Smi and setter that writes a tagged Smi. #define ACCESSORS_TO_SMI(holder, name, offset) \ Smi* holder::name() { return Smi::cast(READ_FIELD(this, offset)); } \ void holder::set_##name(Smi* value, WriteBarrierMode mode) { \ WRITE_FIELD(this, offset, value); \ } // Getter that returns a Smi as an int and writes an int as a Smi. #define SMI_ACCESSORS(holder, name, offset) \ int holder::name() { \ Object* value = READ_FIELD(this, offset); \ return Smi::cast(value)->value(); \ } \ void holder::set_##name(int value) { \ WRITE_FIELD(this, offset, Smi::FromInt(value)); \ } #define BOOL_GETTER(holder, field, name, offset) \ bool holder::name() { \ return BooleanBit::get(field(), offset); \ } \ #define BOOL_ACCESSORS(holder, field, name, offset) \ bool holder::name() { \ return BooleanBit::get(field(), offset); \ } \ void holder::set_##name(bool value) { \ set_##field(BooleanBit::set(field(), offset, value)); \ } bool Object::IsFixedArrayBase() { return IsFixedArray() || IsFixedDoubleArray() || IsConstantPoolArray(); } // External objects are not extensible, so the map check is enough. bool Object::IsExternal() { return Object::IsHeapObject() && HeapObject::cast(this)->map() == HeapObject::cast(this)->GetHeap()->external_map(); } bool Object::IsAccessorInfo() { return IsExecutableAccessorInfo() || IsDeclaredAccessorInfo(); } bool Object::IsSmi() { return HAS_SMI_TAG(this); } bool Object::IsHeapObject() { return Internals::HasHeapObjectTag(this); } bool Object::NonFailureIsHeapObject() { ASSERT(!this->IsFailure()); return (reinterpret_cast<intptr_t>(this) & kSmiTagMask) != 0; } TYPE_CHECKER(HeapNumber, HEAP_NUMBER_TYPE) TYPE_CHECKER(Symbol, SYMBOL_TYPE) bool Object::IsString() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() < FIRST_NONSTRING_TYPE; } bool Object::IsName() { return IsString() || IsSymbol(); } bool Object::IsUniqueName() { return IsInternalizedString() || IsSymbol(); } bool Object::IsSpecObject() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() >= FIRST_SPEC_OBJECT_TYPE; } bool Object::IsSpecFunction() { if (!Object::IsHeapObject()) return false; InstanceType type = HeapObject::cast(this)->map()->instance_type(); return type == JS_FUNCTION_TYPE || type == JS_FUNCTION_PROXY_TYPE; } bool Object::IsInternalizedString() { if (!this->IsHeapObject()) return false; uint32_t type = HeapObject::cast(this)->map()->instance_type(); STATIC_ASSERT(kNotInternalizedTag != 0); return (type & (kIsNotStringMask | kIsNotInternalizedMask)) == (kStringTag | kInternalizedTag); } bool Object::IsConsString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsCons(); } bool Object::IsSlicedString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsSliced(); } bool Object::IsSeqString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential(); } bool Object::IsSeqOneByteString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential() && String::cast(this)->IsOneByteRepresentation(); } bool Object::IsSeqTwoByteString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential() && String::cast(this)->IsTwoByteRepresentation(); } bool Object::IsExternalString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal(); } bool Object::IsExternalAsciiString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal() && String::cast(this)->IsOneByteRepresentation(); } bool Object::IsExternalTwoByteString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal() && String::cast(this)->IsTwoByteRepresentation(); } bool Object::HasValidElements() { // Dictionary is covered under FixedArray. return IsFixedArray() || IsFixedDoubleArray() || IsExternalArray(); } MaybeObject* Object::AllocateNewStorageFor(Heap* heap, Representation representation) { if (!FLAG_track_double_fields) return this; if (!representation.IsDouble()) return this; if (IsUninitialized()) { return heap->AllocateHeapNumber(0); } return heap->AllocateHeapNumber(Number()); } StringShape::StringShape(String* str) : type_(str->map()->instance_type()) { set_valid(); ASSERT((type_ & kIsNotStringMask) == kStringTag); } StringShape::StringShape(Map* map) : type_(map->instance_type()) { set_valid(); ASSERT((type_ & kIsNotStringMask) == kStringTag); } StringShape::StringShape(InstanceType t) : type_(static_cast<uint32_t>(t)) { set_valid(); ASSERT((type_ & kIsNotStringMask) == kStringTag); } bool StringShape::IsInternalized() { ASSERT(valid()); STATIC_ASSERT(kNotInternalizedTag != 0); return (type_ & (kIsNotStringMask | kIsNotInternalizedMask)) == (kStringTag | kInternalizedTag); } bool String::IsOneByteRepresentation() { uint32_t type = map()->instance_type(); return (type & kStringEncodingMask) == kOneByteStringTag; } bool String::IsTwoByteRepresentation() { uint32_t type = map()->instance_type(); return (type & kStringEncodingMask) == kTwoByteStringTag; } bool String::IsOneByteRepresentationUnderneath() { uint32_t type = map()->instance_type(); STATIC_ASSERT(kIsIndirectStringTag != 0); STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0); ASSERT(IsFlat()); switch (type & (kIsIndirectStringMask | kStringEncodingMask)) { case kOneByteStringTag: return true; case kTwoByteStringTag: return false; default: // Cons or sliced string. Need to go deeper. return GetUnderlying()->IsOneByteRepresentation(); } } bool String::IsTwoByteRepresentationUnderneath() { uint32_t type = map()->instance_type(); STATIC_ASSERT(kIsIndirectStringTag != 0); STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0); ASSERT(IsFlat()); switch (type & (kIsIndirectStringMask | kStringEncodingMask)) { case kOneByteStringTag: return false; case kTwoByteStringTag: return true; default: // Cons or sliced string. Need to go deeper. return GetUnderlying()->IsTwoByteRepresentation(); } } bool String::HasOnlyOneByteChars() { uint32_t type = map()->instance_type(); return (type & kOneByteDataHintMask) == kOneByteDataHintTag || IsOneByteRepresentation(); } bool StringShape::IsCons() { return (type_ & kStringRepresentationMask) == kConsStringTag; } bool StringShape::IsSliced() { return (type_ & kStringRepresentationMask) == kSlicedStringTag; } bool StringShape::IsIndirect() { return (type_ & kIsIndirectStringMask) == kIsIndirectStringTag; } bool StringShape::IsExternal() { return (type_ & kStringRepresentationMask) == kExternalStringTag; } bool StringShape::IsSequential() { return (type_ & kStringRepresentationMask) == kSeqStringTag; } StringRepresentationTag StringShape::representation_tag() { uint32_t tag = (type_ & kStringRepresentationMask); return static_cast<StringRepresentationTag>(tag); } uint32_t StringShape::encoding_tag() { return type_ & kStringEncodingMask; } uint32_t StringShape::full_representation_tag() { return (type_ & (kStringRepresentationMask | kStringEncodingMask)); } STATIC_CHECK((kStringRepresentationMask | kStringEncodingMask) == Internals::kFullStringRepresentationMask); STATIC_CHECK(static_cast<uint32_t>(kStringEncodingMask) == Internals::kStringEncodingMask); bool StringShape::IsSequentialAscii() { return full_representation_tag() == (kSeqStringTag | kOneByteStringTag); } bool StringShape::IsSequentialTwoByte() { return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag); } bool StringShape::IsExternalAscii() { return full_representation_tag() == (kExternalStringTag | kOneByteStringTag); } STATIC_CHECK((kExternalStringTag | kOneByteStringTag) == Internals::kExternalAsciiRepresentationTag); STATIC_CHECK(v8::String::ASCII_ENCODING == kOneByteStringTag); bool StringShape::IsExternalTwoByte() { return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag); } STATIC_CHECK((kExternalStringTag | kTwoByteStringTag) == Internals::kExternalTwoByteRepresentationTag); STATIC_CHECK(v8::String::TWO_BYTE_ENCODING == kTwoByteStringTag); uc32 FlatStringReader::Get(int index) { ASSERT(0 <= index && index <= length_); if (is_ascii_) { return static_cast<const byte*>(start_)[index]; } else { return static_cast<const uc16*>(start_)[index]; } } bool Object::IsNumber() { return IsSmi() || IsHeapNumber(); } TYPE_CHECKER(ByteArray, BYTE_ARRAY_TYPE) TYPE_CHECKER(FreeSpace, FREE_SPACE_TYPE) bool Object::IsFiller() { if (!Object::IsHeapObject()) return false; InstanceType instance_type = HeapObject::cast(this)->map()->instance_type(); return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE; } TYPE_CHECKER(ExternalPixelArray, EXTERNAL_PIXEL_ARRAY_TYPE) bool Object::IsExternalArray() { if (!Object::IsHeapObject()) return false; InstanceType instance_type = HeapObject::cast(this)->map()->instance_type(); return (instance_type >= FIRST_EXTERNAL_ARRAY_TYPE && instance_type <= LAST_EXTERNAL_ARRAY_TYPE); } TYPE_CHECKER(ExternalByteArray, EXTERNAL_BYTE_ARRAY_TYPE) TYPE_CHECKER(ExternalUnsignedByteArray, EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE) TYPE_CHECKER(ExternalShortArray, EXTERNAL_SHORT_ARRAY_TYPE) TYPE_CHECKER(ExternalUnsignedShortArray, EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE) TYPE_CHECKER(ExternalIntArray, EXTERNAL_INT_ARRAY_TYPE) TYPE_CHECKER(ExternalUnsignedIntArray, EXTERNAL_UNSIGNED_INT_ARRAY_TYPE) TYPE_CHECKER(ExternalFloatArray, EXTERNAL_FLOAT_ARRAY_TYPE) TYPE_CHECKER(ExternalDoubleArray, EXTERNAL_DOUBLE_ARRAY_TYPE) bool MaybeObject::IsFailure() { return HAS_FAILURE_TAG(this); } bool MaybeObject::IsRetryAfterGC() { return HAS_FAILURE_TAG(this) && Failure::cast(this)->type() == Failure::RETRY_AFTER_GC; } bool MaybeObject::IsOutOfMemory() { return HAS_FAILURE_TAG(this) && Failure::cast(this)->IsOutOfMemoryException(); } bool MaybeObject::IsException() { return this == Failure::Exception(); } bool MaybeObject::IsTheHole() { return !IsFailure() && ToObjectUnchecked()->IsTheHole(); } bool MaybeObject::IsUninitialized() { return !IsFailure() && ToObjectUnchecked()->IsUninitialized(); } Failure* Failure::cast(MaybeObject* obj) { ASSERT(HAS_FAILURE_TAG(obj)); return reinterpret_cast<Failure*>(obj); } bool Object::IsJSReceiver() { STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); return IsHeapObject() && HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_RECEIVER_TYPE; } bool Object::IsJSObject() { STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); return IsHeapObject() && HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_OBJECT_TYPE; } bool Object::IsJSProxy() { if (!Object::IsHeapObject()) return false; InstanceType type = HeapObject::cast(this)->map()->instance_type(); return FIRST_JS_PROXY_TYPE <= type && type <= LAST_JS_PROXY_TYPE; } TYPE_CHECKER(JSFunctionProxy, JS_FUNCTION_PROXY_TYPE) TYPE_CHECKER(JSSet, JS_SET_TYPE) TYPE_CHECKER(JSMap, JS_MAP_TYPE) TYPE_CHECKER(JSWeakMap, JS_WEAK_MAP_TYPE) TYPE_CHECKER(JSWeakSet, JS_WEAK_SET_TYPE) TYPE_CHECKER(JSContextExtensionObject, JS_CONTEXT_EXTENSION_OBJECT_TYPE) TYPE_CHECKER(Map, MAP_TYPE) TYPE_CHECKER(FixedArray, FIXED_ARRAY_TYPE) TYPE_CHECKER(FixedDoubleArray, FIXED_DOUBLE_ARRAY_TYPE) TYPE_CHECKER(ConstantPoolArray, CONSTANT_POOL_ARRAY_TYPE) bool Object::IsJSWeakCollection() { return IsJSWeakMap() || IsJSWeakSet(); } bool Object::IsDescriptorArray() { return IsFixedArray(); } bool Object::IsTransitionArray() { return IsFixedArray(); } bool Object::IsDeoptimizationInputData() { // Must be a fixed array. if (!IsFixedArray()) return false; // There's no sure way to detect the difference between a fixed array and // a deoptimization data array. Since this is used for asserts we can // check that the length is zero or else the fixed size plus a multiple of // the entry size. int length = FixedArray::cast(this)->length(); if (length == 0) return true; length -= DeoptimizationInputData::kFirstDeoptEntryIndex; return length >= 0 && length % DeoptimizationInputData::kDeoptEntrySize == 0; } bool Object::IsDeoptimizationOutputData() { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a deoptimization data array. Since this is used for asserts we can check // that the length is plausible though. if (FixedArray::cast(this)->length() % 2 != 0) return false; return true; } bool Object::IsDependentCode() { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a dependent codes array. return true; } bool Object::IsTypeFeedbackCells() { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a cache cells array. Since this is used for asserts we can check that // the length is plausible though. if (FixedArray::cast(this)->length() % 2 != 0) return false; return true; } bool Object::IsContext() { if (!Object::IsHeapObject()) return false; Map* map = HeapObject::cast(this)->map(); Heap* heap = map->GetHeap(); return (map == heap->function_context_map() || map == heap->catch_context_map() || map == heap->with_context_map() || map == heap->native_context_map() || map == heap->block_context_map() || map == heap->module_context_map() || map == heap->global_context_map()); } bool Object::IsNativeContext() { return Object::IsHeapObject() && HeapObject::cast(this)->map() == HeapObject::cast(this)->GetHeap()->native_context_map(); } bool Object::IsScopeInfo() { return Object::IsHeapObject() && HeapObject::cast(this)->map() == HeapObject::cast(this)->GetHeap()->scope_info_map(); } TYPE_CHECKER(JSFunction, JS_FUNCTION_TYPE) template <> inline bool Is<JSFunction>(Object* obj) { return obj->IsJSFunction(); } TYPE_CHECKER(Code, CODE_TYPE) TYPE_CHECKER(Oddball, ODDBALL_TYPE) TYPE_CHECKER(Cell, CELL_TYPE) TYPE_CHECKER(PropertyCell, PROPERTY_CELL_TYPE) TYPE_CHECKER(SharedFunctionInfo, SHARED_FUNCTION_INFO_TYPE) TYPE_CHECKER(JSGeneratorObject, JS_GENERATOR_OBJECT_TYPE) TYPE_CHECKER(JSModule, JS_MODULE_TYPE) TYPE_CHECKER(JSValue, JS_VALUE_TYPE) TYPE_CHECKER(JSDate, JS_DATE_TYPE) TYPE_CHECKER(JSMessageObject, JS_MESSAGE_OBJECT_TYPE) bool Object::IsStringWrapper() { return IsJSValue() && JSValue::cast(this)->value()->IsString(); } TYPE_CHECKER(Foreign, FOREIGN_TYPE) bool Object::IsBoolean() { return IsOddball() && ((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0); } TYPE_CHECKER(JSArray, JS_ARRAY_TYPE) TYPE_CHECKER(JSArrayBuffer, JS_ARRAY_BUFFER_TYPE) TYPE_CHECKER(JSTypedArray, JS_TYPED_ARRAY_TYPE) TYPE_CHECKER(JSDataView, JS_DATA_VIEW_TYPE) bool Object::IsJSArrayBufferView() { return IsJSDataView() || IsJSTypedArray(); } TYPE_CHECKER(JSRegExp, JS_REGEXP_TYPE) template <> inline bool Is<JSArray>(Object* obj) { return obj->IsJSArray(); } bool Object::IsHashTable() { return Object::IsHeapObject() && HeapObject::cast(this)->map() == HeapObject::cast(this)->GetHeap()->hash_table_map(); } bool Object::IsDictionary() { return IsHashTable() && this != HeapObject::cast(this)->GetHeap()->string_table(); } bool Object::IsStringTable() { return IsHashTable() && this == HeapObject::cast(this)->GetHeap()->raw_unchecked_string_table(); } bool Object::IsJSFunctionResultCache() { if (!IsFixedArray()) return false; FixedArray* self = FixedArray::cast(this); int length = self->length(); if (length < JSFunctionResultCache::kEntriesIndex) return false; if ((length - JSFunctionResultCache::kEntriesIndex) % JSFunctionResultCache::kEntrySize != 0) { return false; } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { reinterpret_cast<JSFunctionResultCache*>(this)-> JSFunctionResultCacheVerify(); } #endif return true; } bool Object::IsNormalizedMapCache() { if (!IsFixedArray()) return false; if (FixedArray::cast(this)->length() != NormalizedMapCache::kEntries) { return false; } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { reinterpret_cast<NormalizedMapCache*>(this)->NormalizedMapCacheVerify(); } #endif return true; } bool Object::IsCompilationCacheTable() { return IsHashTable(); } bool Object::IsCodeCacheHashTable() { return IsHashTable(); } bool Object::IsPolymorphicCodeCacheHashTable() { return IsHashTable(); } bool Object::IsMapCache() { return IsHashTable(); } bool Object::IsObjectHashTable() { return IsHashTable(); } bool Object::IsPrimitive() { return IsOddball() || IsNumber() || IsString(); } bool Object::IsJSGlobalProxy() { bool result = IsHeapObject() && (HeapObject::cast(this)->map()->instance_type() == JS_GLOBAL_PROXY_TYPE); ASSERT(!result || IsAccessCheckNeeded()); return result; } bool Object::IsGlobalObject() { if (!IsHeapObject()) return false; InstanceType type = HeapObject::cast(this)->map()->instance_type(); return type == JS_GLOBAL_OBJECT_TYPE || type == JS_BUILTINS_OBJECT_TYPE; } TYPE_CHECKER(JSGlobalObject, JS_GLOBAL_OBJECT_TYPE) TYPE_CHECKER(JSBuiltinsObject, JS_BUILTINS_OBJECT_TYPE) bool Object::IsUndetectableObject() { return IsHeapObject() && HeapObject::cast(this)->map()->is_undetectable(); } bool Object::IsAccessCheckNeeded() { return IsHeapObject() && HeapObject::cast(this)->map()->is_access_check_needed(); } bool Object::IsStruct() { if (!IsHeapObject()) return false; switch (HeapObject::cast(this)->map()->instance_type()) { #define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE default: return false; } } #define MAKE_STRUCT_PREDICATE(NAME, Name, name) \ bool Object::Is##Name() { \ return Object::IsHeapObject() \ && HeapObject::cast(this)->map()->instance_type() == NAME##_TYPE; \ } STRUCT_LIST(MAKE_STRUCT_PREDICATE) #undef MAKE_STRUCT_PREDICATE bool Object::IsUndefined() { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUndefined; } bool Object::IsNull() { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kNull; } bool Object::IsTheHole() { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTheHole; } bool Object::IsUninitialized() { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUninitialized; } bool Object::IsTrue() { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTrue; } bool Object::IsFalse() { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kFalse; } bool Object::IsArgumentsMarker() { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kArgumentMarker; } double Object::Number() { ASSERT(IsNumber()); return IsSmi() ? static_cast<double>(reinterpret_cast<Smi*>(this)->value()) : reinterpret_cast<HeapNumber*>(this)->value(); } bool Object::IsNaN() { return this->IsHeapNumber() && std::isnan(HeapNumber::cast(this)->value()); } MaybeObject* Object::ToSmi() { if (IsSmi()) return this; if (IsHeapNumber()) { double value = HeapNumber::cast(this)->value(); int int_value = FastD2I(value); if (value == FastI2D(int_value) && Smi::IsValid(int_value)) { return Smi::FromInt(int_value); } } return Failure::Exception(); } bool Object::HasSpecificClassOf(String* name) { return this->IsJSObject() && (JSObject::cast(this)->class_name() == name); } MaybeObject* Object::GetElement(Isolate* isolate, uint32_t index) { // GetElement can trigger a getter which can cause allocation. // This was not always the case. This ASSERT is here to catch // leftover incorrect uses. ASSERT(AllowHeapAllocation::IsAllowed()); return GetElementWithReceiver(isolate, this, index); } Object* Object::GetElementNoExceptionThrown(Isolate* isolate, uint32_t index) { MaybeObject* maybe = GetElementWithReceiver(isolate, this, index); ASSERT(!maybe->IsFailure()); Object* result = NULL; // Initialization to please compiler. maybe->ToObject(&result); return result; } MaybeObject* Object::GetProperty(Name* key) { PropertyAttributes attributes; return GetPropertyWithReceiver(this, key, &attributes); } MaybeObject* Object::GetProperty(Name* key, PropertyAttributes* attributes) { return GetPropertyWithReceiver(this, key, attributes); } #define FIELD_ADDR(p, offset) \ (reinterpret_cast<byte*>(p) + offset - kHeapObjectTag) #define READ_FIELD(p, offset) \ (*reinterpret_cast<Object**>(FIELD_ADDR(p, offset))) #define WRITE_FIELD(p, offset, value) \ (*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)) = value) #define WRITE_BARRIER(heap, object, offset, value) \ heap->incremental_marking()->RecordWrite( \ object, HeapObject::RawField(object, offset), value); \ if (heap->InNewSpace(value)) { \ heap->RecordWrite(object->address(), offset); \ } #define CONDITIONAL_WRITE_BARRIER(heap, object, offset, value, mode) \ if (mode == UPDATE_WRITE_BARRIER) { \ heap->incremental_marking()->RecordWrite( \ object, HeapObject::RawField(object, offset), value); \ if (heap->InNewSpace(value)) { \ heap->RecordWrite(object->address(), offset); \ } \ } #ifndef V8_TARGET_ARCH_MIPS #define READ_DOUBLE_FIELD(p, offset) \ (*reinterpret_cast<double*>(FIELD_ADDR(p, offset))) #else // V8_TARGET_ARCH_MIPS // Prevent gcc from using load-double (mips ldc1) on (possibly) // non-64-bit aligned HeapNumber::value. static inline double read_double_field(void* p, int offset) { union conversion { double d; uint32_t u[2]; } c; c.u[0] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset))); c.u[1] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4))); return c.d; } #define READ_DOUBLE_FIELD(p, offset) read_double_field(p, offset) #endif // V8_TARGET_ARCH_MIPS #ifndef V8_TARGET_ARCH_MIPS #define WRITE_DOUBLE_FIELD(p, offset, value) \ (*reinterpret_cast<double*>(FIELD_ADDR(p, offset)) = value) #else // V8_TARGET_ARCH_MIPS // Prevent gcc from using store-double (mips sdc1) on (possibly) // non-64-bit aligned HeapNumber::value. static inline void write_double_field(void* p, int offset, double value) { union conversion { double d; uint32_t u[2]; } c; c.d = value; (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset))) = c.u[0]; (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4))) = c.u[1]; } #define WRITE_DOUBLE_FIELD(p, offset, value) \ write_double_field(p, offset, value) #endif // V8_TARGET_ARCH_MIPS #define READ_INT_FIELD(p, offset) \ (*reinterpret_cast<int*>(FIELD_ADDR(p, offset))) #define WRITE_INT_FIELD(p, offset, value) \ (*reinterpret_cast<int*>(FIELD_ADDR(p, offset)) = value) #define READ_INTPTR_FIELD(p, offset) \ (*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset))) #define WRITE_INTPTR_FIELD(p, offset, value) \ (*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)) = value) #define READ_UINT32_FIELD(p, offset) \ (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset))) #define WRITE_UINT32_FIELD(p, offset, value) \ (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)) = value) #define READ_INT32_FIELD(p, offset) \ (*reinterpret_cast<int32_t*>(FIELD_ADDR(p, offset))) #define WRITE_INT32_FIELD(p, offset, value) \ (*reinterpret_cast<int32_t*>(FIELD_ADDR(p, offset)) = value) #define READ_INT64_FIELD(p, offset) \ (*reinterpret_cast<int64_t*>(FIELD_ADDR(p, offset))) #define WRITE_INT64_FIELD(p, offset, value) \ (*reinterpret_cast<int64_t*>(FIELD_ADDR(p, offset)) = value) #define READ_SHORT_FIELD(p, offset) \ (*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset))) #define WRITE_SHORT_FIELD(p, offset, value) \ (*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)) = value) #define READ_BYTE_FIELD(p, offset) \ (*reinterpret_cast<byte*>(FIELD_ADDR(p, offset))) #define WRITE_BYTE_FIELD(p, offset, value) \ (*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)) = value) Object** HeapObject::RawField(HeapObject* obj, int byte_offset) { return &READ_FIELD(obj, byte_offset); } int Smi::value() { return Internals::SmiValue(this); } Smi* Smi::FromInt(int value) { ASSERT(Smi::IsValid(value)); return reinterpret_cast<Smi*>(Internals::IntToSmi(value)); } Smi* Smi::FromIntptr(intptr_t value) { ASSERT(Smi::IsValid(value)); int smi_shift_bits = kSmiTagSize + kSmiShiftSize; return reinterpret_cast<Smi*>((value << smi_shift_bits) | kSmiTag); } Failure::Type Failure::type() const { return static_cast<Type>(value() & kFailureTypeTagMask); } bool Failure::IsInternalError() const { return type() == INTERNAL_ERROR; } bool Failure::IsOutOfMemoryException() const { return type() == OUT_OF_MEMORY_EXCEPTION; } AllocationSpace Failure::allocation_space() const { ASSERT_EQ(RETRY_AFTER_GC, type()); return static_cast<AllocationSpace>((value() >> kFailureTypeTagSize) & kSpaceTagMask); } Failure* Failure::InternalError() { return Construct(INTERNAL_ERROR); } Failure* Failure::Exception() { return Construct(EXCEPTION); } Failure* Failure::OutOfMemoryException(intptr_t value) { return Construct(OUT_OF_MEMORY_EXCEPTION, value); } intptr_t Failure::value() const { return static_cast<intptr_t>( reinterpret_cast<uintptr_t>(this) >> kFailureTagSize); } Failure* Failure::RetryAfterGC() { return RetryAfterGC(NEW_SPACE); } Failure* Failure::RetryAfterGC(AllocationSpace space) { ASSERT((space & ~kSpaceTagMask) == 0); return Construct(RETRY_AFTER_GC, space); } Failure* Failure::Construct(Type type, intptr_t value) { uintptr_t info = (static_cast<uintptr_t>(value) << kFailureTypeTagSize) | type; ASSERT(((info << kFailureTagSize) >> kFailureTagSize) == info); // Fill the unused bits with a pattern that's easy to recognize in crash // dumps. static const int kFailureMagicPattern = 0x0BAD0000; return reinterpret_cast<Failure*>( (info << kFailureTagSize) | kFailureTag | kFailureMagicPattern); } bool Smi::IsValid(intptr_t value) { bool result = Internals::IsValidSmi(value); ASSERT_EQ(result, value >= kMinValue && value <= kMaxValue); return result; } MapWord MapWord::FromMap(Map* map) { return MapWord(reinterpret_cast<uintptr_t>(map)); } Map* MapWord::ToMap() { return reinterpret_cast<Map*>(value_); } bool MapWord::IsForwardingAddress() { return HAS_SMI_TAG(reinterpret_cast<Object*>(value_)); } MapWord MapWord::FromForwardingAddress(HeapObject* object) { Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag; return MapWord(reinterpret_cast<uintptr_t>(raw)); } HeapObject* MapWord::ToForwardingAddress() { ASSERT(IsForwardingAddress()); return HeapObject::FromAddress(reinterpret_cast<Address>(value_)); } #ifdef VERIFY_HEAP void HeapObject::VerifyObjectField(int offset) { VerifyPointer(READ_FIELD(this, offset)); } void HeapObject::VerifySmiField(int offset) { CHECK(READ_FIELD(this, offset)->IsSmi()); } #endif Heap* HeapObject::GetHeap() { Heap* heap = MemoryChunk::FromAddress(reinterpret_cast<Address>(this))->heap(); SLOW_ASSERT(heap != NULL); return heap; } Isolate* HeapObject::GetIsolate() { return GetHeap()->isolate(); } Map* HeapObject::map() { return map_word().ToMap(); } void HeapObject::set_map(Map* value) { set_map_word(MapWord::FromMap(value)); if (value != NULL) { // TODO(1600) We are passing NULL as a slot because maps can never be on // evacuation candidate. value->GetHeap()->incremental_marking()->RecordWrite(this, NULL, value); } } // Unsafe accessor omitting write barrier. void HeapObject::set_map_no_write_barrier(Map* value) { set_map_word(MapWord::FromMap(value)); } MapWord HeapObject::map_word() { return MapWord(reinterpret_cast<uintptr_t>(READ_FIELD(this, kMapOffset))); } void HeapObject::set_map_word(MapWord map_word) { // WRITE_FIELD does not invoke write barrier, but there is no need // here. WRITE_FIELD(this, kMapOffset, reinterpret_cast<Object*>(map_word.value_)); } HeapObject* HeapObject::FromAddress(Address address) { ASSERT_TAG_ALIGNED(address); return reinterpret_cast<HeapObject*>(address + kHeapObjectTag); } Address HeapObject::address() { return reinterpret_cast<Address>(this) - kHeapObjectTag; } int HeapObject::Size() { return SizeFromMap(map()); } void HeapObject::IteratePointers(ObjectVisitor* v, int start, int end) { v->VisitPointers(reinterpret_cast<Object**>(FIELD_ADDR(this, start)), reinterpret_cast<Object**>(FIELD_ADDR(this, end))); } void HeapObject::IteratePointer(ObjectVisitor* v, int offset) { v->VisitPointer(reinterpret_cast<Object**>(FIELD_ADDR(this, offset))); } double HeapNumber::value() { return READ_DOUBLE_FIELD(this, kValueOffset); } void HeapNumber::set_value(double value) { WRITE_DOUBLE_FIELD(this, kValueOffset, value); } int HeapNumber::get_exponent() { return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >> kExponentShift) - kExponentBias; } int HeapNumber::get_sign() { return READ_INT_FIELD(this, kExponentOffset) & kSignMask; } ACCESSORS(JSObject, properties, FixedArray, kPropertiesOffset) Object** FixedArray::GetFirstElementAddress() { return reinterpret_cast<Object**>(FIELD_ADDR(this, OffsetOfElementAt(0))); } bool FixedArray::ContainsOnlySmisOrHoles() { Object* the_hole = GetHeap()->the_hole_value(); Object** current = GetFirstElementAddress(); for (int i = 0; i < length(); ++i) { Object* candidate = *current++; if (!candidate->IsSmi() && candidate != the_hole) return false; } return true; } FixedArrayBase* JSObject::elements() { Object* array = READ_FIELD(this, kElementsOffset); return static_cast<FixedArrayBase*>(array); } void JSObject::ValidateElements() { #ifdef ENABLE_SLOW_ASSERTS if (FLAG_enable_slow_asserts) { ElementsAccessor* accessor = GetElementsAccessor(); accessor->Validate(this); } #endif } bool JSObject::ShouldTrackAllocationInfo() { if (AllocationSite::CanTrack(map()->instance_type())) { if (!IsJSArray()) { return true; } return AllocationSite::GetMode(GetElementsKind()) == TRACK_ALLOCATION_SITE; } return false; } void AllocationSite::Initialize() { set_transition_info(Smi::FromInt(0)); SetElementsKind(GetInitialFastElementsKind()); set_nested_site(Smi::FromInt(0)); set_memento_create_count(Smi::FromInt(0)); set_memento_found_count(Smi::FromInt(0)); set_pretenure_decision(Smi::FromInt(0)); set_dependent_code(DependentCode::cast(GetHeap()->empty_fixed_array()), SKIP_WRITE_BARRIER); } void AllocationSite::MarkZombie() { ASSERT(!IsZombie()); set_pretenure_decision(Smi::FromInt(kZombie)); // Clear all non-smi fields set_transition_info(Smi::FromInt(0)); set_dependent_code(DependentCode::cast(GetHeap()->empty_fixed_array()), SKIP_WRITE_BARRIER); } // Heuristic: We only need to create allocation site info if the boilerplate // elements kind is the initial elements kind. AllocationSiteMode AllocationSite::GetMode( ElementsKind boilerplate_elements_kind) { if (FLAG_track_allocation_sites && IsFastSmiElementsKind(boilerplate_elements_kind)) { return TRACK_ALLOCATION_SITE; } return DONT_TRACK_ALLOCATION_SITE; } AllocationSiteMode AllocationSite::GetMode(ElementsKind from, ElementsKind to) { if (FLAG_track_allocation_sites && IsFastSmiElementsKind(from) && IsMoreGeneralElementsKindTransition(from, to)) { return TRACK_ALLOCATION_SITE; } return DONT_TRACK_ALLOCATION_SITE; } inline bool AllocationSite::CanTrack(InstanceType type) { if (FLAG_allocation_site_pretenuring) { return type == JS_ARRAY_TYPE || type == JS_OBJECT_TYPE; } return type == JS_ARRAY_TYPE; } inline DependentCode::DependencyGroup AllocationSite::ToDependencyGroup( Reason reason) { switch (reason) { case TENURING: return DependentCode::kAllocationSiteTenuringChangedGroup; break; case TRANSITIONS: return DependentCode::kAllocationSiteTransitionChangedGroup; break; } UNREACHABLE(); return DependentCode::kAllocationSiteTransitionChangedGroup; } inline void AllocationSite::IncrementMementoFoundCount() { int value = memento_found_count()->value(); set_memento_found_count(Smi::FromInt(value + 1)); } inline void AllocationSite::IncrementMementoCreateCount() { ASSERT(FLAG_allocation_site_pretenuring); int value = memento_create_count()->value(); set_memento_create_count(Smi::FromInt(value + 1)); } inline bool AllocationSite::DigestPretenuringFeedback() { bool decision_made = false; if (!PretenuringDecisionMade()) { int create_count = memento_create_count()->value(); if (create_count >= kPretenureMinimumCreated) { int found_count = memento_found_count()->value(); double ratio = static_cast<double>(found_count) / create_count; if (FLAG_trace_track_allocation_sites) { PrintF("AllocationSite: %p (created, found, ratio) (%d, %d, %f)\n", static_cast<void*>(this), create_count, found_count, ratio); } int result = ratio >= kPretenureRatio ? kTenure : kDontTenure; set_pretenure_decision(Smi::FromInt(result)); decision_made = true; // TODO(mvstanton): if the decision represents a change, any dependent // code registered for pretenuring changes should be deopted. } } // Clear feedback calculation fields until the next gc. set_memento_found_count(Smi::FromInt(0)); set_memento_create_count(Smi::FromInt(0)); return decision_made; } void JSObject::EnsureCanContainHeapObjectElements(Handle<JSObject> object) { object->ValidateElements(); ElementsKind elements_kind = object->map()->elements_kind(); if (!IsFastObjectElementsKind(elements_kind)) { if (IsFastHoleyElementsKind(elements_kind)) { TransitionElementsKind(object, FAST_HOLEY_ELEMENTS); } else { TransitionElementsKind(object, FAST_ELEMENTS); } } } MaybeObject* JSObject::EnsureCanContainElements(Object** objects, uint32_t count, EnsureElementsMode mode) { ElementsKind current_kind = map()->elements_kind(); ElementsKind target_kind = current_kind; ASSERT(mode != ALLOW_COPIED_DOUBLE_ELEMENTS); bool is_holey = IsFastHoleyElementsKind(current_kind); if (current_kind == FAST_HOLEY_ELEMENTS) return this; Heap* heap = GetHeap(); Object* the_hole = heap->the_hole_value(); for (uint32_t i = 0; i < count; ++i) { Object* current = *objects++; if (current == the_hole) { is_holey = true; target_kind = GetHoleyElementsKind(target_kind); } else if (!current->IsSmi()) { if (mode == ALLOW_CONVERTED_DOUBLE_ELEMENTS && current->IsNumber()) { if (IsFastSmiElementsKind(target_kind)) { if (is_holey) { target_kind = FAST_HOLEY_DOUBLE_ELEMENTS; } else { target_kind = FAST_DOUBLE_ELEMENTS; } } } else if (is_holey) { target_kind = FAST_HOLEY_ELEMENTS; break; } else { target_kind = FAST_ELEMENTS; } } } if (target_kind != current_kind) { return TransitionElementsKind(target_kind); } return this; } MaybeObject* JSObject::EnsureCanContainElements(FixedArrayBase* elements, uint32_t length, EnsureElementsMode mode) { if (elements->map() != GetHeap()->fixed_double_array_map()) { ASSERT(elements->map() == GetHeap()->fixed_array_map() || elements->map() == GetHeap()->fixed_cow_array_map()); if (mode == ALLOW_COPIED_DOUBLE_ELEMENTS) { mode = DONT_ALLOW_DOUBLE_ELEMENTS; } Object** objects = FixedArray::cast(elements)->GetFirstElementAddress(); return EnsureCanContainElements(objects, length, mode); } ASSERT(mode == ALLOW_COPIED_DOUBLE_ELEMENTS); if (GetElementsKind() == FAST_HOLEY_SMI_ELEMENTS) { return TransitionElementsKind(FAST_HOLEY_DOUBLE_ELEMENTS); } else if (GetElementsKind() == FAST_SMI_ELEMENTS) { FixedDoubleArray* double_array = FixedDoubleArray::cast(elements); for (uint32_t i = 0; i < length; ++i) { if (double_array->is_the_hole(i)) { return TransitionElementsKind(FAST_HOLEY_DOUBLE_ELEMENTS); } } return TransitionElementsKind(FAST_DOUBLE_ELEMENTS); } return this; } MaybeObject* JSObject::GetElementsTransitionMap(Isolate* isolate, ElementsKind to_kind) { Map* current_map = map(); ElementsKind from_kind = current_map->elements_kind(); if (from_kind == to_kind) return current_map; Context* native_context = isolate->context()->native_context(); Object* maybe_array_maps = native_context->js_array_maps(); if (maybe_array_maps->IsFixedArray()) { FixedArray* array_maps = FixedArray::cast(maybe_array_maps); if (array_maps->get(from_kind) == current_map) { Object* maybe_transitioned_map = array_maps->get(to_kind); if (maybe_transitioned_map->IsMap()) { return Map::cast(maybe_transitioned_map); } } } return GetElementsTransitionMapSlow(to_kind); } void JSObject::set_map_and_elements(Map* new_map, FixedArrayBase* value, WriteBarrierMode mode) { ASSERT(value->HasValidElements()); if (new_map != NULL) { if (mode == UPDATE_WRITE_BARRIER) { set_map(new_map); } else { ASSERT(mode == SKIP_WRITE_BARRIER); set_map_no_write_barrier(new_map); } } ASSERT((map()->has_fast_smi_or_object_elements() || (value == GetHeap()->empty_fixed_array())) == (value->map() == GetHeap()->fixed_array_map() || value->map() == GetHeap()->fixed_cow_array_map())); ASSERT((value == GetHeap()->empty_fixed_array()) || (map()->has_fast_double_elements() == value->IsFixedDoubleArray())); WRITE_FIELD(this, kElementsOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kElementsOffset, value, mode); } void JSObject::set_elements(FixedArrayBase* value, WriteBarrierMode mode) { set_map_and_elements(NULL, value, mode); } void JSObject::initialize_properties() { ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array())); WRITE_FIELD(this, kPropertiesOffset, GetHeap()->empty_fixed_array()); } void JSObject::initialize_elements() { if (map()->has_fast_smi_or_object_elements() || map()->has_fast_double_elements()) { ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array())); WRITE_FIELD(this, kElementsOffset, GetHeap()->empty_fixed_array()); } else if (map()->has_external_array_elements()) { ExternalArray* empty_array = GetHeap()->EmptyExternalArrayForMap(map()); ASSERT(!GetHeap()->InNewSpace(empty_array)); WRITE_FIELD(this, kElementsOffset, empty_array); } else { UNREACHABLE(); } } MaybeObject* JSObject::ResetElements() { if (map()->is_observed()) { // Maintain invariant that observed elements are always in dictionary mode. SeededNumberDictionary* dictionary; MaybeObject* maybe = SeededNumberDictionary::Allocate(GetHeap(), 0); if (!maybe->To(&dictionary)) return maybe; if (map() == GetHeap()->non_strict_arguments_elements_map()) { FixedArray::cast(elements())->set(1, dictionary); } else { set_elements(dictionary); } return this; } ElementsKind elements_kind = GetInitialFastElementsKind(); if (!FLAG_smi_only_arrays) { elements_kind = FastSmiToObjectElementsKind(elements_kind); } MaybeObject* maybe = GetElementsTransitionMap(GetIsolate(), elements_kind); Map* map; if (!maybe->To(&map)) return maybe; set_map(map); initialize_elements(); return this; } Handle<String> JSObject::ExpectedTransitionKey(Handle<Map> map) { DisallowHeapAllocation no_gc; if (!map->HasTransitionArray()) return Handle<String>::null(); TransitionArray* transitions = map->transitions(); if (!transitions->IsSimpleTransition()) return Handle<String>::null(); int transition = TransitionArray::kSimpleTransitionIndex; PropertyDetails details = transitions->GetTargetDetails(transition); Name* name = transitions->GetKey(transition); if (details.type() != FIELD) return Handle<String>::null(); if (details.attributes() != NONE) return Handle<String>::null(); if (!name->IsString()) return Handle<String>::null(); return Handle<String>(String::cast(name)); } Handle<Map> JSObject::ExpectedTransitionTarget(Handle<Map> map) { ASSERT(!ExpectedTransitionKey(map).is_null()); return Handle<Map>(map->transitions()->GetTarget( TransitionArray::kSimpleTransitionIndex)); } Handle<Map> JSObject::FindTransitionToField(Handle<Map> map, Handle<Name> key) { DisallowHeapAllocation no_allocation; if (!map->HasTransitionArray()) return Handle<Map>::null(); TransitionArray* transitions = map->transitions(); int transition = transitions->Search(*key); if (transition == TransitionArray::kNotFound) return Handle<Map>::null(); PropertyDetails target_details = transitions->GetTargetDetails(transition); if (target_details.type() != FIELD) return Handle<Map>::null(); if (target_details.attributes() != NONE) return Handle<Map>::null(); return Handle<Map>(transitions->GetTarget(transition)); } ACCESSORS(Oddball, to_string, String, kToStringOffset) ACCESSORS(Oddball, to_number, Object, kToNumberOffset) byte Oddball::kind() { return Smi::cast(READ_FIELD(this, kKindOffset))->value(); } void Oddball::set_kind(byte value) { WRITE_FIELD(this, kKindOffset, Smi::FromInt(value)); } Object* Cell::value() { return READ_FIELD(this, kValueOffset); } void Cell::set_value(Object* val, WriteBarrierMode ignored) { // The write barrier is not used for global property cells. ASSERT(!val->IsPropertyCell() && !val->IsCell()); WRITE_FIELD(this, kValueOffset, val); } ACCESSORS(PropertyCell, dependent_code, DependentCode, kDependentCodeOffset) Object* PropertyCell::type_raw() { return READ_FIELD(this, kTypeOffset); } void PropertyCell::set_type_raw(Object* val, WriteBarrierMode ignored) { WRITE_FIELD(this, kTypeOffset, val); } int JSObject::GetHeaderSize() { InstanceType type = map()->instance_type(); // Check for the most common kind of JavaScript object before // falling into the generic switch. This speeds up the internal // field operations considerably on average. if (type == JS_OBJECT_TYPE) return JSObject::kHeaderSize; switch (type) { case JS_GENERATOR_OBJECT_TYPE: return JSGeneratorObject::kSize; case JS_MODULE_TYPE: return JSModule::kSize; case JS_GLOBAL_PROXY_TYPE: return JSGlobalProxy::kSize; case JS_GLOBAL_OBJECT_TYPE: return JSGlobalObject::kSize; case JS_BUILTINS_OBJECT_TYPE: return JSBuiltinsObject::kSize; case JS_FUNCTION_TYPE: return JSFunction::kSize; case JS_VALUE_TYPE: return JSValue::kSize; case JS_DATE_TYPE: return JSDate::kSize; case JS_ARRAY_TYPE: return JSArray::kSize; case JS_ARRAY_BUFFER_TYPE: return JSArrayBuffer::kSize; case JS_TYPED_ARRAY_TYPE: return JSTypedArray::kSize; case JS_DATA_VIEW_TYPE: return JSDataView::kSize; case JS_SET_TYPE: return JSSet::kSize; case JS_MAP_TYPE: return JSMap::kSize; case JS_WEAK_MAP_TYPE: return JSWeakMap::kSize; case JS_WEAK_SET_TYPE: return JSWeakSet::kSize; case JS_REGEXP_TYPE: return JSRegExp::kSize; case JS_CONTEXT_EXTENSION_OBJECT_TYPE: return JSObject::kHeaderSize; case JS_MESSAGE_OBJECT_TYPE: return JSMessageObject::kSize; default: // TODO(jkummerow): Re-enable this. Blink currently hits this // from its CustomElementConstructorBuilder. // UNREACHABLE(); return 0; } } int JSObject::GetInternalFieldCount() { ASSERT(1 << kPointerSizeLog2 == kPointerSize); // Make sure to adjust for the number of in-object properties. These // properties do contribute to the size, but are not internal fields. return ((Size() - GetHeaderSize()) >> kPointerSizeLog2) - map()->inobject_properties(); } int JSObject::GetInternalFieldOffset(int index) { ASSERT(index < GetInternalFieldCount() && index >= 0); return GetHeaderSize() + (kPointerSize * index); } Object* JSObject::GetInternalField(int index) { ASSERT(index < GetInternalFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index)); } void JSObject::SetInternalField(int index, Object* value) { ASSERT(index < GetInternalFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. int offset = GetHeaderSize() + (kPointerSize * index); WRITE_FIELD(this, offset, value); WRITE_BARRIER(GetHeap(), this, offset, value); } void JSObject::SetInternalField(int index, Smi* value) { ASSERT(index < GetInternalFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. int offset = GetHeaderSize() + (kPointerSize * index); WRITE_FIELD(this, offset, value); } MaybeObject* JSObject::FastPropertyAt(Representation representation, int index) { Object* raw_value = RawFastPropertyAt(index); return raw_value->AllocateNewStorageFor(GetHeap(), representation); } // Access fast-case object properties at index. The use of these routines // is needed to correctly distinguish between properties stored in-object and // properties stored in the properties array. Object* JSObject::RawFastPropertyAt(int index) { // Adjust for the number of properties stored in the object. index -= map()->inobject_properties(); if (index < 0) { int offset = map()->instance_size() + (index * kPointerSize); return READ_FIELD(this, offset); } else { ASSERT(index < properties()->length()); return properties()->get(index); } } void JSObject::FastPropertyAtPut(int index, Object* value) { // Adjust for the number of properties stored in the object. index -= map()->inobject_properties(); if (index < 0) { int offset = map()->instance_size() + (index * kPointerSize); WRITE_FIELD(this, offset, value); WRITE_BARRIER(GetHeap(), this, offset, value); } else { ASSERT(index < properties()->length()); properties()->set(index, value); } } int JSObject::GetInObjectPropertyOffset(int index) { // Adjust for the number of properties stored in the object. index -= map()->inobject_properties(); ASSERT(index < 0); return map()->instance_size() + (index * kPointerSize); } Object* JSObject::InObjectPropertyAt(int index) { // Adjust for the number of properties stored in the object. index -= map()->inobject_properties(); ASSERT(index < 0); int offset = map()->instance_size() + (index * kPointerSize); return READ_FIELD(this, offset); } Object* JSObject::InObjectPropertyAtPut(int index, Object* value, WriteBarrierMode mode) { // Adjust for the number of properties stored in the object. index -= map()->inobject_properties(); ASSERT(index < 0); int offset = map()->instance_size() + (index * kPointerSize); WRITE_FIELD(this, offset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); return value; } void JSObject::InitializeBody(Map* map, Object* pre_allocated_value, Object* filler_value) { ASSERT(!filler_value->IsHeapObject() || !GetHeap()->InNewSpace(filler_value)); ASSERT(!pre_allocated_value->IsHeapObject() || !GetHeap()->InNewSpace(pre_allocated_value)); int size = map->instance_size(); int offset = kHeaderSize; if (filler_value != pre_allocated_value) { int pre_allocated = map->pre_allocated_property_fields(); ASSERT(pre_allocated * kPointerSize + kHeaderSize <= size); for (int i = 0; i < pre_allocated; i++) { WRITE_FIELD(this, offset, pre_allocated_value); offset += kPointerSize; } } while (offset < size) { WRITE_FIELD(this, offset, filler_value); offset += kPointerSize; } } bool JSObject::HasFastProperties() { ASSERT(properties()->IsDictionary() == map()->is_dictionary_map()); return !properties()->IsDictionary(); } bool JSObject::TooManyFastProperties(StoreFromKeyed store_mode) { // Allow extra fast properties if the object has more than // kFastPropertiesSoftLimit in-object properties. When this is the case, it is // very unlikely that the object is being used as a dictionary and there is a // good chance that allowing more map transitions will be worth it. Map* map = this->map(); if (map->unused_property_fields() != 0) return false; int inobject = map->inobject_properties(); int limit; if (store_mode == CERTAINLY_NOT_STORE_FROM_KEYED) { limit = Max(inobject, kMaxFastProperties); } else { limit = Max(inobject, kFastPropertiesSoftLimit); } return properties()->length() > limit; } void Struct::InitializeBody(int object_size) { Object* value = GetHeap()->undefined_value(); for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) { WRITE_FIELD(this, offset, value); } } bool Object::ToArrayIndex(uint32_t* index) { if (IsSmi()) { int value = Smi::cast(this)->value(); if (value < 0) return false; *index = value; return true; } if (IsHeapNumber()) { double value = HeapNumber::cast(this)->value(); uint32_t uint_value = static_cast<uint32_t>(value); if (value == static_cast<double>(uint_value)) { *index = uint_value; return true; } } return false; } bool Object::IsStringObjectWithCharacterAt(uint32_t index) { if (!this->IsJSValue()) return false; JSValue* js_value = JSValue::cast(this); if (!js_value->value()->IsString()) return false; String* str = String::cast(js_value->value()); if (index >= static_cast<uint32_t>(str->length())) return false; return true; } void Object::VerifyApiCallResultType() { #if ENABLE_EXTRA_CHECKS if (!(IsSmi() || IsString() || IsSpecObject() || IsHeapNumber() || IsUndefined() || IsTrue() || IsFalse() || IsNull())) { FATAL("API call returned invalid object"); } #endif // ENABLE_EXTRA_CHECKS } FixedArrayBase* FixedArrayBase::cast(Object* object) { ASSERT(object->IsFixedArray() || object->IsFixedDoubleArray() || object->IsConstantPoolArray()); return reinterpret_cast<FixedArrayBase*>(object); } Object* FixedArray::get(int index) { SLOW_ASSERT(index >= 0 && index < this->length()); return READ_FIELD(this, kHeaderSize + index * kPointerSize); } bool FixedArray::is_the_hole(int index) { return get(index) == GetHeap()->the_hole_value(); } void FixedArray::set(int index, Smi* value) { ASSERT(map() != GetHeap()->fixed_cow_array_map()); ASSERT(index >= 0 && index < this->length()); ASSERT(reinterpret_cast<Object*>(value)->IsSmi()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(this, offset, value); } void FixedArray::set(int index, Object* value) { ASSERT(map() != GetHeap()->fixed_cow_array_map()); ASSERT(index >= 0 && index < this->length()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(this, offset, value); WRITE_BARRIER(GetHeap(), this, offset, value); } inline bool FixedDoubleArray::is_the_hole_nan(double value) { return BitCast<uint64_t, double>(value) == kHoleNanInt64; } inline double FixedDoubleArray::hole_nan_as_double() { return BitCast<double, uint64_t>(kHoleNanInt64); } inline double FixedDoubleArray::canonical_not_the_hole_nan_as_double() { ASSERT(BitCast<uint64_t>(OS::nan_value()) != kHoleNanInt64); ASSERT((BitCast<uint64_t>(OS::nan_value()) >> 32) != kHoleNanUpper32); return OS::nan_value(); } double FixedDoubleArray::get_scalar(int index) { ASSERT(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); ASSERT(index >= 0 && index < this->length()); double result = READ_DOUBLE_FIELD(this, kHeaderSize + index * kDoubleSize); ASSERT(!is_the_hole_nan(result)); return result; } int64_t FixedDoubleArray::get_representation(int index) { ASSERT(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); ASSERT(index >= 0 && index < this->length()); return READ_INT64_FIELD(this, kHeaderSize + index * kDoubleSize); } MaybeObject* FixedDoubleArray::get(int index) { if (is_the_hole(index)) { return GetHeap()->the_hole_value(); } else { return GetHeap()->NumberFromDouble(get_scalar(index)); } } void FixedDoubleArray::set(int index, double value) { ASSERT(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); int offset = kHeaderSize + index * kDoubleSize; if (std::isnan(value)) value = canonical_not_the_hole_nan_as_double(); WRITE_DOUBLE_FIELD(this, offset, value); } void FixedDoubleArray::set_the_hole(int index) { ASSERT(map() != GetHeap()->fixed_cow_array_map() && map() != GetHeap()->fixed_array_map()); int offset = kHeaderSize + index * kDoubleSize; WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double()); } bool FixedDoubleArray::is_the_hole(int index) { int offset = kHeaderSize + index * kDoubleSize; return is_the_hole_nan(READ_DOUBLE_FIELD(this, offset)); } SMI_ACCESSORS(ConstantPoolArray, first_ptr_index, kFirstPointerIndexOffset) SMI_ACCESSORS(ConstantPoolArray, first_int32_index, kFirstInt32IndexOffset) int ConstantPoolArray::first_int64_index() { return 0; } int ConstantPoolArray::count_of_int64_entries() { return first_ptr_index(); } int ConstantPoolArray::count_of_ptr_entries() { return first_int32_index() - first_ptr_index(); } int ConstantPoolArray::count_of_int32_entries() { return length() - first_int32_index(); } void ConstantPoolArray::SetEntryCounts(int number_of_int64_entries, int number_of_ptr_entries, int number_of_int32_entries) { set_first_ptr_index(number_of_int64_entries); set_first_int32_index(number_of_int64_entries + number_of_ptr_entries); set_length(number_of_int64_entries + number_of_ptr_entries + number_of_int32_entries); } int64_t ConstantPoolArray::get_int64_entry(int index) { ASSERT(map() == GetHeap()->constant_pool_array_map()); ASSERT(index >= 0 && index < first_ptr_index()); return READ_INT64_FIELD(this, OffsetOfElementAt(index)); } double ConstantPoolArray::get_int64_entry_as_double(int index) { STATIC_ASSERT(kDoubleSize == kInt64Size); ASSERT(map() == GetHeap()->constant_pool_array_map()); ASSERT(index >= 0 && index < first_ptr_index()); return READ_DOUBLE_FIELD(this, OffsetOfElementAt(index)); } Object* ConstantPoolArray::get_ptr_entry(int index) { ASSERT(map() == GetHeap()->constant_pool_array_map()); ASSERT(index >= first_ptr_index() && index < first_int32_index()); return READ_FIELD(this, OffsetOfElementAt(index)); } int32_t ConstantPoolArray::get_int32_entry(int index) { ASSERT(map() == GetHeap()->constant_pool_array_map()); ASSERT(index >= first_int32_index() && index < length()); return READ_INT32_FIELD(this, OffsetOfElementAt(index)); } void ConstantPoolArray::set(int index, Object* value) { ASSERT(map() == GetHeap()->constant_pool_array_map()); ASSERT(index >= first_ptr_index() && index < first_int32_index()); WRITE_FIELD(this, OffsetOfElementAt(index), value); WRITE_BARRIER(GetHeap(), this, OffsetOfElementAt(index), value); } void ConstantPoolArray::set(int index, int64_t value) { ASSERT(map() == GetHeap()->constant_pool_array_map()); ASSERT(index >= first_int64_index() && index < first_ptr_index()); WRITE_INT64_FIELD(this, OffsetOfElementAt(index), value); } void ConstantPoolArray::set(int index, double value) { STATIC_ASSERT(kDoubleSize == kInt64Size); ASSERT(map() == GetHeap()->constant_pool_array_map()); ASSERT(index >= first_int64_index() && index < first_ptr_index()); WRITE_DOUBLE_FIELD(this, OffsetOfElementAt(index), value); } void ConstantPoolArray::set(int index, int32_t value) { ASSERT(map() == GetHeap()->constant_pool_array_map()); ASSERT(index >= this->first_int32_index() && index < length()); WRITE_INT32_FIELD(this, OffsetOfElementAt(index), value); } WriteBarrierMode HeapObject::GetWriteBarrierMode( const DisallowHeapAllocation& promise) { Heap* heap = GetHeap(); if (heap->incremental_marking()->IsMarking()) return UPDATE_WRITE_BARRIER; if (heap->InNewSpace(this)) return SKIP_WRITE_BARRIER; return UPDATE_WRITE_BARRIER; } void FixedArray::set(int index, Object* value, WriteBarrierMode mode) { ASSERT(map() != GetHeap()->fixed_cow_array_map()); ASSERT(index >= 0 && index < this->length()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(this, offset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); } void FixedArray::NoIncrementalWriteBarrierSet(FixedArray* array, int index, Object* value) { ASSERT(array->map() != array->GetHeap()->fixed_cow_array_map()); ASSERT(index >= 0 && index < array->length()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(array, offset, value); Heap* heap = array->GetHeap(); if (heap->InNewSpace(value)) { heap->RecordWrite(array->address(), offset); } } void FixedArray::NoWriteBarrierSet(FixedArray* array, int index, Object* value) { ASSERT(array->map() != array->GetHeap()->fixed_cow_array_map()); ASSERT(index >= 0 && index < array->length()); ASSERT(!array->GetHeap()->InNewSpace(value)); WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value); } void FixedArray::set_undefined(int index) { ASSERT(map() != GetHeap()->fixed_cow_array_map()); ASSERT(index >= 0 && index < this->length()); ASSERT(!GetHeap()->InNewSpace(GetHeap()->undefined_value())); WRITE_FIELD(this, kHeaderSize + index * kPointerSize, GetHeap()->undefined_value()); } void FixedArray::set_null(int index) { ASSERT(index >= 0 && index < this->length()); ASSERT(!GetHeap()->InNewSpace(GetHeap()->null_value())); WRITE_FIELD(this, kHeaderSize + index * kPointerSize, GetHeap()->null_value()); } void FixedArray::set_the_hole(int index) { ASSERT(map() != GetHeap()->fixed_cow_array_map()); ASSERT(index >= 0 && index < this->length()); ASSERT(!GetHeap()->InNewSpace(GetHeap()->the_hole_value())); WRITE_FIELD(this, kHeaderSize + index * kPointerSize, GetHeap()->the_hole_value()); } double* FixedDoubleArray::data_start() { return reinterpret_cast<double*>(FIELD_ADDR(this, kHeaderSize)); } Object** FixedArray::data_start() { return HeapObject::RawField(this, kHeaderSize); } bool DescriptorArray::IsEmpty() { ASSERT(length() >= kFirstIndex || this == GetHeap()->empty_descriptor_array()); return length() < kFirstIndex; } void DescriptorArray::SetNumberOfDescriptors(int number_of_descriptors) { WRITE_FIELD( this, kDescriptorLengthOffset, Smi::FromInt(number_of_descriptors)); } // Perform a binary search in a fixed array. Low and high are entry indices. If // there are three entries in this array it should be called with low=0 and // high=2. template<SearchMode search_mode, typename T> int BinarySearch(T* array, Name* name, int low, int high, int valid_entries) { uint32_t hash = name->Hash(); int limit = high; ASSERT(low <= high); while (low != high) { int mid = (low + high) / 2; Name* mid_name = array->GetSortedKey(mid); uint32_t mid_hash = mid_name->Hash(); if (mid_hash >= hash) { high = mid; } else { low = mid + 1; } } for (; low <= limit; ++low) { int sort_index = array->GetSortedKeyIndex(low); Name* entry = array->GetKey(sort_index); if (entry->Hash() != hash) break; if (entry->Equals(name)) { if (search_mode == ALL_ENTRIES || sort_index < valid_entries) { return sort_index; } return T::kNotFound; } } return T::kNotFound; } // Perform a linear search in this fixed array. len is the number of entry // indices that are valid. template<SearchMode search_mode, typename T> int LinearSearch(T* array, Name* name, int len, int valid_entries) { uint32_t hash = name->Hash(); if (search_mode == ALL_ENTRIES) { for (int number = 0; number < len; number++) { int sorted_index = array->GetSortedKeyIndex(number); Name* entry = array->GetKey(sorted_index); uint32_t current_hash = entry->Hash(); if (current_hash > hash) break; if (current_hash == hash && entry->Equals(name)) return sorted_index; } } else { ASSERT(len >= valid_entries); for (int number = 0; number < valid_entries; number++) { Name* entry = array->GetKey(number); uint32_t current_hash = entry->Hash(); if (current_hash == hash && entry->Equals(name)) return number; } } return T::kNotFound; } template<SearchMode search_mode, typename T> int Search(T* array, Name* name, int valid_entries) { if (search_mode == VALID_ENTRIES) { SLOW_ASSERT(array->IsSortedNoDuplicates(valid_entries)); } else { SLOW_ASSERT(array->IsSortedNoDuplicates()); } int nof = array->number_of_entries(); if (nof == 0) return T::kNotFound; // Fast case: do linear search for small arrays. const int kMaxElementsForLinearSearch = 8; if ((search_mode == ALL_ENTRIES && nof <= kMaxElementsForLinearSearch) || (search_mode == VALID_ENTRIES && valid_entries <= (kMaxElementsForLinearSearch * 3))) { return LinearSearch<search_mode>(array, name, nof, valid_entries); } // Slow case: perform binary search. return BinarySearch<search_mode>(array, name, 0, nof - 1, valid_entries); } int DescriptorArray::Search(Name* name, int valid_descriptors) { return internal::Search<VALID_ENTRIES>(this, name, valid_descriptors); } int DescriptorArray::SearchWithCache(Name* name, Map* map) { int number_of_own_descriptors = map->NumberOfOwnDescriptors(); if (number_of_own_descriptors == 0) return kNotFound; DescriptorLookupCache* cache = GetIsolate()->descriptor_lookup_cache(); int number = cache->Lookup(map, name); if (number == DescriptorLookupCache::kAbsent) { number = Search(name, number_of_own_descriptors); cache->Update(map, name, number); } return number; } PropertyDetails Map::GetLastDescriptorDetails() { return instance_descriptors()->GetDetails(LastAdded()); } void Map::LookupDescriptor(JSObject* holder, Name* name, LookupResult* result) { DescriptorArray* descriptors = this->instance_descriptors(); int number = descriptors->SearchWithCache(name, this); if (number == DescriptorArray::kNotFound) return result->NotFound(); result->DescriptorResult(holder, descriptors->GetDetails(number), number); } void Map::LookupTransition(JSObject* holder, Name* name, LookupResult* result) { if (HasTransitionArray()) { TransitionArray* transition_array = transitions(); int number = transition_array->Search(name); if (number != TransitionArray::kNotFound) { return result->TransitionResult( holder, transition_array->GetTarget(number)); } } result->NotFound(); } Object** DescriptorArray::GetKeySlot(int descriptor_number) { ASSERT(descriptor_number < number_of_descriptors()); return HeapObject::RawField( reinterpret_cast<HeapObject*>(this), OffsetOfElementAt(ToKeyIndex(descriptor_number))); } Object** DescriptorArray::GetDescriptorStartSlot(int descriptor_number) { return GetKeySlot(descriptor_number); } Object** DescriptorArray::GetDescriptorEndSlot(int descriptor_number) { return GetValueSlot(descriptor_number - 1) + 1; } Name* DescriptorArray::GetKey(int descriptor_number) { ASSERT(descriptor_number < number_of_descriptors()); return Name::cast(get(ToKeyIndex(descriptor_number))); } int DescriptorArray::GetSortedKeyIndex(int descriptor_number) { return GetDetails(descriptor_number).pointer(); } Name* DescriptorArray::GetSortedKey(int descriptor_number) { return GetKey(GetSortedKeyIndex(descriptor_number)); } void DescriptorArray::SetSortedKey(int descriptor_index, int pointer) { PropertyDetails details = GetDetails(descriptor_index); set(ToDetailsIndex(descriptor_index), details.set_pointer(pointer).AsSmi()); } void DescriptorArray::SetRepresentation(int descriptor_index, Representation representation) { ASSERT(!representation.IsNone()); PropertyDetails details = GetDetails(descriptor_index); set(ToDetailsIndex(descriptor_index), details.CopyWithRepresentation(representation).AsSmi()); } void DescriptorArray::InitializeRepresentations(Representation representation) { int length = number_of_descriptors(); for (int i = 0; i < length; i++) { SetRepresentation(i, representation); } } Object** DescriptorArray::GetValueSlot(int descriptor_number) { ASSERT(descriptor_number < number_of_descriptors()); return HeapObject::RawField( reinterpret_cast<HeapObject*>(this), OffsetOfElementAt(ToValueIndex(descriptor_number))); } Object* DescriptorArray::GetValue(int descriptor_number) { ASSERT(descriptor_number < number_of_descriptors()); return get(ToValueIndex(descriptor_number)); } PropertyDetails DescriptorArray::GetDetails(int descriptor_number) { ASSERT(descriptor_number < number_of_descriptors()); Object* details = get(ToDetailsIndex(descriptor_number)); return PropertyDetails(Smi::cast(details)); } PropertyType DescriptorArray::GetType(int descriptor_number) { return GetDetails(descriptor_number).type(); } int DescriptorArray::GetFieldIndex(int descriptor_number) { ASSERT(GetDetails(descriptor_number).type() == FIELD); return GetDetails(descriptor_number).field_index(); } Object* DescriptorArray::GetConstant(int descriptor_number) { return GetValue(descriptor_number); } Object* DescriptorArray::GetCallbacksObject(int descriptor_number) { ASSERT(GetType(descriptor_number) == CALLBACKS); return GetValue(descriptor_number); } AccessorDescriptor* DescriptorArray::GetCallbacks(int descriptor_number) { ASSERT(GetType(descriptor_number) == CALLBACKS); Foreign* p = Foreign::cast(GetCallbacksObject(descriptor_number)); return reinterpret_cast<AccessorDescriptor*>(p->foreign_address()); } void DescriptorArray::Get(int descriptor_number, Descriptor* desc) { desc->Init(GetKey(descriptor_number), GetValue(descriptor_number), GetDetails(descriptor_number)); } void DescriptorArray::Set(int descriptor_number, Descriptor* desc, const WhitenessWitness&) { // Range check. ASSERT(descriptor_number < number_of_descriptors()); NoIncrementalWriteBarrierSet(this, ToKeyIndex(descriptor_number), desc->GetKey()); NoIncrementalWriteBarrierSet(this, ToValueIndex(descriptor_number), desc->GetValue()); NoIncrementalWriteBarrierSet(this, ToDetailsIndex(descriptor_number), desc->GetDetails().AsSmi()); } void DescriptorArray::Set(int descriptor_number, Descriptor* desc) { // Range check. ASSERT(descriptor_number < number_of_descriptors()); set(ToKeyIndex(descriptor_number), desc->GetKey()); set(ToValueIndex(descriptor_number), desc->GetValue()); set(ToDetailsIndex(descriptor_number), desc->GetDetails().AsSmi()); } void DescriptorArray::Append(Descriptor* desc, const WhitenessWitness& witness) { int descriptor_number = number_of_descriptors(); SetNumberOfDescriptors(descriptor_number + 1); Set(descriptor_number, desc, witness); uint32_t hash = desc->GetKey()->Hash(); int insertion; for (insertion = descriptor_number; insertion > 0; --insertion) { Name* key = GetSortedKey(insertion - 1); if (key->Hash() <= hash) break; SetSortedKey(insertion, GetSortedKeyIndex(insertion - 1)); } SetSortedKey(insertion, descriptor_number); } void DescriptorArray::Append(Descriptor* desc) { int descriptor_number = number_of_descriptors(); SetNumberOfDescriptors(descriptor_number + 1); Set(descriptor_number, desc); uint32_t hash = desc->GetKey()->Hash(); int insertion; for (insertion = descriptor_number; insertion > 0; --insertion) { Name* key = GetSortedKey(insertion - 1); if (key->Hash() <= hash) break; SetSortedKey(insertion, GetSortedKeyIndex(insertion - 1)); } SetSortedKey(insertion, descriptor_number); } void DescriptorArray::SwapSortedKeys(int first, int second) { int first_key = GetSortedKeyIndex(first); SetSortedKey(first, GetSortedKeyIndex(second)); SetSortedKey(second, first_key); } DescriptorArray::WhitenessWitness::WhitenessWitness(FixedArray* array) : marking_(array->GetHeap()->incremental_marking()) { marking_->EnterNoMarkingScope(); ASSERT(Marking::Color(array) == Marking::WHITE_OBJECT); } DescriptorArray::WhitenessWitness::~WhitenessWitness() { marking_->LeaveNoMarkingScope(); } template<typename Shape, typename Key> int HashTable<Shape, Key>::ComputeCapacity(int at_least_space_for) { const int kMinCapacity = 32; int capacity = RoundUpToPowerOf2(at_least_space_for * 2); if (capacity < kMinCapacity) { capacity = kMinCapacity; // Guarantee min capacity. } return capacity; } template<typename Shape, typename Key> int HashTable<Shape, Key>::FindEntry(Key key) { return FindEntry(GetIsolate(), key); } // Find entry for key otherwise return kNotFound. template<typename Shape, typename Key> int HashTable<Shape, Key>::FindEntry(Isolate* isolate, Key key) { uint32_t capacity = Capacity(); uint32_t entry = FirstProbe(HashTable<Shape, Key>::Hash(key), capacity); uint32_t count = 1; // EnsureCapacity will guarantee the hash table is never full. while (true) { Object* element = KeyAt(entry); // Empty entry. Uses raw unchecked accessors because it is called by the // string table during bootstrapping. if (element == isolate->heap()->raw_unchecked_undefined_value()) break; if (element != isolate->heap()->raw_unchecked_the_hole_value() && Shape::IsMatch(key, element)) return entry; entry = NextProbe(entry, count++, capacity); } return kNotFound; } bool SeededNumberDictionary::requires_slow_elements() { Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi()) return false; return 0 != (Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask); } uint32_t SeededNumberDictionary::max_number_key() { ASSERT(!requires_slow_elements()); Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi()) return 0; uint32_t value = static_cast<uint32_t>(Smi::cast(max_index_object)->value()); return value >> kRequiresSlowElementsTagSize; } void SeededNumberDictionary::set_requires_slow_elements() { set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask)); } // ------------------------------------ // Cast operations CAST_ACCESSOR(FixedArray) CAST_ACCESSOR(FixedDoubleArray) CAST_ACCESSOR(ConstantPoolArray) CAST_ACCESSOR(DescriptorArray) CAST_ACCESSOR(DeoptimizationInputData) CAST_ACCESSOR(DeoptimizationOutputData) CAST_ACCESSOR(DependentCode) CAST_ACCESSOR(TypeFeedbackCells) CAST_ACCESSOR(StringTable) CAST_ACCESSOR(JSFunctionResultCache) CAST_ACCESSOR(NormalizedMapCache) CAST_ACCESSOR(ScopeInfo) CAST_ACCESSOR(CompilationCacheTable) CAST_ACCESSOR(CodeCacheHashTable) CAST_ACCESSOR(PolymorphicCodeCacheHashTable) CAST_ACCESSOR(MapCache) CAST_ACCESSOR(String) CAST_ACCESSOR(SeqString) CAST_ACCESSOR(SeqOneByteString) CAST_ACCESSOR(SeqTwoByteString) CAST_ACCESSOR(SlicedString) CAST_ACCESSOR(ConsString) CAST_ACCESSOR(ExternalString) CAST_ACCESSOR(ExternalAsciiString) CAST_ACCESSOR(ExternalTwoByteString) CAST_ACCESSOR(Symbol) CAST_ACCESSOR(Name) CAST_ACCESSOR(JSReceiver) CAST_ACCESSOR(JSObject) CAST_ACCESSOR(Smi) CAST_ACCESSOR(HeapObject) CAST_ACCESSOR(HeapNumber) CAST_ACCESSOR(Oddball) CAST_ACCESSOR(Cell) CAST_ACCESSOR(PropertyCell) CAST_ACCESSOR(SharedFunctionInfo) CAST_ACCESSOR(Map) CAST_ACCESSOR(JSFunction) CAST_ACCESSOR(GlobalObject) CAST_ACCESSOR(JSGlobalProxy) CAST_ACCESSOR(JSGlobalObject) CAST_ACCESSOR(JSBuiltinsObject) CAST_ACCESSOR(Code) CAST_ACCESSOR(JSArray) CAST_ACCESSOR(JSArrayBuffer) CAST_ACCESSOR(JSArrayBufferView) CAST_ACCESSOR(JSTypedArray) CAST_ACCESSOR(JSDataView) CAST_ACCESSOR(JSRegExp) CAST_ACCESSOR(JSProxy) CAST_ACCESSOR(JSFunctionProxy) CAST_ACCESSOR(JSSet) CAST_ACCESSOR(JSMap) CAST_ACCESSOR(JSWeakMap) CAST_ACCESSOR(JSWeakSet) CAST_ACCESSOR(Foreign) CAST_ACCESSOR(ByteArray) CAST_ACCESSOR(FreeSpace) CAST_ACCESSOR(ExternalArray) CAST_ACCESSOR(ExternalByteArray) CAST_ACCESSOR(ExternalUnsignedByteArray) CAST_ACCESSOR(ExternalShortArray) CAST_ACCESSOR(ExternalUnsignedShortArray) CAST_ACCESSOR(ExternalIntArray) CAST_ACCESSOR(ExternalUnsignedIntArray) CAST_ACCESSOR(ExternalFloatArray) CAST_ACCESSOR(ExternalDoubleArray) CAST_ACCESSOR(ExternalPixelArray) CAST_ACCESSOR(Struct) CAST_ACCESSOR(AccessorInfo) #define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name) STRUCT_LIST(MAKE_STRUCT_CAST) #undef MAKE_STRUCT_CAST template <typename Shape, typename Key> HashTable<Shape, Key>* HashTable<Shape, Key>::cast(Object* obj) { ASSERT(obj->IsHashTable()); return reinterpret_cast<HashTable*>(obj); } SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset) SMI_ACCESSORS(FreeSpace, size, kSizeOffset) SMI_ACCESSORS(String, length, kLengthOffset) uint32_t Name::hash_field() { return READ_UINT32_FIELD(this, kHashFieldOffset); } void Name::set_hash_field(uint32_t value) { WRITE_UINT32_FIELD(this, kHashFieldOffset, value); #if V8_HOST_ARCH_64_BIT WRITE_UINT32_FIELD(this, kHashFieldOffset + kIntSize, 0); #endif } bool Name::Equals(Name* other) { if (other == this) return true; if ((this->IsInternalizedString() && other->IsInternalizedString()) || this->IsSymbol() || other->IsSymbol()) { return false; } return String::cast(this)->SlowEquals(String::cast(other)); } ACCESSORS(Symbol, name, Object, kNameOffset) ACCESSORS(Symbol, flags, Smi, kFlagsOffset) BOOL_ACCESSORS(Symbol, flags, is_private, kPrivateBit) bool String::Equals(String* other) { if (other == this) return true; if (this->IsInternalizedString() && other->IsInternalizedString()) { return false; } return SlowEquals(other); } MaybeObject* String::TryFlatten(PretenureFlag pretenure) { if (!StringShape(this).IsCons()) return this; ConsString* cons = ConsString::cast(this); if (cons->IsFlat()) return cons->first(); return SlowTryFlatten(pretenure); } String* String::TryFlattenGetString(PretenureFlag pretenure) { MaybeObject* flat = TryFlatten(pretenure); Object* successfully_flattened; if (!flat->ToObject(&successfully_flattened)) return this; return String::cast(successfully_flattened); } uint16_t String::Get(int index) { ASSERT(index >= 0 && index < length()); switch (StringShape(this).full_representation_tag()) { case kSeqStringTag | kOneByteStringTag: return SeqOneByteString::cast(this)->SeqOneByteStringGet(index); case kSeqStringTag | kTwoByteStringTag: return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index); case kConsStringTag | kOneByteStringTag: case kConsStringTag | kTwoByteStringTag: return ConsString::cast(this)->ConsStringGet(index); case kExternalStringTag | kOneByteStringTag: return ExternalAsciiString::cast(this)->ExternalAsciiStringGet(index); case kExternalStringTag | kTwoByteStringTag: return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index); case kSlicedStringTag | kOneByteStringTag: case kSlicedStringTag | kTwoByteStringTag: return SlicedString::cast(this)->SlicedStringGet(index); default: break; } UNREACHABLE(); return 0; } void String::Set(int index, uint16_t value) { ASSERT(index >= 0 && index < length()); ASSERT(StringShape(this).IsSequential()); return this->IsOneByteRepresentation() ? SeqOneByteString::cast(this)->SeqOneByteStringSet(index, value) : SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value); } bool String::IsFlat() { if (!StringShape(this).IsCons()) return true; return ConsString::cast(this)->second()->length() == 0; } String* String::GetUnderlying() { // Giving direct access to underlying string only makes sense if the // wrapping string is already flattened. ASSERT(this->IsFlat()); ASSERT(StringShape(this).IsIndirect()); STATIC_ASSERT(ConsString::kFirstOffset == SlicedString::kParentOffset); const int kUnderlyingOffset = SlicedString::kParentOffset; return String::cast(READ_FIELD(this, kUnderlyingOffset)); } template<class Visitor, class ConsOp> void String::Visit( String* string, unsigned offset, Visitor& visitor, ConsOp& cons_op, int32_t type, unsigned length) { ASSERT(length == static_cast<unsigned>(string->length())); ASSERT(offset <= length); unsigned slice_offset = offset; while (true) { ASSERT(type == string->map()->instance_type()); switch (type & (kStringRepresentationMask | kStringEncodingMask)) { case kSeqStringTag | kOneByteStringTag: visitor.VisitOneByteString( SeqOneByteString::cast(string)->GetChars() + slice_offset, length - offset); return; case kSeqStringTag | kTwoByteStringTag: visitor.VisitTwoByteString( SeqTwoByteString::cast(string)->GetChars() + slice_offset, length - offset); return; case kExternalStringTag | kOneByteStringTag: visitor.VisitOneByteString( ExternalAsciiString::cast(string)->GetChars() + slice_offset, length - offset); return; case kExternalStringTag | kTwoByteStringTag: visitor.VisitTwoByteString( ExternalTwoByteString::cast(string)->GetChars() + slice_offset, length - offset); return; case kSlicedStringTag | kOneByteStringTag: case kSlicedStringTag | kTwoByteStringTag: { SlicedString* slicedString = SlicedString::cast(string); slice_offset += slicedString->offset(); string = slicedString->parent(); type = string->map()->instance_type(); continue; } case kConsStringTag | kOneByteStringTag: case kConsStringTag | kTwoByteStringTag: string = cons_op.Operate(string, &offset, &type, &length); if (string == NULL) return; slice_offset = offset; ASSERT(length == static_cast<unsigned>(string->length())); continue; default: UNREACHABLE(); return; } } } // TODO(dcarney): Remove this class after conversion to VisitFlat. class ConsStringCaptureOp { public: inline ConsStringCaptureOp() : cons_string_(NULL) {} inline String* Operate(String* string, unsigned*, int32_t*, unsigned*) { cons_string_ = ConsString::cast(string); return NULL; } ConsString* cons_string_; }; template<class Visitor> ConsString* String::VisitFlat(Visitor* visitor, String* string, int offset, int length, int32_t type) { ASSERT(length >= 0 && length == string->length()); ASSERT(offset >= 0 && offset <= length); ConsStringCaptureOp op; Visit(string, offset, *visitor, op, type, static_cast<unsigned>(length)); return op.cons_string_; } uint16_t SeqOneByteString::SeqOneByteStringGet(int index) { ASSERT(index >= 0 && index < length()); return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); } void SeqOneByteString::SeqOneByteStringSet(int index, uint16_t value) { ASSERT(index >= 0 && index < length() && value <= kMaxOneByteCharCode); WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, static_cast<byte>(value)); } Address SeqOneByteString::GetCharsAddress() { return FIELD_ADDR(this, kHeaderSize); } uint8_t* SeqOneByteString::GetChars() { return reinterpret_cast<uint8_t*>(GetCharsAddress()); } Address SeqTwoByteString::GetCharsAddress() { return FIELD_ADDR(this, kHeaderSize); } uc16* SeqTwoByteString::GetChars() { return reinterpret_cast<uc16*>(FIELD_ADDR(this, kHeaderSize)); } uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) { ASSERT(index >= 0 && index < length()); return READ_SHORT_FIELD(this, kHeaderSize + index * kShortSize); } void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) { ASSERT(index >= 0 && index < length()); WRITE_SHORT_FIELD(this, kHeaderSize + index * kShortSize, value); } int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) { return SizeFor(length()); } int SeqOneByteString::SeqOneByteStringSize(InstanceType instance_type) { return SizeFor(length()); } String* SlicedString::parent() { return String::cast(READ_FIELD(this, kParentOffset)); } void SlicedString::set_parent(String* parent, WriteBarrierMode mode) { ASSERT(parent->IsSeqString() || parent->IsExternalString()); WRITE_FIELD(this, kParentOffset, parent); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kParentOffset, parent, mode); } SMI_ACCESSORS(SlicedString, offset, kOffsetOffset) String* ConsString::first() { return String::cast(READ_FIELD(this, kFirstOffset)); } Object* ConsString::unchecked_first() { return READ_FIELD(this, kFirstOffset); } void ConsString::set_first(String* value, WriteBarrierMode mode) { WRITE_FIELD(this, kFirstOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kFirstOffset, value, mode); } String* ConsString::second() { return String::cast(READ_FIELD(this, kSecondOffset)); } Object* ConsString::unchecked_second() { return READ_FIELD(this, kSecondOffset); } void ConsString::set_second(String* value, WriteBarrierMode mode) { WRITE_FIELD(this, kSecondOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kSecondOffset, value, mode); } bool ExternalString::is_short() { InstanceType type = map()->instance_type(); return (type & kShortExternalStringMask) == kShortExternalStringTag; } const ExternalAsciiString::Resource* ExternalAsciiString::resource() { return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)); } void ExternalAsciiString::update_data_cache() { if (is_short()) return; const char** data_field = reinterpret_cast<const char**>(FIELD_ADDR(this, kResourceDataOffset)); *data_field = resource()->data(); } void ExternalAsciiString::set_resource( const ExternalAsciiString::Resource* resource) { *reinterpret_cast<const Resource**>( FIELD_ADDR(this, kResourceOffset)) = resource; if (resource != NULL) update_data_cache(); } const uint8_t* ExternalAsciiString::GetChars() { return reinterpret_cast<const uint8_t*>(resource()->data()); } uint16_t ExternalAsciiString::ExternalAsciiStringGet(int index) { ASSERT(index >= 0 && index < length()); return GetChars()[index]; } const ExternalTwoByteString::Resource* ExternalTwoByteString::resource() { return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)); } void ExternalTwoByteString::update_data_cache() { if (is_short()) return; const uint16_t** data_field = reinterpret_cast<const uint16_t**>(FIELD_ADDR(this, kResourceDataOffset)); *data_field = resource()->data(); } void ExternalTwoByteString::set_resource( const ExternalTwoByteString::Resource* resource) { *reinterpret_cast<const Resource**>( FIELD_ADDR(this, kResourceOffset)) = resource; if (resource != NULL) update_data_cache(); } const uint16_t* ExternalTwoByteString::GetChars() { return resource()->data(); } uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) { ASSERT(index >= 0 && index < length()); return GetChars()[index]; } const uint16_t* ExternalTwoByteString::ExternalTwoByteStringGetData( unsigned start) { return GetChars() + start; } String* ConsStringNullOp::Operate(String*, unsigned*, int32_t*, unsigned*) { return NULL; } unsigned ConsStringIteratorOp::OffsetForDepth(unsigned depth) { return depth & kDepthMask; } void ConsStringIteratorOp::PushLeft(ConsString* string) { frames_[depth_++ & kDepthMask] = string; } void ConsStringIteratorOp::PushRight(ConsString* string) { // Inplace update. frames_[(depth_-1) & kDepthMask] = string; } void ConsStringIteratorOp::AdjustMaximumDepth() { if (depth_ > maximum_depth_) maximum_depth_ = depth_; } void ConsStringIteratorOp::Pop() { ASSERT(depth_ > 0); ASSERT(depth_ <= maximum_depth_); depth_--; } bool ConsStringIteratorOp::HasMore() { return depth_ != 0; } void ConsStringIteratorOp::Reset() { depth_ = 0; } String* ConsStringIteratorOp::ContinueOperation(int32_t* type_out, unsigned* length_out) { bool blew_stack = false; String* string = NextLeaf(&blew_stack, type_out, length_out); // String found. if (string != NULL) { // Verify output. ASSERT(*length_out == static_cast<unsigned>(string->length())); ASSERT(*type_out == string->map()->instance_type()); return string; } // Traversal complete. if (!blew_stack) return NULL; // Restart search from root. unsigned offset_out; string = Search(&offset_out, type_out, length_out); // Verify output. ASSERT(string == NULL || offset_out == 0); ASSERT(string == NULL || *length_out == static_cast<unsigned>(string->length())); ASSERT(string == NULL || *type_out == string->map()->instance_type()); return string; } uint16_t StringCharacterStream::GetNext() { ASSERT(buffer8_ != NULL && end_ != NULL); // Advance cursor if needed. // TODO(dcarney): Ensure uses of the api call HasMore first and avoid this. if (buffer8_ == end_) HasMore(); ASSERT(buffer8_ < end_); return is_one_byte_ ? *buffer8_++ : *buffer16_++; } StringCharacterStream::StringCharacterStream(String* string, ConsStringIteratorOp* op, unsigned offset) : is_one_byte_(false), op_(op) { Reset(string, offset); } void StringCharacterStream::Reset(String* string, unsigned offset) { op_->Reset(); buffer8_ = NULL; end_ = NULL; int32_t type = string->map()->instance_type(); unsigned length = string->length(); String::Visit(string, offset, *this, *op_, type, length); } bool StringCharacterStream::HasMore() { if (buffer8_ != end_) return true; if (!op_->HasMore()) return false; unsigned length; int32_t type; String* string = op_->ContinueOperation(&type, &length); if (string == NULL) return false; ASSERT(!string->IsConsString()); ASSERT(string->length() != 0); ConsStringNullOp null_op; String::Visit(string, 0, *this, null_op, type, length); ASSERT(buffer8_ != end_); return true; } void StringCharacterStream::VisitOneByteString( const uint8_t* chars, unsigned length) { is_one_byte_ = true; buffer8_ = chars; end_ = chars + length; } void StringCharacterStream::VisitTwoByteString( const uint16_t* chars, unsigned length) { is_one_byte_ = false; buffer16_ = chars; end_ = reinterpret_cast<const uint8_t*>(chars + length); } void JSFunctionResultCache::MakeZeroSize() { set_finger_index(kEntriesIndex); set_size(kEntriesIndex); } void JSFunctionResultCache::Clear() { int cache_size = size(); Object** entries_start = RawField(this, OffsetOfElementAt(kEntriesIndex)); MemsetPointer(entries_start, GetHeap()->the_hole_value(), cache_size - kEntriesIndex); MakeZeroSize(); } int JSFunctionResultCache::size() { return Smi::cast(get(kCacheSizeIndex))->value(); } void JSFunctionResultCache::set_size(int size) { set(kCacheSizeIndex, Smi::FromInt(size)); } int JSFunctionResultCache::finger_index() { return Smi::cast(get(kFingerIndex))->value(); } void JSFunctionResultCache::set_finger_index(int finger_index) { set(kFingerIndex, Smi::FromInt(finger_index)); } byte ByteArray::get(int index) { ASSERT(index >= 0 && index < this->length()); return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); } void ByteArray::set(int index, byte value) { ASSERT(index >= 0 && index < this->length()); WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value); } int ByteArray::get_int(int index) { ASSERT(index >= 0 && (index * kIntSize) < this->length()); return READ_INT_FIELD(this, kHeaderSize + index * kIntSize); } ByteArray* ByteArray::FromDataStartAddress(Address address) { ASSERT_TAG_ALIGNED(address); return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag); } Address ByteArray::GetDataStartAddress() { return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize; } uint8_t* ExternalPixelArray::external_pixel_pointer() { return reinterpret_cast<uint8_t*>(external_pointer()); } uint8_t ExternalPixelArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); uint8_t* ptr = external_pixel_pointer(); return ptr[index]; } MaybeObject* ExternalPixelArray::get(int index) { return Smi::FromInt(static_cast<int>(get_scalar(index))); } void ExternalPixelArray::set(int index, uint8_t value) { ASSERT((index >= 0) && (index < this->length())); uint8_t* ptr = external_pixel_pointer(); ptr[index] = value; } void* ExternalArray::external_pointer() { intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset); return reinterpret_cast<void*>(ptr); } void ExternalArray::set_external_pointer(void* value, WriteBarrierMode mode) { intptr_t ptr = reinterpret_cast<intptr_t>(value); WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr); } int8_t ExternalByteArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); int8_t* ptr = static_cast<int8_t*>(external_pointer()); return ptr[index]; } MaybeObject* ExternalByteArray::get(int index) { return Smi::FromInt(static_cast<int>(get_scalar(index))); } void ExternalByteArray::set(int index, int8_t value) { ASSERT((index >= 0) && (index < this->length())); int8_t* ptr = static_cast<int8_t*>(external_pointer()); ptr[index] = value; } uint8_t ExternalUnsignedByteArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); uint8_t* ptr = static_cast<uint8_t*>(external_pointer()); return ptr[index]; } MaybeObject* ExternalUnsignedByteArray::get(int index) { return Smi::FromInt(static_cast<int>(get_scalar(index))); } void ExternalUnsignedByteArray::set(int index, uint8_t value) { ASSERT((index >= 0) && (index < this->length())); uint8_t* ptr = static_cast<uint8_t*>(external_pointer()); ptr[index] = value; } int16_t ExternalShortArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); int16_t* ptr = static_cast<int16_t*>(external_pointer()); return ptr[index]; } MaybeObject* ExternalShortArray::get(int index) { return Smi::FromInt(static_cast<int>(get_scalar(index))); } void ExternalShortArray::set(int index, int16_t value) { ASSERT((index >= 0) && (index < this->length())); int16_t* ptr = static_cast<int16_t*>(external_pointer()); ptr[index] = value; } uint16_t ExternalUnsignedShortArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); uint16_t* ptr = static_cast<uint16_t*>(external_pointer()); return ptr[index]; } MaybeObject* ExternalUnsignedShortArray::get(int index) { return Smi::FromInt(static_cast<int>(get_scalar(index))); } void ExternalUnsignedShortArray::set(int index, uint16_t value) { ASSERT((index >= 0) && (index < this->length())); uint16_t* ptr = static_cast<uint16_t*>(external_pointer()); ptr[index] = value; } int32_t ExternalIntArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); int32_t* ptr = static_cast<int32_t*>(external_pointer()); return ptr[index]; } MaybeObject* ExternalIntArray::get(int index) { return GetHeap()->NumberFromInt32(get_scalar(index)); } void ExternalIntArray::set(int index, int32_t value) { ASSERT((index >= 0) && (index < this->length())); int32_t* ptr = static_cast<int32_t*>(external_pointer()); ptr[index] = value; } uint32_t ExternalUnsignedIntArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); uint32_t* ptr = static_cast<uint32_t*>(external_pointer()); return ptr[index]; } MaybeObject* ExternalUnsignedIntArray::get(int index) { return GetHeap()->NumberFromUint32(get_scalar(index)); } void ExternalUnsignedIntArray::set(int index, uint32_t value) { ASSERT((index >= 0) && (index < this->length())); uint32_t* ptr = static_cast<uint32_t*>(external_pointer()); ptr[index] = value; } float ExternalFloatArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); float* ptr = static_cast<float*>(external_pointer()); return ptr[index]; } MaybeObject* ExternalFloatArray::get(int index) { return GetHeap()->NumberFromDouble(get_scalar(index)); } void ExternalFloatArray::set(int index, float value) { ASSERT((index >= 0) && (index < this->length())); float* ptr = static_cast<float*>(external_pointer()); ptr[index] = value; } double ExternalDoubleArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); double* ptr = static_cast<double*>(external_pointer()); return ptr[index]; } MaybeObject* ExternalDoubleArray::get(int index) { return GetHeap()->NumberFromDouble(get_scalar(index)); } void ExternalDoubleArray::set(int index, double value) { ASSERT((index >= 0) && (index < this->length())); double* ptr = static_cast<double*>(external_pointer()); ptr[index] = value; } int Map::visitor_id() { return READ_BYTE_FIELD(this, kVisitorIdOffset); } void Map::set_visitor_id(int id) { ASSERT(0 <= id && id < 256); WRITE_BYTE_FIELD(this, kVisitorIdOffset, static_cast<byte>(id)); } int Map::instance_size() { return READ_BYTE_FIELD(this, kInstanceSizeOffset) << kPointerSizeLog2; } int Map::inobject_properties() { return READ_BYTE_FIELD(this, kInObjectPropertiesOffset); } int Map::pre_allocated_property_fields() { return READ_BYTE_FIELD(this, kPreAllocatedPropertyFieldsOffset); } int HeapObject::SizeFromMap(Map* map) { int instance_size = map->instance_size(); if (instance_size != kVariableSizeSentinel) return instance_size; // Only inline the most frequent cases. int instance_type = static_cast<int>(map->instance_type()); if (instance_type == FIXED_ARRAY_TYPE) { return FixedArray::BodyDescriptor::SizeOf(map, this); } if (instance_type == ASCII_STRING_TYPE || instance_type == ASCII_INTERNALIZED_STRING_TYPE) { return SeqOneByteString::SizeFor( reinterpret_cast<SeqOneByteString*>(this)->length()); } if (instance_type == BYTE_ARRAY_TYPE) { return reinterpret_cast<ByteArray*>(this)->ByteArraySize(); } if (instance_type == FREE_SPACE_TYPE) { return reinterpret_cast<FreeSpace*>(this)->size(); } if (instance_type == STRING_TYPE || instance_type == INTERNALIZED_STRING_TYPE) { return SeqTwoByteString::SizeFor( reinterpret_cast<SeqTwoByteString*>(this)->length()); } if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) { return FixedDoubleArray::SizeFor( reinterpret_cast<FixedDoubleArray*>(this)->length()); } if (instance_type == CONSTANT_POOL_ARRAY_TYPE) { return ConstantPoolArray::SizeFor( reinterpret_cast<ConstantPoolArray*>(this)->count_of_int64_entries(), reinterpret_cast<ConstantPoolArray*>(this)->count_of_ptr_entries(), reinterpret_cast<ConstantPoolArray*>(this)->count_of_int32_entries()); } ASSERT(instance_type == CODE_TYPE); return reinterpret_cast<Code*>(this)->CodeSize(); } void Map::set_instance_size(int value) { ASSERT_EQ(0, value & (kPointerSize - 1)); value >>= kPointerSizeLog2; ASSERT(0 <= value && value < 256); WRITE_BYTE_FIELD(this, kInstanceSizeOffset, static_cast<byte>(value)); } void Map::set_inobject_properties(int value) { ASSERT(0 <= value && value < 256); WRITE_BYTE_FIELD(this, kInObjectPropertiesOffset, static_cast<byte>(value)); } void Map::set_pre_allocated_property_fields(int value) { ASSERT(0 <= value && value < 256); WRITE_BYTE_FIELD(this, kPreAllocatedPropertyFieldsOffset, static_cast<byte>(value)); } InstanceType Map::instance_type() { return static_cast<InstanceType>(READ_BYTE_FIELD(this, kInstanceTypeOffset)); } void Map::set_instance_type(InstanceType value) { WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value); } int Map::unused_property_fields() { return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset); } void Map::set_unused_property_fields(int value) { WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255)); } byte Map::bit_field() { return READ_BYTE_FIELD(this, kBitFieldOffset); } void Map::set_bit_field(byte value) { WRITE_BYTE_FIELD(this, kBitFieldOffset, value); } byte Map::bit_field2() { return READ_BYTE_FIELD(this, kBitField2Offset); } void Map::set_bit_field2(byte value) { WRITE_BYTE_FIELD(this, kBitField2Offset, value); } void Map::set_non_instance_prototype(bool value) { if (value) { set_bit_field(bit_field() | (1 << kHasNonInstancePrototype)); } else { set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype)); } } bool Map::has_non_instance_prototype() { return ((1 << kHasNonInstancePrototype) & bit_field()) != 0; } void Map::set_function_with_prototype(bool value) { set_bit_field3(FunctionWithPrototype::update(bit_field3(), value)); } bool Map::function_with_prototype() { return FunctionWithPrototype::decode(bit_field3()); } void Map::set_is_access_check_needed(bool access_check_needed) { if (access_check_needed) { set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded)); } else { set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded)); } } bool Map::is_access_check_needed() { return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0; } void Map::set_is_extensible(bool value) { if (value) { set_bit_field2(bit_field2() | (1 << kIsExtensible)); } else { set_bit_field2(bit_field2() & ~(1 << kIsExtensible)); } } bool Map::is_extensible() { return ((1 << kIsExtensible) & bit_field2()) != 0; } void Map::set_attached_to_shared_function_info(bool value) { if (value) { set_bit_field2(bit_field2() | (1 << kAttachedToSharedFunctionInfo)); } else { set_bit_field2(bit_field2() & ~(1 << kAttachedToSharedFunctionInfo)); } } bool Map::attached_to_shared_function_info() { return ((1 << kAttachedToSharedFunctionInfo) & bit_field2()) != 0; } void Map::set_is_shared(bool value) { set_bit_field3(IsShared::update(bit_field3(), value)); } bool Map::is_shared() { return IsShared::decode(bit_field3()); } void Map::set_dictionary_map(bool value) { if (value) mark_unstable(); set_bit_field3(DictionaryMap::update(bit_field3(), value)); } bool Map::is_dictionary_map() { return DictionaryMap::decode(bit_field3()); } Code::Flags Code::flags() { return static_cast<Flags>(READ_INT_FIELD(this, kFlagsOffset)); } void Map::set_owns_descriptors(bool is_shared) { set_bit_field3(OwnsDescriptors::update(bit_field3(), is_shared)); } bool Map::owns_descriptors() { return OwnsDescriptors::decode(bit_field3()); } void Map::set_has_instance_call_handler() { set_bit_field3(HasInstanceCallHandler::update(bit_field3(), true)); } bool Map::has_instance_call_handler() { return HasInstanceCallHandler::decode(bit_field3()); } void Map::deprecate() { set_bit_field3(Deprecated::update(bit_field3(), true)); } bool Map::is_deprecated() { if (!FLAG_track_fields) return false; return Deprecated::decode(bit_field3()); } void Map::set_migration_target(bool value) { set_bit_field3(IsMigrationTarget::update(bit_field3(), value)); } bool Map::is_migration_target() { if (!FLAG_track_fields) return false; return IsMigrationTarget::decode(bit_field3()); } void Map::freeze() { set_bit_field3(IsFrozen::update(bit_field3(), true)); } bool Map::is_frozen() { return IsFrozen::decode(bit_field3()); } void Map::mark_unstable() { set_bit_field3(IsUnstable::update(bit_field3(), true)); } bool Map::is_stable() { return !IsUnstable::decode(bit_field3()); } bool Map::has_code_cache() { return code_cache() != GetIsolate()->heap()->empty_fixed_array(); } bool Map::CanBeDeprecated() { int descriptor = LastAdded(); for (int i = 0; i <= descriptor; i++) { PropertyDetails details = instance_descriptors()->GetDetails(i); if (FLAG_track_fields && details.representation().IsNone()) { return true; } if (FLAG_track_fields && details.representation().IsSmi()) { return true; } if (FLAG_track_double_fields && details.representation().IsDouble()) { return true; } if (FLAG_track_heap_object_fields && details.representation().IsHeapObject()) { return true; } if (FLAG_track_fields && details.type() == CONSTANT) { return true; } } return false; } void Map::NotifyLeafMapLayoutChange() { if (is_stable()) { mark_unstable(); dependent_code()->DeoptimizeDependentCodeGroup( GetIsolate(), DependentCode::kPrototypeCheckGroup); } } bool Map::CanOmitMapChecks() { return is_stable() && FLAG_omit_map_checks_for_leaf_maps; } int DependentCode::number_of_entries(DependencyGroup group) { if (length() == 0) return 0; return Smi::cast(get(group))->value(); } void DependentCode::set_number_of_entries(DependencyGroup group, int value) { set(group, Smi::FromInt(value)); } bool DependentCode::is_code_at(int i) { return get(kCodesStartIndex + i)->IsCode(); } Code* DependentCode::code_at(int i) { return Code::cast(get(kCodesStartIndex + i)); } CompilationInfo* DependentCode::compilation_info_at(int i) { return reinterpret_cast<CompilationInfo*>( Foreign::cast(get(kCodesStartIndex + i))->foreign_address()); } void DependentCode::set_object_at(int i, Object* object) { set(kCodesStartIndex + i, object); } Object* DependentCode::object_at(int i) { return get(kCodesStartIndex + i); } Object** DependentCode::slot_at(int i) { return HeapObject::RawField( this, FixedArray::OffsetOfElementAt(kCodesStartIndex + i)); } void DependentCode::clear_at(int i) { set_undefined(kCodesStartIndex + i); } void DependentCode::copy(int from, int to) { set(kCodesStartIndex + to, get(kCodesStartIndex + from)); } void DependentCode::ExtendGroup(DependencyGroup group) { GroupStartIndexes starts(this); for (int g = kGroupCount - 1; g > group; g--) { if (starts.at(g) < starts.at(g + 1)) { copy(starts.at(g), starts.at(g + 1)); } } } void Code::set_flags(Code::Flags flags) { STATIC_ASSERT(Code::NUMBER_OF_KINDS <= KindField::kMax + 1); // Make sure that all call stubs have an arguments count. ASSERT((ExtractKindFromFlags(flags) != CALL_IC && ExtractKindFromFlags(flags) != KEYED_CALL_IC) || ExtractArgumentsCountFromFlags(flags) >= 0); WRITE_INT_FIELD(this, kFlagsOffset, flags); } Code::Kind Code::kind() { return ExtractKindFromFlags(flags()); } InlineCacheState Code::ic_state() { InlineCacheState result = ExtractICStateFromFlags(flags()); // Only allow uninitialized or debugger states for non-IC code // objects. This is used in the debugger to determine whether or not // a call to code object has been replaced with a debug break call. ASSERT(is_inline_cache_stub() || result == UNINITIALIZED || result == DEBUG_STUB); return result; } ExtraICState Code::extra_ic_state() { ASSERT((is_inline_cache_stub() && !needs_extended_extra_ic_state(kind())) || ic_state() == DEBUG_STUB); return ExtractExtraICStateFromFlags(flags()); } ExtraICState Code::extended_extra_ic_state() { ASSERT(is_inline_cache_stub() || ic_state() == DEBUG_STUB); ASSERT(needs_extended_extra_ic_state(kind())); return ExtractExtendedExtraICStateFromFlags(flags()); } Code::StubType Code::type() { return ExtractTypeFromFlags(flags()); } int Code::arguments_count() { ASSERT(is_call_stub() || is_keyed_call_stub() || kind() == STUB || is_handler()); return ExtractArgumentsCountFromFlags(flags()); } // For initialization. void Code::set_raw_kind_specific_flags1(int value) { WRITE_INT_FIELD(this, kKindSpecificFlags1Offset, value); } void Code::set_raw_kind_specific_flags2(int value) { WRITE_INT_FIELD(this, kKindSpecificFlags2Offset, value); } inline bool Code::is_crankshafted() { return IsCrankshaftedField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)); } inline void Code::set_is_crankshafted(bool value) { int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = IsCrankshaftedField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } int Code::major_key() { ASSERT(has_major_key()); return StubMajorKeyField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)); } void Code::set_major_key(int major) { ASSERT(has_major_key()); ASSERT(0 <= major && major < 256); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = StubMajorKeyField::update(previous, major); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } bool Code::has_major_key() { return kind() == STUB || kind() == HANDLER || kind() == BINARY_OP_IC || kind() == COMPARE_IC || kind() == COMPARE_NIL_IC || kind() == LOAD_IC || kind() == KEYED_LOAD_IC || kind() == STORE_IC || kind() == KEYED_STORE_IC || kind() == KEYED_CALL_IC || kind() == TO_BOOLEAN_IC; } bool Code::optimizable() { ASSERT_EQ(FUNCTION, kind()); return READ_BYTE_FIELD(this, kOptimizableOffset) == 1; } void Code::set_optimizable(bool value) { ASSERT_EQ(FUNCTION, kind()); WRITE_BYTE_FIELD(this, kOptimizableOffset, value ? 1 : 0); } bool Code::has_deoptimization_support() { ASSERT_EQ(FUNCTION, kind()); byte flags = READ_BYTE_FIELD(this, kFullCodeFlags); return FullCodeFlagsHasDeoptimizationSupportField::decode(flags); } void Code::set_has_deoptimization_support(bool value) { ASSERT_EQ(FUNCTION, kind()); byte flags = READ_BYTE_FIELD(this, kFullCodeFlags); flags = FullCodeFlagsHasDeoptimizationSupportField::update(flags, value); WRITE_BYTE_FIELD(this, kFullCodeFlags, flags); } bool Code::has_debug_break_slots() { ASSERT_EQ(FUNCTION, kind()); byte flags = READ_BYTE_FIELD(this, kFullCodeFlags); return FullCodeFlagsHasDebugBreakSlotsField::decode(flags); } void Code::set_has_debug_break_slots(bool value) { ASSERT_EQ(FUNCTION, kind()); byte flags = READ_BYTE_FIELD(this, kFullCodeFlags); flags = FullCodeFlagsHasDebugBreakSlotsField::update(flags, value); WRITE_BYTE_FIELD(this, kFullCodeFlags, flags); } bool Code::is_compiled_optimizable() { ASSERT_EQ(FUNCTION, kind()); byte flags = READ_BYTE_FIELD(this, kFullCodeFlags); return FullCodeFlagsIsCompiledOptimizable::decode(flags); } void Code::set_compiled_optimizable(bool value) { ASSERT_EQ(FUNCTION, kind()); byte flags = READ_BYTE_FIELD(this, kFullCodeFlags); flags = FullCodeFlagsIsCompiledOptimizable::update(flags, value); WRITE_BYTE_FIELD(this, kFullCodeFlags, flags); } int Code::allow_osr_at_loop_nesting_level() { ASSERT_EQ(FUNCTION, kind()); return READ_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset); } void Code::set_allow_osr_at_loop_nesting_level(int level) { ASSERT_EQ(FUNCTION, kind()); ASSERT(level >= 0 && level <= kMaxLoopNestingMarker); WRITE_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset, level); } int Code::profiler_ticks() { ASSERT_EQ(FUNCTION, kind()); return READ_BYTE_FIELD(this, kProfilerTicksOffset); } void Code::set_profiler_ticks(int ticks) { ASSERT_EQ(FUNCTION, kind()); ASSERT(ticks < 256); WRITE_BYTE_FIELD(this, kProfilerTicksOffset, ticks); } unsigned Code::stack_slots() { ASSERT(is_crankshafted()); return StackSlotsField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } void Code::set_stack_slots(unsigned slots) { CHECK(slots <= (1 << kStackSlotsBitCount)); ASSERT(is_crankshafted()); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = StackSlotsField::update(previous, slots); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } unsigned Code::safepoint_table_offset() { ASSERT(is_crankshafted()); return SafepointTableOffsetField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)); } void Code::set_safepoint_table_offset(unsigned offset) { CHECK(offset <= (1 << kSafepointTableOffsetBitCount)); ASSERT(is_crankshafted()); ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize))); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = SafepointTableOffsetField::update(previous, offset); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } unsigned Code::back_edge_table_offset() { ASSERT_EQ(FUNCTION, kind()); return BackEdgeTableOffsetField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)); } void Code::set_back_edge_table_offset(unsigned offset) { ASSERT_EQ(FUNCTION, kind()); ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize))); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = BackEdgeTableOffsetField::update(previous, offset); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } bool Code::back_edges_patched_for_osr() { ASSERT_EQ(FUNCTION, kind()); return BackEdgesPatchedForOSRField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)); } void Code::set_back_edges_patched_for_osr(bool value) { ASSERT_EQ(FUNCTION, kind()); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset); int updated = BackEdgesPatchedForOSRField::update(previous, value); WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated); } CheckType Code::check_type() { ASSERT(is_call_stub() || is_keyed_call_stub()); byte type = READ_BYTE_FIELD(this, kCheckTypeOffset); return static_cast<CheckType>(type); } void Code::set_check_type(CheckType value) { ASSERT(is_call_stub() || is_keyed_call_stub()); WRITE_BYTE_FIELD(this, kCheckTypeOffset, value); } byte Code::to_boolean_state() { return extended_extra_ic_state(); } bool Code::has_function_cache() { ASSERT(kind() == STUB); return HasFunctionCacheField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } void Code::set_has_function_cache(bool flag) { ASSERT(kind() == STUB); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = HasFunctionCacheField::update(previous, flag); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } bool Code::marked_for_deoptimization() { ASSERT(kind() == OPTIMIZED_FUNCTION); return MarkedForDeoptimizationField::decode( READ_UINT32_FIELD(this, kKindSpecificFlags1Offset)); } void Code::set_marked_for_deoptimization(bool flag) { ASSERT(kind() == OPTIMIZED_FUNCTION); int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset); int updated = MarkedForDeoptimizationField::update(previous, flag); WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated); } bool Code::is_inline_cache_stub() { Kind kind = this->kind(); switch (kind) { #define CASE(name) case name: return true; IC_KIND_LIST(CASE) #undef CASE default: return false; } } bool Code::is_keyed_stub() { return is_keyed_load_stub() || is_keyed_store_stub() || is_keyed_call_stub(); } bool Code::is_debug_stub() { return ic_state() == DEBUG_STUB; } Code::Flags Code::ComputeFlags(Kind kind, InlineCacheState ic_state, ExtraICState extra_ic_state, StubType type, int argc, InlineCacheHolderFlag holder) { ASSERT(argc <= Code::kMaxArguments); // Since the extended extra ic state overlaps with the argument count // for CALL_ICs, do so checks to make sure that they don't interfere. ASSERT((kind != Code::CALL_IC && kind != Code::KEYED_CALL_IC) || (ExtraICStateField::encode(extra_ic_state) | true)); // Compute the bit mask. unsigned int bits = KindField::encode(kind) | ICStateField::encode(ic_state) | TypeField::encode(type) | ExtendedExtraICStateField::encode(extra_ic_state) | CacheHolderField::encode(holder); if (!Code::needs_extended_extra_ic_state(kind)) { bits |= (argc << kArgumentsCountShift); } return static_cast<Flags>(bits); } Code::Flags Code::ComputeMonomorphicFlags(Kind kind, ExtraICState extra_ic_state, InlineCacheHolderFlag holder, StubType type, int argc) { return ComputeFlags(kind, MONOMORPHIC, extra_ic_state, type, argc, holder); } Code::Kind Code::ExtractKindFromFlags(Flags flags) { return KindField::decode(flags); } InlineCacheState Code::ExtractICStateFromFlags(Flags flags) { return ICStateField::decode(flags); } ExtraICState Code::ExtractExtraICStateFromFlags(Flags flags) { return ExtraICStateField::decode(flags); } ExtraICState Code::ExtractExtendedExtraICStateFromFlags( Flags flags) { return ExtendedExtraICStateField::decode(flags); } Code::StubType Code::ExtractTypeFromFlags(Flags flags) { return TypeField::decode(flags); } int Code::ExtractArgumentsCountFromFlags(Flags flags) { return (flags & kArgumentsCountMask) >> kArgumentsCountShift; } InlineCacheHolderFlag Code::ExtractCacheHolderFromFlags(Flags flags) { return CacheHolderField::decode(flags); } Code::Flags Code::RemoveTypeFromFlags(Flags flags) { int bits = flags & ~TypeField::kMask; return static_cast<Flags>(bits); } Code* Code::GetCodeFromTargetAddress(Address address) { HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize); // GetCodeFromTargetAddress might be called when marking objects during mark // sweep. reinterpret_cast is therefore used instead of the more appropriate // Code::cast. Code::cast does not work when the object's map is // marked. Code* result = reinterpret_cast<Code*>(code); return result; } Object* Code::GetObjectFromEntryAddress(Address location_of_address) { return HeapObject:: FromAddress(Memory::Address_at(location_of_address) - Code::kHeaderSize); } Object* Map::prototype() { return READ_FIELD(this, kPrototypeOffset); } void Map::set_prototype(Object* value, WriteBarrierMode mode) { ASSERT(value->IsNull() || value->IsJSReceiver()); WRITE_FIELD(this, kPrototypeOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOffset, value, mode); } // If the descriptor is using the empty transition array, install a new empty // transition array that will have place for an element transition. static MaybeObject* EnsureHasTransitionArray(Map* map) { TransitionArray* transitions; MaybeObject* maybe_transitions; if (!map->HasTransitionArray()) { maybe_transitions = TransitionArray::Allocate(map->GetIsolate(), 0); if (!maybe_transitions->To(&transitions)) return maybe_transitions; transitions->set_back_pointer_storage(map->GetBackPointer()); } else if (!map->transitions()->IsFullTransitionArray()) { maybe_transitions = map->transitions()->ExtendToFullTransitionArray(); if (!maybe_transitions->To(&transitions)) return maybe_transitions; } else { return map; } map->set_transitions(transitions); return transitions; } void Map::InitializeDescriptors(DescriptorArray* descriptors) { int len = descriptors->number_of_descriptors(); set_instance_descriptors(descriptors); SetNumberOfOwnDescriptors(len); } ACCESSORS(Map, instance_descriptors, DescriptorArray, kDescriptorsOffset) void Map::set_bit_field3(uint32_t bits) { // Ensure the upper 2 bits have the same value by sign extending it. This is // necessary to be able to use the 31st bit. int value = bits << 1; WRITE_FIELD(this, kBitField3Offset, Smi::FromInt(value >> 1)); } uint32_t Map::bit_field3() { Object* value = READ_FIELD(this, kBitField3Offset); return Smi::cast(value)->value(); } void Map::ClearTransitions(Heap* heap, WriteBarrierMode mode) { Object* back_pointer = GetBackPointer(); if (Heap::ShouldZapGarbage() && HasTransitionArray()) { ZapTransitions(); } WRITE_FIELD(this, kTransitionsOrBackPointerOffset, back_pointer); CONDITIONAL_WRITE_BARRIER( heap, this, kTransitionsOrBackPointerOffset, back_pointer, mode); } void Map::AppendDescriptor(Descriptor* desc, const DescriptorArray::WhitenessWitness& witness) { DescriptorArray* descriptors = instance_descriptors(); int number_of_own_descriptors = NumberOfOwnDescriptors(); ASSERT(descriptors->number_of_descriptors() == number_of_own_descriptors); descriptors->Append(desc, witness); SetNumberOfOwnDescriptors(number_of_own_descriptors + 1); } Object* Map::GetBackPointer() { Object* object = READ_FIELD(this, kTransitionsOrBackPointerOffset); if (object->IsDescriptorArray()) { return TransitionArray::cast(object)->back_pointer_storage(); } else { ASSERT(object->IsMap() || object->IsUndefined()); return object; } } bool Map::HasElementsTransition() { return HasTransitionArray() && transitions()->HasElementsTransition(); } bool Map::HasTransitionArray() { Object* object = READ_FIELD(this, kTransitionsOrBackPointerOffset); return object->IsTransitionArray(); } Map* Map::elements_transition_map() { int index = transitions()->Search(GetHeap()->elements_transition_symbol()); return transitions()->GetTarget(index); } bool Map::CanHaveMoreTransitions() { if (!HasTransitionArray()) return true; return FixedArray::SizeFor(transitions()->length() + TransitionArray::kTransitionSize) <= Page::kMaxNonCodeHeapObjectSize; } MaybeObject* Map::AddTransition(Name* key, Map* target, SimpleTransitionFlag flag) { if (HasTransitionArray()) return transitions()->CopyInsert(key, target); return TransitionArray::NewWith(flag, key, target, GetBackPointer()); } void Map::SetTransition(int transition_index, Map* target) { transitions()->SetTarget(transition_index, target); } Map* Map::GetTransition(int transition_index) { return transitions()->GetTarget(transition_index); } MaybeObject* Map::set_elements_transition_map(Map* transitioned_map) { TransitionArray* transitions; MaybeObject* maybe_transitions = AddTransition( GetHeap()->elements_transition_symbol(), transitioned_map, FULL_TRANSITION); if (!maybe_transitions->To(&transitions)) return maybe_transitions; set_transitions(transitions); return transitions; } FixedArray* Map::GetPrototypeTransitions() { if (!HasTransitionArray()) return GetHeap()->empty_fixed_array(); if (!transitions()->HasPrototypeTransitions()) { return GetHeap()->empty_fixed_array(); } return transitions()->GetPrototypeTransitions(); } MaybeObject* Map::SetPrototypeTransitions(FixedArray* proto_transitions) { MaybeObject* allow_prototype = EnsureHasTransitionArray(this); if (allow_prototype->IsFailure()) return allow_prototype; int old_number_of_transitions = NumberOfProtoTransitions(); #ifdef DEBUG if (HasPrototypeTransitions()) { ASSERT(GetPrototypeTransitions() != proto_transitions); ZapPrototypeTransitions(); } #endif transitions()->SetPrototypeTransitions(proto_transitions); SetNumberOfProtoTransitions(old_number_of_transitions); return this; } bool Map::HasPrototypeTransitions() { return HasTransitionArray() && transitions()->HasPrototypeTransitions(); } TransitionArray* Map::transitions() { ASSERT(HasTransitionArray()); Object* object = READ_FIELD(this, kTransitionsOrBackPointerOffset); return TransitionArray::cast(object); } void Map::set_transitions(TransitionArray* transition_array, WriteBarrierMode mode) { // Transition arrays are not shared. When one is replaced, it should not // keep referenced objects alive, so we zap it. // When there is another reference to the array somewhere (e.g. a handle), // not zapping turns from a waste of memory into a source of crashes. if (HasTransitionArray()) { #ifdef DEBUG for (int i = 0; i < transitions()->number_of_transitions(); i++) { Map* target = transitions()->GetTarget(i); if (target->instance_descriptors() == instance_descriptors()) { Name* key = transitions()->GetKey(i); int new_target_index = transition_array->Search(key); ASSERT(new_target_index != TransitionArray::kNotFound); ASSERT(transition_array->GetTarget(new_target_index) == target); } } #endif ASSERT(transitions() != transition_array); ZapTransitions(); } WRITE_FIELD(this, kTransitionsOrBackPointerOffset, transition_array); CONDITIONAL_WRITE_BARRIER( GetHeap(), this, kTransitionsOrBackPointerOffset, transition_array, mode); } void Map::init_back_pointer(Object* undefined) { ASSERT(undefined->IsUndefined()); WRITE_FIELD(this, kTransitionsOrBackPointerOffset, undefined); } void Map::SetBackPointer(Object* value, WriteBarrierMode mode) { ASSERT(instance_type() >= FIRST_JS_RECEIVER_TYPE); ASSERT((value->IsUndefined() && GetBackPointer()->IsMap()) || (value->IsMap() && GetBackPointer()->IsUndefined())); Object* object = READ_FIELD(this, kTransitionsOrBackPointerOffset); if (object->IsTransitionArray()) { TransitionArray::cast(object)->set_back_pointer_storage(value); } else { WRITE_FIELD(this, kTransitionsOrBackPointerOffset, value); CONDITIONAL_WRITE_BARRIER( GetHeap(), this, kTransitionsOrBackPointerOffset, value, mode); } } // Can either be Smi (no transitions), normal transition array, or a transition // array with the header overwritten as a Smi (thus iterating). TransitionArray* Map::unchecked_transition_array() { Object* object = *HeapObject::RawField(this, Map::kTransitionsOrBackPointerOffset); TransitionArray* transition_array = static_cast<TransitionArray*>(object); return transition_array; } HeapObject* Map::UncheckedPrototypeTransitions() { ASSERT(HasTransitionArray()); ASSERT(unchecked_transition_array()->HasPrototypeTransitions()); return unchecked_transition_array()->UncheckedPrototypeTransitions(); } ACCESSORS(Map, code_cache, Object, kCodeCacheOffset) ACCESSORS(Map, dependent_code, DependentCode, kDependentCodeOffset) ACCESSORS(Map, constructor, Object, kConstructorOffset) ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset) ACCESSORS(JSFunction, literals_or_bindings, FixedArray, kLiteralsOffset) ACCESSORS(JSFunction, next_function_link, Object, kNextFunctionLinkOffset) ACCESSORS(GlobalObject, builtins, JSBuiltinsObject, kBuiltinsOffset) ACCESSORS(GlobalObject, native_context, Context, kNativeContextOffset) ACCESSORS(GlobalObject, global_context, Context, kGlobalContextOffset) ACCESSORS(GlobalObject, global_receiver, JSObject, kGlobalReceiverOffset) ACCESSORS(JSGlobalProxy, native_context, Object, kNativeContextOffset) ACCESSORS(AccessorInfo, name, Object, kNameOffset) ACCESSORS_TO_SMI(AccessorInfo, flag, kFlagOffset) ACCESSORS(AccessorInfo, expected_receiver_type, Object, kExpectedReceiverTypeOffset) ACCESSORS(DeclaredAccessorDescriptor, serialized_data, ByteArray, kSerializedDataOffset) ACCESSORS(DeclaredAccessorInfo, descriptor, DeclaredAccessorDescriptor, kDescriptorOffset) ACCESSORS(ExecutableAccessorInfo, getter, Object, kGetterOffset) ACCESSORS(ExecutableAccessorInfo, setter, Object, kSetterOffset) ACCESSORS(ExecutableAccessorInfo, data, Object, kDataOffset) ACCESSORS(Box, value, Object, kValueOffset) ACCESSORS(AccessorPair, getter, Object, kGetterOffset) ACCESSORS(AccessorPair, setter, Object, kSetterOffset) ACCESSORS_TO_SMI(AccessorPair, access_flags, kAccessFlagsOffset) ACCESSORS(AccessCheckInfo, named_callback, Object, kNamedCallbackOffset) ACCESSORS(AccessCheckInfo, indexed_callback, Object, kIndexedCallbackOffset) ACCESSORS(AccessCheckInfo, data, Object, kDataOffset) ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset) ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset) ACCESSORS(InterceptorInfo, query, Object, kQueryOffset) ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset) ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset) ACCESSORS(InterceptorInfo, data, Object, kDataOffset) ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset) ACCESSORS(CallHandlerInfo, data, Object, kDataOffset) ACCESSORS(TemplateInfo, tag, Object, kTagOffset) ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset) ACCESSORS(TemplateInfo, property_accessors, Object, kPropertyAccessorsOffset) ACCESSORS(FunctionTemplateInfo, serial_number, Object, kSerialNumberOffset) ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset) ACCESSORS(FunctionTemplateInfo, prototype_template, Object, kPrototypeTemplateOffset) ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset) ACCESSORS(FunctionTemplateInfo, named_property_handler, Object, kNamedPropertyHandlerOffset) ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object, kIndexedPropertyHandlerOffset) ACCESSORS(FunctionTemplateInfo, instance_template, Object, kInstanceTemplateOffset) ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset) ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset) ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object, kInstanceCallHandlerOffset) ACCESSORS(FunctionTemplateInfo, access_check_info, Object, kAccessCheckInfoOffset) ACCESSORS_TO_SMI(FunctionTemplateInfo, flag, kFlagOffset) ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset) ACCESSORS(ObjectTemplateInfo, internal_field_count, Object, kInternalFieldCountOffset) ACCESSORS(SignatureInfo, receiver, Object, kReceiverOffset) ACCESSORS(SignatureInfo, args, Object, kArgsOffset) ACCESSORS(TypeSwitchInfo, types, Object, kTypesOffset) ACCESSORS(AllocationSite, transition_info, Object, kTransitionInfoOffset) ACCESSORS(AllocationSite, nested_site, Object, kNestedSiteOffset) ACCESSORS_TO_SMI(AllocationSite, memento_found_count, kMementoFoundCountOffset) ACCESSORS_TO_SMI(AllocationSite, memento_create_count, kMementoCreateCountOffset) ACCESSORS_TO_SMI(AllocationSite, pretenure_decision, kPretenureDecisionOffset) ACCESSORS(AllocationSite, dependent_code, DependentCode, kDependentCodeOffset) ACCESSORS(AllocationSite, weak_next, Object, kWeakNextOffset) ACCESSORS(AllocationMemento, allocation_site, Object, kAllocationSiteOffset) ACCESSORS(Script, source, Object, kSourceOffset) ACCESSORS(Script, name, Object, kNameOffset) ACCESSORS(Script, id, Smi, kIdOffset) ACCESSORS_TO_SMI(Script, line_offset, kLineOffsetOffset) ACCESSORS_TO_SMI(Script, column_offset, kColumnOffsetOffset) ACCESSORS(Script, data, Object, kDataOffset) ACCESSORS(Script, context_data, Object, kContextOffset) ACCESSORS(Script, wrapper, Foreign, kWrapperOffset) ACCESSORS_TO_SMI(Script, type, kTypeOffset) ACCESSORS(Script, line_ends, Object, kLineEndsOffset) ACCESSORS(Script, eval_from_shared, Object, kEvalFromSharedOffset) ACCESSORS_TO_SMI(Script, eval_from_instructions_offset, kEvalFrominstructionsOffsetOffset) ACCESSORS_TO_SMI(Script, flags, kFlagsOffset) BOOL_ACCESSORS(Script, flags, is_shared_cross_origin, kIsSharedCrossOriginBit) Script::CompilationType Script::compilation_type() { return BooleanBit::get(flags(), kCompilationTypeBit) ? COMPILATION_TYPE_EVAL : COMPILATION_TYPE_HOST; } void Script::set_compilation_type(CompilationType type) { set_flags(BooleanBit::set(flags(), kCompilationTypeBit, type == COMPILATION_TYPE_EVAL)); } Script::CompilationState Script::compilation_state() { return BooleanBit::get(flags(), kCompilationStateBit) ? COMPILATION_STATE_COMPILED : COMPILATION_STATE_INITIAL; } void Script::set_compilation_state(CompilationState state) { set_flags(BooleanBit::set(flags(), kCompilationStateBit, state == COMPILATION_STATE_COMPILED)); } #ifdef ENABLE_DEBUGGER_SUPPORT ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex) ACCESSORS(DebugInfo, original_code, Code, kOriginalCodeIndex) ACCESSORS(DebugInfo, code, Code, kPatchedCodeIndex) ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex) ACCESSORS_TO_SMI(BreakPointInfo, code_position, kCodePositionIndex) ACCESSORS_TO_SMI(BreakPointInfo, source_position, kSourcePositionIndex) ACCESSORS_TO_SMI(BreakPointInfo, statement_position, kStatementPositionIndex) ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex) #endif ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset) ACCESSORS(SharedFunctionInfo, optimized_code_map, Object, kOptimizedCodeMapOffset) ACCESSORS(SharedFunctionInfo, construct_stub, Code, kConstructStubOffset) ACCESSORS(SharedFunctionInfo, initial_map, Object, kInitialMapOffset) ACCESSORS(SharedFunctionInfo, instance_class_name, Object, kInstanceClassNameOffset) ACCESSORS(SharedFunctionInfo, function_data, Object, kFunctionDataOffset) ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset) ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset) ACCESSORS(SharedFunctionInfo, inferred_name, String, kInferredNameOffset) SMI_ACCESSORS(SharedFunctionInfo, ast_node_count, kAstNodeCountOffset) SMI_ACCESSORS(FunctionTemplateInfo, length, kLengthOffset) BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype, kHiddenPrototypeBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check, kNeedsAccessCheckBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, read_only_prototype, kReadOnlyPrototypeBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, remove_prototype, kRemovePrototypeBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, do_not_cache, kDoNotCacheBit) BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_expression, kIsExpressionBit) BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel, kIsTopLevelBit) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, allows_lazy_compilation, kAllowLazyCompilation) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, allows_lazy_compilation_without_context, kAllowLazyCompilationWithoutContext) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, uses_arguments, kUsesArguments) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, has_duplicate_parameters, kHasDuplicateParameters) #if V8_HOST_ARCH_32_BIT SMI_ACCESSORS(SharedFunctionInfo, length, kLengthOffset) SMI_ACCESSORS(SharedFunctionInfo, formal_parameter_count, kFormalParameterCountOffset) SMI_ACCESSORS(SharedFunctionInfo, expected_nof_properties, kExpectedNofPropertiesOffset) SMI_ACCESSORS(SharedFunctionInfo, num_literals, kNumLiteralsOffset) SMI_ACCESSORS(SharedFunctionInfo, start_position_and_type, kStartPositionAndTypeOffset) SMI_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset) SMI_ACCESSORS(SharedFunctionInfo, function_token_position, kFunctionTokenPositionOffset) SMI_ACCESSORS(SharedFunctionInfo, compiler_hints, kCompilerHintsOffset) SMI_ACCESSORS(SharedFunctionInfo, opt_count_and_bailout_reason, kOptCountAndBailoutReasonOffset) SMI_ACCESSORS(SharedFunctionInfo, counters, kCountersOffset) #else #define PSEUDO_SMI_ACCESSORS_LO(holder, name, offset) \ STATIC_ASSERT(holder::offset % kPointerSize == 0); \ int holder::name() { \ int value = READ_INT_FIELD(this, offset); \ ASSERT(kHeapObjectTag == 1); \ ASSERT((value & kHeapObjectTag) == 0); \ return value >> 1; \ } \ void holder::set_##name(int value) { \ ASSERT(kHeapObjectTag == 1); \ ASSERT((value & 0xC0000000) == 0xC0000000 || \ (value & 0xC0000000) == 0x000000000); \ WRITE_INT_FIELD(this, \ offset, \ (value << 1) & ~kHeapObjectTag); \ } #define PSEUDO_SMI_ACCESSORS_HI(holder, name, offset) \ STATIC_ASSERT(holder::offset % kPointerSize == kIntSize); \ INT_ACCESSORS(holder, name, offset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, length, kLengthOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, formal_parameter_count, kFormalParameterCountOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, expected_nof_properties, kExpectedNofPropertiesOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, num_literals, kNumLiteralsOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, end_position, kEndPositionOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, start_position_and_type, kStartPositionAndTypeOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, function_token_position, kFunctionTokenPositionOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, compiler_hints, kCompilerHintsOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, opt_count_and_bailout_reason, kOptCountAndBailoutReasonOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, counters, kCountersOffset) #endif int SharedFunctionInfo::construction_count() { return READ_BYTE_FIELD(this, kConstructionCountOffset); } void SharedFunctionInfo::set_construction_count(int value) { ASSERT(0 <= value && value < 256); WRITE_BYTE_FIELD(this, kConstructionCountOffset, static_cast<byte>(value)); } BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, live_objects_may_exist, kLiveObjectsMayExist) bool SharedFunctionInfo::IsInobjectSlackTrackingInProgress() { return initial_map() != GetHeap()->undefined_value(); } BOOL_GETTER(SharedFunctionInfo, compiler_hints, optimization_disabled, kOptimizationDisabled) void SharedFunctionInfo::set_optimization_disabled(bool disable) { set_compiler_hints(BooleanBit::set(compiler_hints(), kOptimizationDisabled, disable)); // If disabling optimizations we reflect that in the code object so // it will not be counted as optimizable code. if ((code()->kind() == Code::FUNCTION) && disable) { code()->set_optimizable(false); } } int SharedFunctionInfo::profiler_ticks() { if (code()->kind() != Code::FUNCTION) return 0; return code()->profiler_ticks(); } LanguageMode SharedFunctionInfo::language_mode() { int hints = compiler_hints(); if (BooleanBit::get(hints, kExtendedModeFunction)) { ASSERT(BooleanBit::get(hints, kStrictModeFunction)); return EXTENDED_MODE; } return BooleanBit::get(hints, kStrictModeFunction) ? STRICT_MODE : CLASSIC_MODE; } void SharedFunctionInfo::set_language_mode(LanguageMode language_mode) { // We only allow language mode transitions that go set the same language mode // again or go up in the chain: // CLASSIC_MODE -> STRICT_MODE -> EXTENDED_MODE. ASSERT(this->language_mode() == CLASSIC_MODE || this->language_mode() == language_mode || language_mode == EXTENDED_MODE); int hints = compiler_hints(); hints = BooleanBit::set( hints, kStrictModeFunction, language_mode != CLASSIC_MODE); hints = BooleanBit::set( hints, kExtendedModeFunction, language_mode == EXTENDED_MODE); set_compiler_hints(hints); } bool SharedFunctionInfo::is_classic_mode() { return !BooleanBit::get(compiler_hints(), kStrictModeFunction); } BOOL_GETTER(SharedFunctionInfo, compiler_hints, is_extended_mode, kExtendedModeFunction) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, native, kNative) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, inline_builtin, kInlineBuiltin) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, name_should_print_as_anonymous, kNameShouldPrintAsAnonymous) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, bound, kBoundFunction) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_anonymous, kIsAnonymous) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_function, kIsFunction) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_optimize, kDontOptimize) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_inline, kDontInline) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_cache, kDontCache) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_flush, kDontFlush) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_generator, kIsGenerator) void SharedFunctionInfo::BeforeVisitingPointers() { if (IsInobjectSlackTrackingInProgress()) DetachInitialMap(); } ACCESSORS(CodeCache, default_cache, FixedArray, kDefaultCacheOffset) ACCESSORS(CodeCache, normal_type_cache, Object, kNormalTypeCacheOffset) ACCESSORS(PolymorphicCodeCache, cache, Object, kCacheOffset) bool Script::HasValidSource() { Object* src = this->source(); if (!src->IsString()) return true; String* src_str = String::cast(src); if (!StringShape(src_str).IsExternal()) return true; if (src_str->IsOneByteRepresentation()) { return ExternalAsciiString::cast(src)->resource() != NULL; } else if (src_str->IsTwoByteRepresentation()) { return ExternalTwoByteString::cast(src)->resource() != NULL; } return true; } void SharedFunctionInfo::DontAdaptArguments() { ASSERT(code()->kind() == Code::BUILTIN); set_formal_parameter_count(kDontAdaptArgumentsSentinel); } int SharedFunctionInfo::start_position() { return start_position_and_type() >> kStartPositionShift; } void SharedFunctionInfo::set_start_position(int start_position) { set_start_position_and_type((start_position << kStartPositionShift) | (start_position_and_type() & ~kStartPositionMask)); } Code* SharedFunctionInfo::code() { return Code::cast(READ_FIELD(this, kCodeOffset)); } void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) { ASSERT(value->kind() != Code::OPTIMIZED_FUNCTION); WRITE_FIELD(this, kCodeOffset, value); CONDITIONAL_WRITE_BARRIER(value->GetHeap(), this, kCodeOffset, value, mode); } void SharedFunctionInfo::ReplaceCode(Code* value) { // If the GC metadata field is already used then the function was // enqueued as a code flushing candidate and we remove it now. if (code()->gc_metadata() != NULL) { CodeFlusher* flusher = GetHeap()->mark_compact_collector()->code_flusher(); flusher->EvictCandidate(this); } ASSERT(code()->gc_metadata() == NULL && value->gc_metadata() == NULL); set_code(value); } ScopeInfo* SharedFunctionInfo::scope_info() { return reinterpret_cast<ScopeInfo*>(READ_FIELD(this, kScopeInfoOffset)); } void SharedFunctionInfo::set_scope_info(ScopeInfo* value, WriteBarrierMode mode) { WRITE_FIELD(this, kScopeInfoOffset, reinterpret_cast<Object*>(value)); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kScopeInfoOffset, reinterpret_cast<Object*>(value), mode); } bool SharedFunctionInfo::is_compiled() { return code() != GetIsolate()->builtins()->builtin(Builtins::kLazyCompile); } bool SharedFunctionInfo::IsApiFunction() { return function_data()->IsFunctionTemplateInfo(); } FunctionTemplateInfo* SharedFunctionInfo::get_api_func_data() { ASSERT(IsApiFunction()); return FunctionTemplateInfo::cast(function_data()); } bool SharedFunctionInfo::HasBuiltinFunctionId() { return function_data()->IsSmi(); } BuiltinFunctionId SharedFunctionInfo::builtin_function_id() { ASSERT(HasBuiltinFunctionId()); return static_cast<BuiltinFunctionId>(Smi::cast(function_data())->value()); } int SharedFunctionInfo::ic_age() { return ICAgeBits::decode(counters()); } void SharedFunctionInfo::set_ic_age(int ic_age) { set_counters(ICAgeBits::update(counters(), ic_age)); } int SharedFunctionInfo::deopt_count() { return DeoptCountBits::decode(counters()); } void SharedFunctionInfo::set_deopt_count(int deopt_count) { set_counters(DeoptCountBits::update(counters(), deopt_count)); } void SharedFunctionInfo::increment_deopt_count() { int value = counters(); int deopt_count = DeoptCountBits::decode(value); deopt_count = (deopt_count + 1) & DeoptCountBits::kMax; set_counters(DeoptCountBits::update(value, deopt_count)); } int SharedFunctionInfo::opt_reenable_tries() { return OptReenableTriesBits::decode(counters()); } void SharedFunctionInfo::set_opt_reenable_tries(int tries) { set_counters(OptReenableTriesBits::update(counters(), tries)); } int SharedFunctionInfo::opt_count() { return OptCountBits::decode(opt_count_and_bailout_reason()); } void SharedFunctionInfo::set_opt_count(int opt_count) { set_opt_count_and_bailout_reason( OptCountBits::update(opt_count_and_bailout_reason(), opt_count)); } BailoutReason SharedFunctionInfo::DisableOptimizationReason() { BailoutReason reason = static_cast<BailoutReason>( DisabledOptimizationReasonBits::decode(opt_count_and_bailout_reason())); return reason; } bool SharedFunctionInfo::has_deoptimization_support() { Code* code = this->code(); return code->kind() == Code::FUNCTION && code->has_deoptimization_support(); } void SharedFunctionInfo::TryReenableOptimization() { int tries = opt_reenable_tries(); set_opt_reenable_tries((tries + 1) & OptReenableTriesBits::kMax); // We reenable optimization whenever the number of tries is a large // enough power of 2. if (tries >= 16 && (((tries - 1) & tries) == 0)) { set_optimization_disabled(false); set_opt_count(0); set_deopt_count(0); code()->set_optimizable(true); } } bool JSFunction::IsBuiltin() { return context()->global_object()->IsJSBuiltinsObject(); } bool JSFunction::NeedsArgumentsAdaption() { return shared()->formal_parameter_count() != SharedFunctionInfo::kDontAdaptArgumentsSentinel; } bool JSFunction::IsOptimized() { return code()->kind() == Code::OPTIMIZED_FUNCTION; } bool JSFunction::IsOptimizable() { return code()->kind() == Code::FUNCTION && code()->optimizable(); } bool JSFunction::IsMarkedForLazyRecompilation() { return code() == GetIsolate()->builtins()->builtin(Builtins::kLazyRecompile); } bool JSFunction::IsMarkedForConcurrentRecompilation() { return code() == GetIsolate()->builtins()->builtin( Builtins::kConcurrentRecompile); } bool JSFunction::IsInRecompileQueue() { return code() == GetIsolate()->builtins()->builtin( Builtins::kInRecompileQueue); } Code* JSFunction::code() { return Code::cast( Code::GetObjectFromEntryAddress(FIELD_ADDR(this, kCodeEntryOffset))); } void JSFunction::set_code(Code* value) { ASSERT(!GetHeap()->InNewSpace(value)); Address entry = value->entry(); WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry)); GetHeap()->incremental_marking()->RecordWriteOfCodeEntry( this, HeapObject::RawField(this, kCodeEntryOffset), value); } void JSFunction::set_code_no_write_barrier(Code* value) { ASSERT(!GetHeap()->InNewSpace(value)); Address entry = value->entry(); WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry)); } void JSFunction::ReplaceCode(Code* code) { bool was_optimized = IsOptimized(); bool is_optimized = code->kind() == Code::OPTIMIZED_FUNCTION; if (was_optimized && is_optimized) { shared()->EvictFromOptimizedCodeMap( this->code(), "Replacing with another optimized code"); } set_code(code); // Add/remove the function from the list of optimized functions for this // context based on the state change. if (!was_optimized && is_optimized) { context()->native_context()->AddOptimizedFunction(this); } if (was_optimized && !is_optimized) { // TODO(titzer): linear in the number of optimized functions; fix! context()->native_context()->RemoveOptimizedFunction(this); } } Context* JSFunction::context() { return Context::cast(READ_FIELD(this, kContextOffset)); } void JSFunction::set_context(Object* value) { ASSERT(value->IsUndefined() || value->IsContext()); WRITE_FIELD(this, kContextOffset, value); WRITE_BARRIER(GetHeap(), this, kContextOffset, value); } ACCESSORS(JSFunction, prototype_or_initial_map, Object, kPrototypeOrInitialMapOffset) Map* JSFunction::initial_map() { return Map::cast(prototype_or_initial_map()); } void JSFunction::set_initial_map(Map* value) { set_prototype_or_initial_map(value); } bool JSFunction::has_initial_map() { return prototype_or_initial_map()->IsMap(); } bool JSFunction::has_instance_prototype() { return has_initial_map() || !prototype_or_initial_map()->IsTheHole(); } bool JSFunction::has_prototype() { return map()->has_non_instance_prototype() || has_instance_prototype(); } Object* JSFunction::instance_prototype() { ASSERT(has_instance_prototype()); if (has_initial_map()) return initial_map()->prototype(); // When there is no initial map and the prototype is a JSObject, the // initial map field is used for the prototype field. return prototype_or_initial_map(); } Object* JSFunction::prototype() { ASSERT(has_prototype()); // If the function's prototype property has been set to a non-JSObject // value, that value is stored in the constructor field of the map. if (map()->has_non_instance_prototype()) return map()->constructor(); return instance_prototype(); } bool JSFunction::should_have_prototype() { return map()->function_with_prototype(); } bool JSFunction::is_compiled() { return code() != GetIsolate()->builtins()->builtin(Builtins::kLazyCompile); } FixedArray* JSFunction::literals() { ASSERT(!shared()->bound()); return literals_or_bindings(); } void JSFunction::set_literals(FixedArray* literals) { ASSERT(!shared()->bound()); set_literals_or_bindings(literals); } FixedArray* JSFunction::function_bindings() { ASSERT(shared()->bound()); return literals_or_bindings(); } void JSFunction::set_function_bindings(FixedArray* bindings) { ASSERT(shared()->bound()); // Bound function literal may be initialized to the empty fixed array // before the bindings are set. ASSERT(bindings == GetHeap()->empty_fixed_array() || bindings->map() == GetHeap()->fixed_cow_array_map()); set_literals_or_bindings(bindings); } int JSFunction::NumberOfLiterals() { ASSERT(!shared()->bound()); return literals()->length(); } Object* JSBuiltinsObject::javascript_builtin(Builtins::JavaScript id) { ASSERT(id < kJSBuiltinsCount); // id is unsigned. return READ_FIELD(this, OffsetOfFunctionWithId(id)); } void JSBuiltinsObject::set_javascript_builtin(Builtins::JavaScript id, Object* value) { ASSERT(id < kJSBuiltinsCount); // id is unsigned. WRITE_FIELD(this, OffsetOfFunctionWithId(id), value); WRITE_BARRIER(GetHeap(), this, OffsetOfFunctionWithId(id), value); } Code* JSBuiltinsObject::javascript_builtin_code(Builtins::JavaScript id) { ASSERT(id < kJSBuiltinsCount); // id is unsigned. return Code::cast(READ_FIELD(this, OffsetOfCodeWithId(id))); } void JSBuiltinsObject::set_javascript_builtin_code(Builtins::JavaScript id, Code* value) { ASSERT(id < kJSBuiltinsCount); // id is unsigned. WRITE_FIELD(this, OffsetOfCodeWithId(id), value); ASSERT(!GetHeap()->InNewSpace(value)); } ACCESSORS(JSProxy, handler, Object, kHandlerOffset) ACCESSORS(JSProxy, hash, Object, kHashOffset) ACCESSORS(JSFunctionProxy, call_trap, Object, kCallTrapOffset) ACCESSORS(JSFunctionProxy, construct_trap, Object, kConstructTrapOffset) void JSProxy::InitializeBody(int object_size, Object* value) { ASSERT(!value->IsHeapObject() || !GetHeap()->InNewSpace(value)); for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) { WRITE_FIELD(this, offset, value); } } ACCESSORS(JSSet, table, Object, kTableOffset) ACCESSORS(JSMap, table, Object, kTableOffset) ACCESSORS(JSWeakCollection, table, Object, kTableOffset) ACCESSORS(JSWeakCollection, next, Object, kNextOffset) Address Foreign::foreign_address() { return AddressFrom<Address>(READ_INTPTR_FIELD(this, kForeignAddressOffset)); } void Foreign::set_foreign_address(Address value) { WRITE_INTPTR_FIELD(this, kForeignAddressOffset, OffsetFrom(value)); } ACCESSORS(JSGeneratorObject, function, JSFunction, kFunctionOffset) ACCESSORS(JSGeneratorObject, context, Context, kContextOffset) ACCESSORS(JSGeneratorObject, receiver, Object, kReceiverOffset) SMI_ACCESSORS(JSGeneratorObject, continuation, kContinuationOffset) ACCESSORS(JSGeneratorObject, operand_stack, FixedArray, kOperandStackOffset) SMI_ACCESSORS(JSGeneratorObject, stack_handler_index, kStackHandlerIndexOffset) JSGeneratorObject* JSGeneratorObject::cast(Object* obj) { ASSERT(obj->IsJSGeneratorObject()); ASSERT(HeapObject::cast(obj)->Size() == JSGeneratorObject::kSize); return reinterpret_cast<JSGeneratorObject*>(obj); } ACCESSORS(JSModule, context, Object, kContextOffset) ACCESSORS(JSModule, scope_info, ScopeInfo, kScopeInfoOffset) JSModule* JSModule::cast(Object* obj) { ASSERT(obj->IsJSModule()); ASSERT(HeapObject::cast(obj)->Size() == JSModule::kSize); return reinterpret_cast<JSModule*>(obj); } ACCESSORS(JSValue, value, Object, kValueOffset) JSValue* JSValue::cast(Object* obj) { ASSERT(obj->IsJSValue()); ASSERT(HeapObject::cast(obj)->Size() == JSValue::kSize); return reinterpret_cast<JSValue*>(obj); } ACCESSORS(JSDate, value, Object, kValueOffset) ACCESSORS(JSDate, cache_stamp, Object, kCacheStampOffset) ACCESSORS(JSDate, year, Object, kYearOffset) ACCESSORS(JSDate, month, Object, kMonthOffset) ACCESSORS(JSDate, day, Object, kDayOffset) ACCESSORS(JSDate, weekday, Object, kWeekdayOffset) ACCESSORS(JSDate, hour, Object, kHourOffset) ACCESSORS(JSDate, min, Object, kMinOffset) ACCESSORS(JSDate, sec, Object, kSecOffset) JSDate* JSDate::cast(Object* obj) { ASSERT(obj->IsJSDate()); ASSERT(HeapObject::cast(obj)->Size() == JSDate::kSize); return reinterpret_cast<JSDate*>(obj); } ACCESSORS(JSMessageObject, type, String, kTypeOffset) ACCESSORS(JSMessageObject, arguments, JSArray, kArgumentsOffset) ACCESSORS(JSMessageObject, script, Object, kScriptOffset) ACCESSORS(JSMessageObject, stack_trace, Object, kStackTraceOffset) ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset) SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset) SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset) JSMessageObject* JSMessageObject::cast(Object* obj) { ASSERT(obj->IsJSMessageObject()); ASSERT(HeapObject::cast(obj)->Size() == JSMessageObject::kSize); return reinterpret_cast<JSMessageObject*>(obj); } INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset) INT_ACCESSORS(Code, prologue_offset, kPrologueOffset) ACCESSORS(Code, relocation_info, ByteArray, kRelocationInfoOffset) ACCESSORS(Code, handler_table, FixedArray, kHandlerTableOffset) ACCESSORS(Code, deoptimization_data, FixedArray, kDeoptimizationDataOffset) ACCESSORS(Code, raw_type_feedback_info, Object, kTypeFeedbackInfoOffset) void Code::WipeOutHeader() { WRITE_FIELD(this, kRelocationInfoOffset, NULL); WRITE_FIELD(this, kHandlerTableOffset, NULL); WRITE_FIELD(this, kDeoptimizationDataOffset, NULL); // Do not wipe out e.g. a minor key. if (!READ_FIELD(this, kTypeFeedbackInfoOffset)->IsSmi()) { WRITE_FIELD(this, kTypeFeedbackInfoOffset, NULL); } } Object* Code::type_feedback_info() { ASSERT(kind() == FUNCTION); return raw_type_feedback_info(); } void Code::set_type_feedback_info(Object* value, WriteBarrierMode mode) { ASSERT(kind() == FUNCTION); set_raw_type_feedback_info(value, mode); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kTypeFeedbackInfoOffset, value, mode); } Object* Code::next_code_link() { CHECK(kind() == OPTIMIZED_FUNCTION); return raw_type_feedback_info(); } void Code::set_next_code_link(Object* value, WriteBarrierMode mode) { CHECK(kind() == OPTIMIZED_FUNCTION); set_raw_type_feedback_info(value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kTypeFeedbackInfoOffset, value, mode); } int Code::stub_info() { ASSERT(kind() == COMPARE_IC || kind() == COMPARE_NIL_IC || kind() == BINARY_OP_IC || kind() == LOAD_IC); return Smi::cast(raw_type_feedback_info())->value(); } void Code::set_stub_info(int value) { ASSERT(kind() == COMPARE_IC || kind() == COMPARE_NIL_IC || kind() == BINARY_OP_IC || kind() == STUB || kind() == LOAD_IC || kind() == KEYED_LOAD_IC || kind() == STORE_IC || kind() == KEYED_STORE_IC); set_raw_type_feedback_info(Smi::FromInt(value)); } ACCESSORS(Code, gc_metadata, Object, kGCMetadataOffset) INT_ACCESSORS(Code, ic_age, kICAgeOffset) byte* Code::instruction_start() { return FIELD_ADDR(this, kHeaderSize); } byte* Code::instruction_end() { return instruction_start() + instruction_size(); } int Code::body_size() { return RoundUp(instruction_size(), kObjectAlignment); } ByteArray* Code::unchecked_relocation_info() { return reinterpret_cast<ByteArray*>(READ_FIELD(this, kRelocationInfoOffset)); } byte* Code::relocation_start() { return unchecked_relocation_info()->GetDataStartAddress(); } int Code::relocation_size() { return unchecked_relocation_info()->length(); } byte* Code::entry() { return instruction_start(); } bool Code::contains(byte* inner_pointer) { return (address() <= inner_pointer) && (inner_pointer <= address() + Size()); } ACCESSORS(JSArray, length, Object, kLengthOffset) void* JSArrayBuffer::backing_store() { intptr_t ptr = READ_INTPTR_FIELD(this, kBackingStoreOffset); return reinterpret_cast<void*>(ptr); } void JSArrayBuffer::set_backing_store(void* value, WriteBarrierMode mode) { intptr_t ptr = reinterpret_cast<intptr_t>(value); WRITE_INTPTR_FIELD(this, kBackingStoreOffset, ptr); } ACCESSORS(JSArrayBuffer, byte_length, Object, kByteLengthOffset) ACCESSORS_TO_SMI(JSArrayBuffer, flag, kFlagOffset) bool JSArrayBuffer::is_external() { return BooleanBit::get(flag(), kIsExternalBit); } void JSArrayBuffer::set_is_external(bool value) { set_flag(BooleanBit::set(flag(), kIsExternalBit, value)); } bool JSArrayBuffer::should_be_freed() { return BooleanBit::get(flag(), kShouldBeFreed); } void JSArrayBuffer::set_should_be_freed(bool value) { set_flag(BooleanBit::set(flag(), kShouldBeFreed, value)); } ACCESSORS(JSArrayBuffer, weak_next, Object, kWeakNextOffset) ACCESSORS(JSArrayBuffer, weak_first_view, Object, kWeakFirstViewOffset) ACCESSORS(JSArrayBufferView, buffer, Object, kBufferOffset) ACCESSORS(JSArrayBufferView, byte_offset, Object, kByteOffsetOffset) ACCESSORS(JSArrayBufferView, byte_length, Object, kByteLengthOffset) ACCESSORS(JSArrayBufferView, weak_next, Object, kWeakNextOffset) ACCESSORS(JSTypedArray, length, Object, kLengthOffset) ACCESSORS(JSRegExp, data, Object, kDataOffset) JSRegExp::Type JSRegExp::TypeTag() { Object* data = this->data(); if (data->IsUndefined()) return JSRegExp::NOT_COMPILED; Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex)); return static_cast<JSRegExp::Type>(smi->value()); } int JSRegExp::CaptureCount() { switch (TypeTag()) { case ATOM: return 0; case IRREGEXP: return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value(); default: UNREACHABLE(); return -1; } } JSRegExp::Flags JSRegExp::GetFlags() { ASSERT(this->data()->IsFixedArray()); Object* data = this->data(); Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex)); return Flags(smi->value()); } String* JSRegExp::Pattern() { ASSERT(this->data()->IsFixedArray()); Object* data = this->data(); String* pattern= String::cast(FixedArray::cast(data)->get(kSourceIndex)); return pattern; } Object* JSRegExp::DataAt(int index) { ASSERT(TypeTag() != NOT_COMPILED); return FixedArray::cast(data())->get(index); } void JSRegExp::SetDataAt(int index, Object* value) { ASSERT(TypeTag() != NOT_COMPILED); ASSERT(index >= kDataIndex); // Only implementation data can be set this way. FixedArray::cast(data())->set(index, value); } ElementsKind JSObject::GetElementsKind() { ElementsKind kind = map()->elements_kind(); #if DEBUG FixedArrayBase* fixed_array = reinterpret_cast<FixedArrayBase*>(READ_FIELD(this, kElementsOffset)); // If a GC was caused while constructing this object, the elements // pointer may point to a one pointer filler map. if (ElementsAreSafeToExamine()) { Map* map = fixed_array->map(); ASSERT((IsFastSmiOrObjectElementsKind(kind) && (map == GetHeap()->fixed_array_map() || map == GetHeap()->fixed_cow_array_map())) || (IsFastDoubleElementsKind(kind) && (fixed_array->IsFixedDoubleArray() || fixed_array == GetHeap()->empty_fixed_array())) || (kind == DICTIONARY_ELEMENTS && fixed_array->IsFixedArray() && fixed_array->IsDictionary()) || (kind > DICTIONARY_ELEMENTS)); ASSERT((kind != NON_STRICT_ARGUMENTS_ELEMENTS) || (elements()->IsFixedArray() && elements()->length() >= 2)); } #endif return kind; } ElementsAccessor* JSObject::GetElementsAccessor() { return ElementsAccessor::ForKind(GetElementsKind()); } bool JSObject::HasFastObjectElements() { return IsFastObjectElementsKind(GetElementsKind()); } bool JSObject::HasFastSmiElements() { return IsFastSmiElementsKind(GetElementsKind()); } bool JSObject::HasFastSmiOrObjectElements() { return IsFastSmiOrObjectElementsKind(GetElementsKind()); } bool JSObject::HasFastDoubleElements() { return IsFastDoubleElementsKind(GetElementsKind()); } bool JSObject::HasFastHoleyElements() { return IsFastHoleyElementsKind(GetElementsKind()); } bool JSObject::HasFastElements() { return IsFastElementsKind(GetElementsKind()); } bool JSObject::HasDictionaryElements() { return GetElementsKind() == DICTIONARY_ELEMENTS; } bool JSObject::HasNonStrictArgumentsElements() { return GetElementsKind() == NON_STRICT_ARGUMENTS_ELEMENTS; } bool JSObject::HasExternalArrayElements() { HeapObject* array = elements(); ASSERT(array != NULL); return array->IsExternalArray(); } #define EXTERNAL_ELEMENTS_CHECK(name, type) \ bool JSObject::HasExternal##name##Elements() { \ HeapObject* array = elements(); \ ASSERT(array != NULL); \ if (!array->IsHeapObject()) \ return false; \ return array->map()->instance_type() == type; \ } EXTERNAL_ELEMENTS_CHECK(Byte, EXTERNAL_BYTE_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(UnsignedByte, EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(Short, EXTERNAL_SHORT_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(UnsignedShort, EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(Int, EXTERNAL_INT_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(UnsignedInt, EXTERNAL_UNSIGNED_INT_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(Float, EXTERNAL_FLOAT_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(Double, EXTERNAL_DOUBLE_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(Pixel, EXTERNAL_PIXEL_ARRAY_TYPE) bool JSObject::HasNamedInterceptor() { return map()->has_named_interceptor(); } bool JSObject::HasIndexedInterceptor() { return map()->has_indexed_interceptor(); } MaybeObject* JSObject::EnsureWritableFastElements() { ASSERT(HasFastSmiOrObjectElements()); FixedArray* elems = FixedArray::cast(elements()); Isolate* isolate = GetIsolate(); if (elems->map() != isolate->heap()->fixed_cow_array_map()) return elems; Object* writable_elems; { MaybeObject* maybe_writable_elems = isolate->heap()->CopyFixedArrayWithMap( elems, isolate->heap()->fixed_array_map()); if (!maybe_writable_elems->ToObject(&writable_elems)) { return maybe_writable_elems; } } set_elements(FixedArray::cast(writable_elems)); isolate->counters()->cow_arrays_converted()->Increment(); return writable_elems; } NameDictionary* JSObject::property_dictionary() { ASSERT(!HasFastProperties()); return NameDictionary::cast(properties()); } SeededNumberDictionary* JSObject::element_dictionary() { ASSERT(HasDictionaryElements()); return SeededNumberDictionary::cast(elements()); } bool Name::IsHashFieldComputed(uint32_t field) { return (field & kHashNotComputedMask) == 0; } bool Name::HasHashCode() { return IsHashFieldComputed(hash_field()); } uint32_t Name::Hash() { // Fast case: has hash code already been computed? uint32_t field = hash_field(); if (IsHashFieldComputed(field)) return field >> kHashShift; // Slow case: compute hash code and set it. Has to be a string. return String::cast(this)->ComputeAndSetHash(); } StringHasher::StringHasher(int length, uint32_t seed) : length_(length), raw_running_hash_(seed), array_index_(0), is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize), is_first_char_(true) { ASSERT(FLAG_randomize_hashes || raw_running_hash_ == 0); } bool StringHasher::has_trivial_hash() { return length_ > String::kMaxHashCalcLength; } uint32_t StringHasher::AddCharacterCore(uint32_t running_hash, uint16_t c) { running_hash += c; running_hash += (running_hash << 10); running_hash ^= (running_hash >> 6); return running_hash; } uint32_t StringHasher::GetHashCore(uint32_t running_hash) { running_hash += (running_hash << 3); running_hash ^= (running_hash >> 11); running_hash += (running_hash << 15); if ((running_hash & String::kHashBitMask) == 0) { return kZeroHash; } return running_hash; } void StringHasher::AddCharacter(uint16_t c) { // Use the Jenkins one-at-a-time hash function to update the hash // for the given character. raw_running_hash_ = AddCharacterCore(raw_running_hash_, c); } bool StringHasher::UpdateIndex(uint16_t c) { ASSERT(is_array_index_); if (c < '0' || c > '9') { is_array_index_ = false; return false; } int d = c - '0'; if (is_first_char_) { is_first_char_ = false; if (c == '0' && length_ > 1) { is_array_index_ = false; return false; } } if (array_index_ > 429496729U - ((d + 2) >> 3)) { is_array_index_ = false; return false; } array_index_ = array_index_ * 10 + d; return true; } template<typename Char> inline void StringHasher::AddCharacters(const Char* chars, int length) { ASSERT(sizeof(Char) == 1 || sizeof(Char) == 2); int i = 0; if (is_array_index_) { for (; i < length; i++) { AddCharacter(chars[i]); if (!UpdateIndex(chars[i])) { i++; break; } } } for (; i < length; i++) { ASSERT(!is_array_index_); AddCharacter(chars[i]); } } template <typename schar> uint32_t StringHasher::HashSequentialString(const schar* chars, int length, uint32_t seed) { StringHasher hasher(length, seed); if (!hasher.has_trivial_hash()) hasher.AddCharacters(chars, length); return hasher.GetHashField(); } bool Name::AsArrayIndex(uint32_t* index) { return IsString() && String::cast(this)->AsArrayIndex(index); } bool String::AsArrayIndex(uint32_t* index) { uint32_t field = hash_field(); if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) { return false; } return SlowAsArrayIndex(index); } Object* JSReceiver::GetPrototype() { return map()->prototype(); } Object* JSReceiver::GetConstructor() { return map()->constructor(); } bool JSReceiver::HasProperty(Handle<JSReceiver> object, Handle<Name> name) { if (object->IsJSProxy()) { Handle<JSProxy> proxy = Handle<JSProxy>::cast(object); return JSProxy::HasPropertyWithHandler(proxy, name); } return object->GetPropertyAttribute(*name) != ABSENT; } bool JSReceiver::HasLocalProperty(Handle<JSReceiver> object, Handle<Name> name) { if (object->IsJSProxy()) { Handle<JSProxy> proxy = Handle<JSProxy>::cast(object); return JSProxy::HasPropertyWithHandler(proxy, name); } return object->GetLocalPropertyAttribute(*name) != ABSENT; } PropertyAttributes JSReceiver::GetPropertyAttribute(Name* key) { uint32_t index; if (IsJSObject() && key->AsArrayIndex(&index)) { return GetElementAttribute(index); } return GetPropertyAttributeWithReceiver(this, key); } PropertyAttributes JSReceiver::GetElementAttribute(uint32_t index) { if (IsJSProxy()) { return JSProxy::cast(this)->GetElementAttributeWithHandler(this, index); } return JSObject::cast(this)->GetElementAttributeWithReceiver( this, index, true); } bool JSGlobalObject::IsDetached() { return JSGlobalProxy::cast(global_receiver())->IsDetachedFrom(this); } bool JSGlobalProxy::IsDetachedFrom(GlobalObject* global) { return GetPrototype() != global; } Handle<Object> JSReceiver::GetOrCreateIdentityHash(Handle<JSReceiver> object) { return object->IsJSProxy() ? JSProxy::GetOrCreateIdentityHash(Handle<JSProxy>::cast(object)) : JSObject::GetOrCreateIdentityHash(Handle<JSObject>::cast(object)); } Object* JSReceiver::GetIdentityHash() { return IsJSProxy() ? JSProxy::cast(this)->GetIdentityHash() : JSObject::cast(this)->GetIdentityHash(); } bool JSReceiver::HasElement(Handle<JSReceiver> object, uint32_t index) { if (object->IsJSProxy()) { Handle<JSProxy> proxy = Handle<JSProxy>::cast(object); return JSProxy::HasElementWithHandler(proxy, index); } return Handle<JSObject>::cast(object)->GetElementAttributeWithReceiver( *object, index, true) != ABSENT; } bool JSReceiver::HasLocalElement(Handle<JSReceiver> object, uint32_t index) { if (object->IsJSProxy()) { Handle<JSProxy> proxy = Handle<JSProxy>::cast(object); return JSProxy::HasElementWithHandler(proxy, index); } return Handle<JSObject>::cast(object)->GetElementAttributeWithReceiver( *object, index, false) != ABSENT; } PropertyAttributes JSReceiver::GetLocalElementAttribute(uint32_t index) { if (IsJSProxy()) { return JSProxy::cast(this)->GetElementAttributeWithHandler(this, index); } return JSObject::cast(this)->GetElementAttributeWithReceiver( this, index, false); } bool AccessorInfo::all_can_read() { return BooleanBit::get(flag(), kAllCanReadBit); } void AccessorInfo::set_all_can_read(bool value) { set_flag(BooleanBit::set(flag(), kAllCanReadBit, value)); } bool AccessorInfo::all_can_write() { return BooleanBit::get(flag(), kAllCanWriteBit); } void AccessorInfo::set_all_can_write(bool value) { set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value)); } bool AccessorInfo::prohibits_overwriting() { return BooleanBit::get(flag(), kProhibitsOverwritingBit); } void AccessorInfo::set_prohibits_overwriting(bool value) { set_flag(BooleanBit::set(flag(), kProhibitsOverwritingBit, value)); } PropertyAttributes AccessorInfo::property_attributes() { return AttributesField::decode(static_cast<uint32_t>(flag()->value())); } void AccessorInfo::set_property_attributes(PropertyAttributes attributes) { set_flag(Smi::FromInt(AttributesField::update(flag()->value(), attributes))); } bool AccessorInfo::IsCompatibleReceiver(Object* receiver) { Object* function_template = expected_receiver_type(); if (!function_template->IsFunctionTemplateInfo()) return true; return FunctionTemplateInfo::cast(function_template)->IsTemplateFor(receiver); } void AccessorPair::set_access_flags(v8::AccessControl access_control) { int current = access_flags()->value(); current = BooleanBit::set(current, kProhibitsOverwritingBit, access_control & PROHIBITS_OVERWRITING); current = BooleanBit::set(current, kAllCanReadBit, access_control & ALL_CAN_READ); current = BooleanBit::set(current, kAllCanWriteBit, access_control & ALL_CAN_WRITE); set_access_flags(Smi::FromInt(current)); } bool AccessorPair::all_can_read() { return BooleanBit::get(access_flags(), kAllCanReadBit); } bool AccessorPair::all_can_write() { return BooleanBit::get(access_flags(), kAllCanWriteBit); } bool AccessorPair::prohibits_overwriting() { return BooleanBit::get(access_flags(), kProhibitsOverwritingBit); } template<typename Shape, typename Key> void Dictionary<Shape, Key>::SetEntry(int entry, Object* key, Object* value) { SetEntry(entry, key, value, PropertyDetails(Smi::FromInt(0))); } template<typename Shape, typename Key> void Dictionary<Shape, Key>::SetEntry(int entry, Object* key, Object* value, PropertyDetails details) { ASSERT(!key->IsName() || details.IsDeleted() || details.dictionary_index() > 0); int index = HashTable<Shape, Key>::EntryToIndex(entry); DisallowHeapAllocation no_gc; WriteBarrierMode mode = FixedArray::GetWriteBarrierMode(no_gc); FixedArray::set(index, key, mode); FixedArray::set(index+1, value, mode); FixedArray::set(index+2, details.AsSmi()); } bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) { ASSERT(other->IsNumber()); return key == static_cast<uint32_t>(other->Number()); } uint32_t UnseededNumberDictionaryShape::Hash(uint32_t key) { return ComputeIntegerHash(key, 0); } uint32_t UnseededNumberDictionaryShape::HashForObject(uint32_t key, Object* other) { ASSERT(other->IsNumber()); return ComputeIntegerHash(static_cast<uint32_t>(other->Number()), 0); } uint32_t SeededNumberDictionaryShape::SeededHash(uint32_t key, uint32_t seed) { return ComputeIntegerHash(key, seed); } uint32_t SeededNumberDictionaryShape::SeededHashForObject(uint32_t key, uint32_t seed, Object* other) { ASSERT(other->IsNumber()); return ComputeIntegerHash(static_cast<uint32_t>(other->Number()), seed); } MaybeObject* NumberDictionaryShape::AsObject(Heap* heap, uint32_t key) { return heap->NumberFromUint32(key); } bool NameDictionaryShape::IsMatch(Name* key, Object* other) { // We know that all entries in a hash table had their hash keys created. // Use that knowledge to have fast failure. if (key->Hash() != Name::cast(other)->Hash()) return false; return key->Equals(Name::cast(other)); } uint32_t NameDictionaryShape::Hash(Name* key) { return key->Hash(); } uint32_t NameDictionaryShape::HashForObject(Name* key, Object* other) { return Name::cast(other)->Hash(); } MaybeObject* NameDictionaryShape::AsObject(Heap* heap, Name* key) { ASSERT(key->IsUniqueName()); return key; } template <int entrysize> bool ObjectHashTableShape<entrysize>::IsMatch(Object* key, Object* other) { return key->SameValue(other); } template <int entrysize> uint32_t ObjectHashTableShape<entrysize>::Hash(Object* key) { return Smi::cast(key->GetHash())->value(); } template <int entrysize> uint32_t ObjectHashTableShape<entrysize>::HashForObject(Object* key, Object* other) { return Smi::cast(other->GetHash())->value(); } template <int entrysize> MaybeObject* ObjectHashTableShape<entrysize>::AsObject(Heap* heap, Object* key) { return key; } template <int entrysize> bool WeakHashTableShape<entrysize>::IsMatch(Object* key, Object* other) { return key->SameValue(other); } template <int entrysize> uint32_t WeakHashTableShape<entrysize>::Hash(Object* key) { intptr_t hash = reinterpret_cast<intptr_t>(key); return (uint32_t)(hash & 0xFFFFFFFF); } template <int entrysize> uint32_t WeakHashTableShape<entrysize>::HashForObject(Object* key, Object* other) { intptr_t hash = reinterpret_cast<intptr_t>(other); return (uint32_t)(hash & 0xFFFFFFFF); } template <int entrysize> MaybeObject* WeakHashTableShape<entrysize>::AsObject(Heap* heap, Object* key) { return key; } void Map::ClearCodeCache(Heap* heap) { // No write barrier is needed since empty_fixed_array is not in new space. // Please note this function is used during marking: // - MarkCompactCollector::MarkUnmarkedObject // - IncrementalMarking::Step ASSERT(!heap->InNewSpace(heap->empty_fixed_array())); WRITE_FIELD(this, kCodeCacheOffset, heap->empty_fixed_array()); } void JSArray::EnsureSize(int required_size) { ASSERT(HasFastSmiOrObjectElements()); FixedArray* elts = FixedArray::cast(elements()); const int kArraySizeThatFitsComfortablyInNewSpace = 128; if (elts->length() < required_size) { // Doubling in size would be overkill, but leave some slack to avoid // constantly growing. Expand(required_size + (required_size >> 3)); // It's a performance benefit to keep a frequently used array in new-space. } else if (!GetHeap()->new_space()->Contains(elts) && required_size < kArraySizeThatFitsComfortablyInNewSpace) { // Expand will allocate a new backing store in new space even if the size // we asked for isn't larger than what we had before. Expand(required_size); } } void JSArray::set_length(Smi* length) { // Don't need a write barrier for a Smi. set_length(static_cast<Object*>(length), SKIP_WRITE_BARRIER); } bool JSArray::AllowsSetElementsLength() { bool result = elements()->IsFixedArray() || elements()->IsFixedDoubleArray(); ASSERT(result == !HasExternalArrayElements()); return result; } MaybeObject* JSArray::SetContent(FixedArrayBase* storage) { MaybeObject* maybe_result = EnsureCanContainElements( storage, storage->length(), ALLOW_COPIED_DOUBLE_ELEMENTS); if (maybe_result->IsFailure()) return maybe_result; ASSERT((storage->map() == GetHeap()->fixed_double_array_map() && IsFastDoubleElementsKind(GetElementsKind())) || ((storage->map() != GetHeap()->fixed_double_array_map()) && (IsFastObjectElementsKind(GetElementsKind()) || (IsFastSmiElementsKind(GetElementsKind()) && FixedArray::cast(storage)->ContainsOnlySmisOrHoles())))); set_elements(storage); set_length(Smi::FromInt(storage->length())); return this; } MaybeObject* FixedArray::Copy() { if (length() == 0) return this; return GetHeap()->CopyFixedArray(this); } MaybeObject* FixedDoubleArray::Copy() { if (length() == 0) return this; return GetHeap()->CopyFixedDoubleArray(this); } MaybeObject* ConstantPoolArray::Copy() { if (length() == 0) return this; return GetHeap()->CopyConstantPoolArray(this); } void TypeFeedbackCells::SetAstId(int index, TypeFeedbackId id) { set(1 + index * 2, Smi::FromInt(id.ToInt())); } TypeFeedbackId TypeFeedbackCells::AstId(int index) { return TypeFeedbackId(Smi::cast(get(1 + index * 2))->value()); } void TypeFeedbackCells::SetCell(int index, Cell* cell) { set(index * 2, cell); } Cell* TypeFeedbackCells::GetCell(int index) { return Cell::cast(get(index * 2)); } Handle<Object> TypeFeedbackCells::UninitializedSentinel(Isolate* isolate) { return isolate->factory()->the_hole_value(); } Handle<Object> TypeFeedbackCells::MegamorphicSentinel(Isolate* isolate) { return isolate->factory()->undefined_value(); } Handle<Object> TypeFeedbackCells::MonomorphicArraySentinel(Isolate* isolate, ElementsKind elements_kind) { return Handle<Object>(Smi::FromInt(static_cast<int>(elements_kind)), isolate); } Object* TypeFeedbackCells::RawUninitializedSentinel(Heap* heap) { return heap->the_hole_value(); } int TypeFeedbackInfo::ic_total_count() { int current = Smi::cast(READ_FIELD(this, kStorage1Offset))->value(); return ICTotalCountField::decode(current); } void TypeFeedbackInfo::set_ic_total_count(int count) { int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value(); value = ICTotalCountField::update(value, ICTotalCountField::decode(count)); WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value)); } int TypeFeedbackInfo::ic_with_type_info_count() { int current = Smi::cast(READ_FIELD(this, kStorage2Offset))->value(); return ICsWithTypeInfoCountField::decode(current); } void TypeFeedbackInfo::change_ic_with_type_info_count(int delta) { int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value(); int new_count = ICsWithTypeInfoCountField::decode(value) + delta; // We can get negative count here when the type-feedback info is // shared between two code objects. The can only happen when // the debugger made a shallow copy of code object (see Heap::CopyCode). // Since we do not optimize when the debugger is active, we can skip // this counter update. if (new_count >= 0) { new_count &= ICsWithTypeInfoCountField::kMask; value = ICsWithTypeInfoCountField::update(value, new_count); WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value)); } } void TypeFeedbackInfo::initialize_storage() { WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(0)); WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(0)); } void TypeFeedbackInfo::change_own_type_change_checksum() { int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value(); int checksum = OwnTypeChangeChecksum::decode(value); checksum = (checksum + 1) % (1 << kTypeChangeChecksumBits); value = OwnTypeChangeChecksum::update(value, checksum); // Ensure packed bit field is in Smi range. if (value > Smi::kMaxValue) value |= Smi::kMinValue; if (value < Smi::kMinValue) value &= ~Smi::kMinValue; WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value)); } void TypeFeedbackInfo::set_inlined_type_change_checksum(int checksum) { int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value(); int mask = (1 << kTypeChangeChecksumBits) - 1; value = InlinedTypeChangeChecksum::update(value, checksum & mask); // Ensure packed bit field is in Smi range. if (value > Smi::kMaxValue) value |= Smi::kMinValue; if (value < Smi::kMinValue) value &= ~Smi::kMinValue; WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value)); } int TypeFeedbackInfo::own_type_change_checksum() { int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value(); return OwnTypeChangeChecksum::decode(value); } bool TypeFeedbackInfo::matches_inlined_type_change_checksum(int checksum) { int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value(); int mask = (1 << kTypeChangeChecksumBits) - 1; return InlinedTypeChangeChecksum::decode(value) == (checksum & mask); } ACCESSORS(TypeFeedbackInfo, type_feedback_cells, TypeFeedbackCells, kTypeFeedbackCellsOffset) SMI_ACCESSORS(AliasedArgumentsEntry, aliased_context_slot, kAliasedContextSlot) Relocatable::Relocatable(Isolate* isolate) { isolate_ = isolate; prev_ = isolate->relocatable_top(); isolate->set_relocatable_top(this); } Relocatable::~Relocatable() { ASSERT_EQ(isolate_->relocatable_top(), this); isolate_->set_relocatable_top(prev_); } int JSObject::BodyDescriptor::SizeOf(Map* map, HeapObject* object) { return map->instance_size(); } void Foreign::ForeignIterateBody(ObjectVisitor* v) { v->VisitExternalReference( reinterpret_cast<Address*>(FIELD_ADDR(this, kForeignAddressOffset))); } template<typename StaticVisitor> void Foreign::ForeignIterateBody() { StaticVisitor::VisitExternalReference( reinterpret_cast<Address*>(FIELD_ADDR(this, kForeignAddressOffset))); } void ExternalAsciiString::ExternalAsciiStringIterateBody(ObjectVisitor* v) { typedef v8::String::ExternalAsciiStringResource Resource; v->VisitExternalAsciiString( reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset))); } template<typename StaticVisitor> void ExternalAsciiString::ExternalAsciiStringIterateBody() { typedef v8::String::ExternalAsciiStringResource Resource; StaticVisitor::VisitExternalAsciiString( reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset))); } void ExternalTwoByteString::ExternalTwoByteStringIterateBody(ObjectVisitor* v) { typedef v8::String::ExternalStringResource Resource; v->VisitExternalTwoByteString( reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset))); } template<typename StaticVisitor> void ExternalTwoByteString::ExternalTwoByteStringIterateBody() { typedef v8::String::ExternalStringResource Resource; StaticVisitor::VisitExternalTwoByteString( reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset))); } template<int start_offset, int end_offset, int size> void FixedBodyDescriptor<start_offset, end_offset, size>::IterateBody( HeapObject* obj, ObjectVisitor* v) { v->VisitPointers(HeapObject::RawField(obj, start_offset), HeapObject::RawField(obj, end_offset)); } template<int start_offset> void FlexibleBodyDescriptor<start_offset>::IterateBody(HeapObject* obj, int object_size, ObjectVisitor* v) { v->VisitPointers(HeapObject::RawField(obj, start_offset), HeapObject::RawField(obj, object_size)); } #undef TYPE_CHECKER #undef CAST_ACCESSOR #undef INT_ACCESSORS #undef ACCESSORS #undef ACCESSORS_TO_SMI #undef SMI_ACCESSORS #undef BOOL_GETTER #undef BOOL_ACCESSORS #undef FIELD_ADDR #undef READ_FIELD #undef WRITE_FIELD #undef WRITE_BARRIER #undef CONDITIONAL_WRITE_BARRIER #undef READ_DOUBLE_FIELD #undef WRITE_DOUBLE_FIELD #undef READ_INT_FIELD #undef WRITE_INT_FIELD #undef READ_INTPTR_FIELD #undef WRITE_INTPTR_FIELD #undef READ_UINT32_FIELD #undef WRITE_UINT32_FIELD #undef READ_SHORT_FIELD #undef WRITE_SHORT_FIELD #undef READ_BYTE_FIELD #undef WRITE_BYTE_FIELD } } // namespace v8::internal #endif // V8_OBJECTS_INL_H_