// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if V8_TARGET_ARCH_MIPS #include "codegen.h" #include "debug.h" #include "deoptimizer.h" #include "full-codegen.h" #include "runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- a0 : number of arguments excluding receiver // -- a1 : called function (only guaranteed when // -- extra_args requires it) // -- cp : context // -- sp[0] : last argument // -- ... // -- sp[4 * (argc - 1)] : first argument // -- sp[4 * agrc] : receiver // ----------------------------------- // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; __ push(a1); } else { ASSERT(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects s0 to contain the number of arguments // including the receiver and the extra arguments. __ Addu(s0, a0, num_extra_args + 1); __ sll(s1, s0, kPointerSizeLog2); __ Subu(s1, s1, kPointerSize); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } // Load the built-in InternalArray function from the current context. static void GenerateLoadInternalArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ lw(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ lw(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset)); // Load the InternalArray function from the native context. __ lw(result, MemOperand(result, Context::SlotOffset( Context::INTERNAL_ARRAY_FUNCTION_INDEX))); } // Load the built-in Array function from the current context. static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ lw(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ lw(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset)); // Load the Array function from the native context. __ lw(result, MemOperand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the InternalArray function. GenerateLoadInternalArrayFunction(masm, a1); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(a2, t0); __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction, t0, Operand(zero_reg)); __ GetObjectType(a2, a3, t0); __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction, t0, Operand(MAP_TYPE)); } // Run the native code for the InternalArray function called as a normal // function. // Tail call a stub. InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code; // Get the Array function. GenerateLoadArrayFunction(masm, a1); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(a2, t0); __ Assert(ne, kUnexpectedInitialMapForArrayFunction1, t0, Operand(zero_reg)); __ GetObjectType(a2, a3, t0); __ Assert(eq, kUnexpectedInitialMapForArrayFunction2, t0, Operand(MAP_TYPE)); } // Run the native code for the Array function called as a normal function. // Tail call a stub. Handle<Object> undefined_sentinel( masm->isolate()->heap()->undefined_value(), masm->isolate()); __ li(a2, Operand(undefined_sentinel)); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- ra : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) // -- sp[argc * 4] : receiver // ----------------------------------- Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3); Register function = a1; if (FLAG_debug_code) { __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2); __ Assert(eq, kUnexpectedStringFunction, function, Operand(a2)); } // Load the first arguments in a0 and get rid of the rest. Label no_arguments; __ Branch(&no_arguments, eq, a0, Operand(zero_reg)); // First args = sp[(argc - 1) * 4]. __ Subu(a0, a0, Operand(1)); __ sll(a0, a0, kPointerSizeLog2); __ Addu(sp, a0, sp); __ lw(a0, MemOperand(sp)); // sp now point to args[0], drop args[0] + receiver. __ Drop(2); Register argument = a2; Label not_cached, argument_is_string; __ LookupNumberStringCache(a0, // Input. argument, // Result. a3, // Scratch. t0, // Scratch. t1, // Scratch. ¬_cached); __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, t0); __ bind(&argument_is_string); // ----------- S t a t e ------------- // -- a2 : argument converted to string // -- a1 : constructor function // -- ra : return address // ----------------------------------- Label gc_required; __ Allocate(JSValue::kSize, v0, // Result. a3, // Scratch. t0, // Scratch. &gc_required, TAG_OBJECT); // Initialising the String Object. Register map = a3; __ LoadGlobalFunctionInitialMap(function, map, t0); if (FLAG_debug_code) { __ lbu(t0, FieldMemOperand(map, Map::kInstanceSizeOffset)); __ Assert(eq, kUnexpectedStringWrapperInstanceSize, t0, Operand(JSValue::kSize >> kPointerSizeLog2)); __ lbu(t0, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset)); __ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper, t0, Operand(zero_reg)); } __ sw(map, FieldMemOperand(v0, HeapObject::kMapOffset)); __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex); __ sw(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset)); __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset)); __ sw(argument, FieldMemOperand(v0, JSValue::kValueOffset)); // Ensure the object is fully initialized. STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); __ Ret(); // The argument was not found in the number to string cache. Check // if it's a string already before calling the conversion builtin. Label convert_argument; __ bind(¬_cached); __ JumpIfSmi(a0, &convert_argument); // Is it a String? __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset)); __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ And(t0, a3, Operand(kIsNotStringMask)); __ Branch(&convert_argument, ne, t0, Operand(zero_reg)); __ mov(argument, a0); __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0); __ Branch(&argument_is_string); // Invoke the conversion builtin and put the result into a2. __ bind(&convert_argument); __ push(function); // Preserve the function. __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(a0); __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION); } __ pop(function); __ mov(argument, v0); __ Branch(&argument_is_string); // Load the empty string into a2, remove the receiver from the // stack, and jump back to the case where the argument is a string. __ bind(&no_arguments); __ LoadRoot(argument, Heap::kempty_stringRootIndex); __ Drop(1); __ Branch(&argument_is_string); // At this point the argument is already a string. Call runtime to // create a string wrapper. __ bind(&gc_required); __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, t0); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(argument); __ CallRuntime(Runtime::kNewStringWrapper, 1); } __ Ret(); } static void CallRuntimePassFunction(MacroAssembler* masm, Runtime::FunctionId function_id) { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. // Push call kind information and function as parameter to the runtime call. __ Push(a1, t1, a1); __ CallRuntime(function_id, 1); // Restore call kind information and receiver. __ Pop(a1, t1); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset)); __ Addu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(at); } void Builtins::Generate_InRecompileQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, // not checking may delay installing ready functions, and always checking // would be quite expensive. A good compromise is to first check against // stack limit as a cue for an interrupt signal. Label ok; __ LoadRoot(t0, Heap::kStackLimitRootIndex); __ Branch(&ok, hs, sp, Operand(t0)); CallRuntimePassFunction(masm, Runtime::kTryInstallRecompiledCode); // Tail call to returned code. __ Addu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(at); __ bind(&ok); GenerateTailCallToSharedCode(masm); } void Builtins::Generate_ConcurrentRecompile(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kConcurrentRecompile); GenerateTailCallToSharedCode(masm); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool count_constructions) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- // Should never count constructions for api objects. ASSERT(!is_api_function || !count_constructions); Isolate* isolate = masm->isolate(); // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the two incoming parameters on the stack. __ sll(a0, a0, kSmiTagSize); // Tag arguments count. __ MultiPushReversed(a0.bit() | a1.bit()); // Use t7 to hold undefined, which is used in several places below. __ LoadRoot(t7, Heap::kUndefinedValueRootIndex); Label rt_call, allocated; // Try to allocate the object without transitioning into C code. If any of // the preconditions is not met, the code bails out to the runtime call. if (FLAG_inline_new) { Label undo_allocation; #ifdef ENABLE_DEBUGGER_SUPPORT ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(isolate); __ li(a2, Operand(debug_step_in_fp)); __ lw(a2, MemOperand(a2)); __ Branch(&rt_call, ne, a2, Operand(zero_reg)); #endif // Load the initial map and verify that it is in fact a map. // a1: constructor function __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ JumpIfSmi(a2, &rt_call); __ GetObjectType(a2, a3, t4); __ Branch(&rt_call, ne, t4, Operand(MAP_TYPE)); // Check that the constructor is not constructing a JSFunction (see // comments in Runtime_NewObject in runtime.cc). In which case the // initial map's instance type would be JS_FUNCTION_TYPE. // a1: constructor function // a2: initial map __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset)); __ Branch(&rt_call, eq, a3, Operand(JS_FUNCTION_TYPE)); if (count_constructions) { Label allocate; // Decrease generous allocation count. __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); MemOperand constructor_count = FieldMemOperand(a3, SharedFunctionInfo::kConstructionCountOffset); __ lbu(t0, constructor_count); __ Subu(t0, t0, Operand(1)); __ sb(t0, constructor_count); __ Branch(&allocate, ne, t0, Operand(zero_reg)); __ Push(a1, a2, a1); // a1 = Constructor. // The call will replace the stub, so the countdown is only done once. __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); __ Pop(a1, a2); __ bind(&allocate); } // Now allocate the JSObject on the heap. // a1: constructor function // a2: initial map __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset)); __ Allocate(a3, t4, t5, t6, &rt_call, SIZE_IN_WORDS); // Allocated the JSObject, now initialize the fields. Map is set to // initial map and properties and elements are set to empty fixed array. // a1: constructor function // a2: initial map // a3: object size // t4: JSObject (not tagged) __ LoadRoot(t6, Heap::kEmptyFixedArrayRootIndex); __ mov(t5, t4); __ sw(a2, MemOperand(t5, JSObject::kMapOffset)); __ sw(t6, MemOperand(t5, JSObject::kPropertiesOffset)); __ sw(t6, MemOperand(t5, JSObject::kElementsOffset)); __ Addu(t5, t5, Operand(3*kPointerSize)); ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset); ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset); // Fill all the in-object properties with appropriate filler. // a1: constructor function // a2: initial map // a3: object size (in words) // t4: JSObject (not tagged) // t5: First in-object property of JSObject (not tagged) __ sll(t0, a3, kPointerSizeLog2); __ addu(t6, t4, t0); // End of object. ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize); __ LoadRoot(t7, Heap::kUndefinedValueRootIndex); if (count_constructions) { __ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset)); __ Ext(a0, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte, kBitsPerByte); __ sll(t0, a0, kPointerSizeLog2); __ addu(a0, t5, t0); // a0: offset of first field after pre-allocated fields if (FLAG_debug_code) { __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields, a0, Operand(t6)); } __ InitializeFieldsWithFiller(t5, a0, t7); // To allow for truncation. __ LoadRoot(t7, Heap::kOnePointerFillerMapRootIndex); } __ InitializeFieldsWithFiller(t5, t6, t7); // Add the object tag to make the JSObject real, so that we can continue // and jump into the continuation code at any time from now on. Any // failures need to undo the allocation, so that the heap is in a // consistent state and verifiable. __ Addu(t4, t4, Operand(kHeapObjectTag)); // Check if a non-empty properties array is needed. Continue with // allocated object if not fall through to runtime call if it is. // a1: constructor function // t4: JSObject // t5: start of next object (not tagged) __ lbu(a3, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset)); // The field instance sizes contains both pre-allocated property fields // and in-object properties. __ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset)); __ Ext(t6, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte, kBitsPerByte); __ Addu(a3, a3, Operand(t6)); __ Ext(t6, a0, Map::kInObjectPropertiesByte * kBitsPerByte, kBitsPerByte); __ subu(a3, a3, t6); // Done if no extra properties are to be allocated. __ Branch(&allocated, eq, a3, Operand(zero_reg)); __ Assert(greater_equal, kPropertyAllocationCountFailed, a3, Operand(zero_reg)); // Scale the number of elements by pointer size and add the header for // FixedArrays to the start of the next object calculation from above. // a1: constructor // a3: number of elements in properties array // t4: JSObject // t5: start of next object __ Addu(a0, a3, Operand(FixedArray::kHeaderSize / kPointerSize)); __ Allocate( a0, t5, t6, a2, &undo_allocation, static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS)); // Initialize the FixedArray. // a1: constructor // a3: number of elements in properties array (untagged) // t4: JSObject // t5: start of next object __ LoadRoot(t6, Heap::kFixedArrayMapRootIndex); __ mov(a2, t5); __ sw(t6, MemOperand(a2, JSObject::kMapOffset)); __ sll(a0, a3, kSmiTagSize); __ sw(a0, MemOperand(a2, FixedArray::kLengthOffset)); __ Addu(a2, a2, Operand(2 * kPointerSize)); ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset); // Initialize the fields to undefined. // a1: constructor // a2: First element of FixedArray (not tagged) // a3: number of elements in properties array // t4: JSObject // t5: FixedArray (not tagged) __ sll(t3, a3, kPointerSizeLog2); __ addu(t6, a2, t3); // End of object. ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize); { Label loop, entry; if (count_constructions) { __ LoadRoot(t7, Heap::kUndefinedValueRootIndex); } else if (FLAG_debug_code) { __ LoadRoot(t8, Heap::kUndefinedValueRootIndex); __ Assert(eq, kUndefinedValueNotLoaded, t7, Operand(t8)); } __ jmp(&entry); __ bind(&loop); __ sw(t7, MemOperand(a2)); __ addiu(a2, a2, kPointerSize); __ bind(&entry); __ Branch(&loop, less, a2, Operand(t6)); } // Store the initialized FixedArray into the properties field of // the JSObject. // a1: constructor function // t4: JSObject // t5: FixedArray (not tagged) __ Addu(t5, t5, Operand(kHeapObjectTag)); // Add the heap tag. __ sw(t5, FieldMemOperand(t4, JSObject::kPropertiesOffset)); // Continue with JSObject being successfully allocated. // a1: constructor function // a4: JSObject __ jmp(&allocated); // Undo the setting of the new top so that the heap is verifiable. For // example, the map's unused properties potentially do not match the // allocated objects unused properties. // t4: JSObject (previous new top) __ bind(&undo_allocation); __ UndoAllocationInNewSpace(t4, t5); } __ bind(&rt_call); // Allocate the new receiver object using the runtime call. // a1: constructor function __ push(a1); // Argument for Runtime_NewObject. __ CallRuntime(Runtime::kNewObject, 1); __ mov(t4, v0); // Receiver for constructor call allocated. // t4: JSObject __ bind(&allocated); __ push(t4); __ push(t4); // Reload the number of arguments from the stack. // sp[0]: receiver // sp[1]: receiver // sp[2]: constructor function // sp[3]: number of arguments (smi-tagged) __ lw(a1, MemOperand(sp, 2 * kPointerSize)); __ lw(a3, MemOperand(sp, 3 * kPointerSize)); // Set up pointer to last argument. __ Addu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Set up number of arguments for function call below. __ srl(a0, a3, kSmiTagSize); // Copy arguments and receiver to the expression stack. // a0: number of arguments // a1: constructor function // a2: address of last argument (caller sp) // a3: number of arguments (smi-tagged) // sp[0]: receiver // sp[1]: receiver // sp[2]: constructor function // sp[3]: number of arguments (smi-tagged) Label loop, entry; __ jmp(&entry); __ bind(&loop); __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize); __ Addu(t0, a2, Operand(t0)); __ lw(t1, MemOperand(t0)); __ push(t1); __ bind(&entry); __ Addu(a3, a3, Operand(-2)); __ Branch(&loop, greater_equal, a3, Operand(zero_reg)); // Call the function. // a0: number of arguments // a1: constructor function if (is_api_function) { __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); Handle<Code> code = masm->isolate()->builtins()->HandleApiCallConstruct(); ParameterCount expected(0); __ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET, CALL_FUNCTION, CALL_AS_METHOD); } else { ParameterCount actual(a0); __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } // Store offset of return address for deoptimizer. if (!is_api_function && !count_constructions) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore context from the frame. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. // v0: result // sp[0]: receiver (newly allocated object) // sp[1]: constructor function // sp[2]: number of arguments (smi-tagged) __ JumpIfSmi(v0, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. __ GetObjectType(v0, a1, a3); __ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE)); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ lw(v0, MemOperand(sp)); // Remove receiver from the stack, remove caller arguments, and // return. __ bind(&exit); // v0: result // sp[0]: receiver (newly allocated object) // sp[1]: constructor function // sp[2]: number of arguments (smi-tagged) __ lw(a1, MemOperand(sp, 2 * kPointerSize)); // Leave construct frame. } __ sll(t0, a1, kPointerSizeLog2 - 1); __ Addu(sp, sp, t0); __ Addu(sp, sp, kPointerSize); __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2); __ Ret(); } void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, true); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, false); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from JSEntryStub::GenerateBody // ----------- S t a t e ------------- // -- a0: code entry // -- a1: function // -- a2: receiver_pointer // -- a3: argc // -- s0: argv // ----------------------------------- ProfileEntryHookStub::MaybeCallEntryHook(masm); // Clear the context before we push it when entering the JS frame. __ mov(cp, zero_reg); // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Set up the context from the function argument. __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // Push the function and the receiver onto the stack. __ Push(a1, a2); // Copy arguments to the stack in a loop. // a3: argc // s0: argv, i.e. points to first arg Label loop, entry; __ sll(t0, a3, kPointerSizeLog2); __ addu(t2, s0, t0); __ b(&entry); __ nop(); // Branch delay slot nop. // t2 points past last arg. __ bind(&loop); __ lw(t0, MemOperand(s0)); // Read next parameter. __ addiu(s0, s0, kPointerSize); __ lw(t0, MemOperand(t0)); // Dereference handle. __ push(t0); // Push parameter. __ bind(&entry); __ Branch(&loop, ne, s0, Operand(t2)); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); __ mov(s1, t0); __ mov(s2, t0); __ mov(s3, t0); __ mov(s4, t0); __ mov(s5, t0); // s6 holds the root address. Do not clobber. // s7 is cp. Do not init. // Invoke the code and pass argc as a0. __ mov(a0, a3); if (is_construct) { // No type feedback cell is available Handle<Object> undefined_sentinel( masm->isolate()->heap()->undefined_value(), masm->isolate()); __ li(a2, Operand(undefined_sentinel)); CallConstructStub stub(NO_CALL_FUNCTION_FLAGS); __ CallStub(&stub); } else { ParameterCount actual(a0); __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } // Leave internal frame. } __ Jump(ra); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_LazyCompile(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kLazyCompile); // Do a tail-call of the compiled function. __ Addu(t9, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(t9); } void Builtins::Generate_LazyRecompile(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kLazyRecompile); // Do a tail-call of the compiled function. __ Addu(t9, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(t9); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // Set a0 to point to the head of the PlatformCodeAge sequence. __ Subu(a0, a0, Operand((kNoCodeAgeSequenceLength - 1) * Assembler::kInstrSize)); // The following registers must be saved and restored when calling through to // the runtime: // a0 - contains return address (beginning of patch sequence) // a1 - isolate RegList saved_regs = (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit(); FrameScope scope(masm, StackFrame::MANUAL); __ MultiPush(saved_regs); __ PrepareCallCFunction(1, 0, a2); __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); __ MultiPop(saved_regs); __ Jump(a0); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } \ void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact // that make_code_young doesn't do any garbage collection which allows us to // save/restore the registers without worrying about which of them contain // pointers. // Set a0 to point to the head of the PlatformCodeAge sequence. __ Subu(a0, a0, Operand((kNoCodeAgeSequenceLength - 1) * Assembler::kInstrSize)); // The following registers must be saved and restored when calling through to // the runtime: // a0 - contains return address (beginning of patch sequence) // a1 - isolate RegList saved_regs = (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit(); FrameScope scope(masm, StackFrame::MANUAL); __ MultiPush(saved_regs); __ PrepareCallCFunction(1, 0, a2); __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction( ExternalReference::get_mark_code_as_executed_function(masm->isolate()), 2); __ MultiPop(saved_regs); // Perform prologue operations usually performed by the young code stub. __ Push(ra, fp, cp, a1); __ Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); // Jump to point after the code-age stub. __ Addu(a0, a0, Operand((kNoCodeAgeSequenceLength) * Assembler::kInstrSize)); __ Jump(a0); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. __ MultiPush(kJSCallerSaved | kCalleeSaved); // Pass the function and deoptimization type to the runtime system. __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles); __ MultiPop(kJSCallerSaved | kCalleeSaved); } __ Addu(sp, sp, Operand(kPointerSize)); // Ignore state __ Jump(ra); // Jump to miss handler } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameScope scope(masm, StackFrame::INTERNAL); // Pass the function and deoptimization type to the runtime system. __ li(a0, Operand(Smi::FromInt(static_cast<int>(type)))); __ push(a0); __ CallRuntime(Runtime::kNotifyDeoptimized, 1); } // Get the full codegen state from the stack and untag it -> t2. __ lw(t2, MemOperand(sp, 0 * kPointerSize)); __ SmiUntag(t2); // Switch on the state. Label with_tos_register, unknown_state; __ Branch(&with_tos_register, ne, t2, Operand(FullCodeGenerator::NO_REGISTERS)); __ Ret(USE_DELAY_SLOT); // Safe to fill delay slot Addu will emit one instruction. __ Addu(sp, sp, Operand(1 * kPointerSize)); // Remove state. __ bind(&with_tos_register); __ lw(v0, MemOperand(sp, 1 * kPointerSize)); __ Branch(&unknown_state, ne, t2, Operand(FullCodeGenerator::TOS_REG)); __ Ret(USE_DELAY_SLOT); // Safe to fill delay slot Addu will emit one instruction. __ Addu(sp, sp, Operand(2 * kPointerSize)); // Remove state. __ bind(&unknown_state); __ stop("no cases left"); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); // Lookup and calculate pc offset. __ lw(a1, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); __ lw(a2, FieldMemOperand(a0, JSFunction::kSharedFunctionInfoOffset)); __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset)); __ Subu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Subu(a1, a1, a2); __ SmiTag(a1); // Pass both function and pc offset as arguments. __ push(a0); __ push(a1); __ CallRuntime(Runtime::kCompileForOnStackReplacement, 2); } // If the code object is null, just return to the unoptimized code. __ Ret(eq, v0, Operand(Smi::FromInt(0))); // Load deoptimization data from the code object. // <deopt_data> = <code>[#deoptimization_data_offset] __ lw(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] __ lw(a1, MemOperand(a1, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag)); __ SmiUntag(a1); // Compute the target address = code_obj + header_size + osr_offset // <entry_addr> = <code_obj> + #header_size + <osr_offset> __ addu(v0, v0, a1); __ addiu(ra, v0, Code::kHeaderSize - kHeapObjectTag); // And "return" to the OSR entry point of the function. __ Ret(); } void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) { // We check the stack limit as indicator that recompilation might be done. Label ok; __ LoadRoot(at, Heap::kStackLimitRootIndex); __ Branch(&ok, hs, sp, Operand(at)); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kStackGuard, 0); } __ Jump(masm->isolate()->builtins()->OnStackReplacement(), RelocInfo::CODE_TARGET); __ bind(&ok); __ Ret(); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // a0: actual number of arguments { Label done; __ Branch(&done, ne, a0, Operand(zero_reg)); __ LoadRoot(t2, Heap::kUndefinedValueRootIndex); __ push(t2); __ Addu(a0, a0, Operand(1)); __ bind(&done); } // 2. Get the function to call (passed as receiver) from the stack, check // if it is a function. // a0: actual number of arguments Label slow, non_function; __ sll(at, a0, kPointerSizeLog2); __ addu(at, sp, at); __ lw(a1, MemOperand(at)); __ JumpIfSmi(a1, &non_function); __ GetObjectType(a1, a2, a2); __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE)); // 3a. Patch the first argument if necessary when calling a function. // a0: actual number of arguments // a1: function Label shift_arguments; __ li(t0, Operand(0, RelocInfo::NONE32)); // Indicate regular JS_FUNCTION. { Label convert_to_object, use_global_receiver, patch_receiver; // Change context eagerly in case we need the global receiver. __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // Do not transform the receiver for strict mode functions. __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset)); __ And(t3, a3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize))); __ Branch(&shift_arguments, ne, t3, Operand(zero_reg)); // Do not transform the receiver for native (Compilerhints already in a3). __ And(t3, a3, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); __ Branch(&shift_arguments, ne, t3, Operand(zero_reg)); // Compute the receiver in non-strict mode. // Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2). __ sll(at, a0, kPointerSizeLog2); __ addu(a2, sp, at); __ lw(a2, MemOperand(a2, -kPointerSize)); // a0: actual number of arguments // a1: function // a2: first argument __ JumpIfSmi(a2, &convert_to_object, t2); __ LoadRoot(a3, Heap::kUndefinedValueRootIndex); __ Branch(&use_global_receiver, eq, a2, Operand(a3)); __ LoadRoot(a3, Heap::kNullValueRootIndex); __ Branch(&use_global_receiver, eq, a2, Operand(a3)); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ GetObjectType(a2, a3, a3); __ Branch(&shift_arguments, ge, a3, Operand(FIRST_SPEC_OBJECT_TYPE)); __ bind(&convert_to_object); // Enter an internal frame in order to preserve argument count. { FrameScope scope(masm, StackFrame::INTERNAL); __ sll(a0, a0, kSmiTagSize); // Smi tagged. __ push(a0); __ push(a2); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(a2, v0); __ pop(a0); __ sra(a0, a0, kSmiTagSize); // Un-tag. // Leave internal frame. } // Restore the function to a1, and the flag to t0. __ sll(at, a0, kPointerSizeLog2); __ addu(at, sp, at); __ lw(a1, MemOperand(at)); __ li(t0, Operand(0, RelocInfo::NONE32)); __ Branch(&patch_receiver); // Use the global receiver object from the called function as the // receiver. __ bind(&use_global_receiver); const int kGlobalIndex = Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize; __ lw(a2, FieldMemOperand(cp, kGlobalIndex)); __ lw(a2, FieldMemOperand(a2, GlobalObject::kNativeContextOffset)); __ lw(a2, FieldMemOperand(a2, kGlobalIndex)); __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset)); __ bind(&patch_receiver); __ sll(at, a0, kPointerSizeLog2); __ addu(a3, sp, at); __ sw(a2, MemOperand(a3, -kPointerSize)); __ Branch(&shift_arguments); } // 3b. Check for function proxy. __ bind(&slow); __ li(t0, Operand(1, RelocInfo::NONE32)); // Indicate function proxy. __ Branch(&shift_arguments, eq, a2, Operand(JS_FUNCTION_PROXY_TYPE)); __ bind(&non_function); __ li(t0, Operand(2, RelocInfo::NONE32)); // Indicate non-function. // 3c. Patch the first argument when calling a non-function. The // CALL_NON_FUNCTION builtin expects the non-function callee as // receiver, so overwrite the first argument which will ultimately // become the receiver. // a0: actual number of arguments // a1: function // t0: call type (0: JS function, 1: function proxy, 2: non-function) __ sll(at, a0, kPointerSizeLog2); __ addu(a2, sp, at); __ sw(a1, MemOperand(a2, -kPointerSize)); // 4. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // a0: actual number of arguments // a1: function // t0: call type (0: JS function, 1: function proxy, 2: non-function) __ bind(&shift_arguments); { Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ sll(at, a0, kPointerSizeLog2); __ addu(a2, sp, at); __ bind(&loop); __ lw(at, MemOperand(a2, -kPointerSize)); __ sw(at, MemOperand(a2)); __ Subu(a2, a2, Operand(kPointerSize)); __ Branch(&loop, ne, a2, Operand(sp)); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ Subu(a0, a0, Operand(1)); __ Pop(); } // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin, // or a function proxy via CALL_FUNCTION_PROXY. // a0: actual number of arguments // a1: function // t0: call type (0: JS function, 1: function proxy, 2: non-function) { Label function, non_proxy; __ Branch(&function, eq, t0, Operand(zero_reg)); // Expected number of arguments is 0 for CALL_NON_FUNCTION. __ mov(a2, zero_reg); __ SetCallKind(t1, CALL_AS_METHOD); __ Branch(&non_proxy, ne, t0, Operand(1)); __ push(a1); // Re-add proxy object as additional argument. __ Addu(a0, a0, Operand(1)); __ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&non_proxy); __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&function); } // 5b. Get the code to call from the function and check that the number of // expected arguments matches what we're providing. If so, jump // (tail-call) to the code in register edx without checking arguments. // a0: actual number of arguments // a1: function __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lw(a2, FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); __ sra(a2, a2, kSmiTagSize); __ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); __ SetCallKind(t1, CALL_AS_METHOD); // Check formal and actual parameter counts. __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET, ne, a2, Operand(a0)); ParameterCount expected(0); __ InvokeCode(a3, expected, expected, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { const int kIndexOffset = StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize); const int kLimitOffset = StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize); const int kArgsOffset = 2 * kPointerSize; const int kRecvOffset = 3 * kPointerSize; const int kFunctionOffset = 4 * kPointerSize; { FrameScope frame_scope(masm, StackFrame::INTERNAL); __ lw(a0, MemOperand(fp, kFunctionOffset)); // Get the function. __ push(a0); __ lw(a0, MemOperand(fp, kArgsOffset)); // Get the args array. __ push(a0); // Returns (in v0) number of arguments to copy to stack as Smi. __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); // Make a2 the space we have left. The stack might already be overflowed // here which will cause a2 to become negative. __ subu(a2, sp, a2); // Check if the arguments will overflow the stack. __ sll(t3, v0, kPointerSizeLog2 - kSmiTagSize); __ Branch(&okay, gt, a2, Operand(t3)); // Signed comparison. // Out of stack space. __ lw(a1, MemOperand(fp, kFunctionOffset)); __ Push(a1, v0); __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION); // End of stack check. // Push current limit and index. __ bind(&okay); __ push(v0); // Limit. __ mov(a1, zero_reg); // Initial index. __ push(a1); // Get the receiver. __ lw(a0, MemOperand(fp, kRecvOffset)); // Check that the function is a JS function (otherwise it must be a proxy). Label push_receiver; __ lw(a1, MemOperand(fp, kFunctionOffset)); __ GetObjectType(a1, a2, a2); __ Branch(&push_receiver, ne, a2, Operand(JS_FUNCTION_TYPE)); // Change context eagerly to get the right global object if necessary. __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // Load the shared function info while the function is still in a1. __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); // Compute the receiver. // Do not transform the receiver for strict mode functions. Label call_to_object, use_global_receiver; __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset)); __ And(t3, a2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize))); __ Branch(&push_receiver, ne, t3, Operand(zero_reg)); // Do not transform the receiver for native (Compilerhints already in a2). __ And(t3, a2, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); __ Branch(&push_receiver, ne, t3, Operand(zero_reg)); // Compute the receiver in non-strict mode. __ JumpIfSmi(a0, &call_to_object); __ LoadRoot(a1, Heap::kNullValueRootIndex); __ Branch(&use_global_receiver, eq, a0, Operand(a1)); __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); __ Branch(&use_global_receiver, eq, a0, Operand(a2)); // Check if the receiver is already a JavaScript object. // a0: receiver STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ GetObjectType(a0, a1, a1); __ Branch(&push_receiver, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); // Convert the receiver to a regular object. // a0: receiver __ bind(&call_to_object); __ push(a0); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(a0, v0); // Put object in a0 to match other paths to push_receiver. __ Branch(&push_receiver); // Use the current global receiver object as the receiver. __ bind(&use_global_receiver); const int kGlobalOffset = Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize; __ lw(a0, FieldMemOperand(cp, kGlobalOffset)); __ lw(a0, FieldMemOperand(a0, GlobalObject::kNativeContextOffset)); __ lw(a0, FieldMemOperand(a0, kGlobalOffset)); __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset)); // Push the receiver. // a0: receiver __ bind(&push_receiver); __ push(a0); // Copy all arguments from the array to the stack. Label entry, loop; __ lw(a0, MemOperand(fp, kIndexOffset)); __ Branch(&entry); // Load the current argument from the arguments array and push it to the // stack. // a0: current argument index __ bind(&loop); __ lw(a1, MemOperand(fp, kArgsOffset)); __ Push(a1, a0); // Call the runtime to access the property in the arguments array. __ CallRuntime(Runtime::kGetProperty, 2); __ push(v0); // Use inline caching to access the arguments. __ lw(a0, MemOperand(fp, kIndexOffset)); __ Addu(a0, a0, Operand(1 << kSmiTagSize)); __ sw(a0, MemOperand(fp, kIndexOffset)); // Test if the copy loop has finished copying all the elements from the // arguments object. __ bind(&entry); __ lw(a1, MemOperand(fp, kLimitOffset)); __ Branch(&loop, ne, a0, Operand(a1)); // Invoke the function. Label call_proxy; ParameterCount actual(a0); __ sra(a0, a0, kSmiTagSize); __ lw(a1, MemOperand(fp, kFunctionOffset)); __ GetObjectType(a1, a2, a2); __ Branch(&call_proxy, ne, a2, Operand(JS_FUNCTION_TYPE)); __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); frame_scope.GenerateLeaveFrame(); __ Ret(USE_DELAY_SLOT); __ Addu(sp, sp, Operand(3 * kPointerSize)); // In delay slot. // Invoke the function proxy. __ bind(&call_proxy); __ push(a1); // Add function proxy as last argument. __ Addu(a0, a0, Operand(1)); __ li(a2, Operand(0, RelocInfo::NONE32)); __ SetCallKind(t1, CALL_AS_METHOD); __ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY); __ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); // Tear down the internal frame and remove function, receiver and args. } __ Ret(USE_DELAY_SLOT); __ Addu(sp, sp, Operand(3 * kPointerSize)); // In delay slot. } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ sll(a0, a0, kSmiTagSize); __ li(t0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ MultiPush(a0.bit() | a1.bit() | t0.bit() | fp.bit() | ra.bit()); __ Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- v0 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ lw(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize))); __ mov(sp, fp); __ MultiPop(fp.bit() | ra.bit()); __ sll(t0, a1, kPointerSizeLog2 - kSmiTagSize); __ Addu(sp, sp, t0); // Adjust for the receiver. __ Addu(sp, sp, Operand(kPointerSize)); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // State setup as expected by MacroAssembler::InvokePrologue. // ----------- S t a t e ------------- // -- a0: actual arguments count // -- a1: function (passed through to callee) // -- a2: expected arguments count // -- a3: callee code entry // -- t1: call kind information // ----------------------------------- Label invoke, dont_adapt_arguments; Label enough, too_few; __ Branch(&dont_adapt_arguments, eq, a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); // We use Uless as the number of argument should always be greater than 0. __ Branch(&too_few, Uless, a0, Operand(a2)); { // Enough parameters: actual >= expected. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: code entry to call __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into a0 and copy end address into a2. __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize); __ Addu(a0, fp, a0); // Adjust for return address and receiver. __ Addu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. __ sll(a2, a2, kPointerSizeLog2); __ subu(a2, a0, a2); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: copy end address // a3: code entry to call Label copy; __ bind(©); __ lw(t0, MemOperand(a0)); __ push(t0); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a2)); __ addiu(a0, a0, -kPointerSize); // In delay slot. __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into a0 and copy end address is fp. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: code entry to call __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize); __ Addu(a0, fp, a0); // Adjust for return address and receiver. __ Addu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. Also adjust for return address. __ Addu(t3, fp, kPointerSize); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: expected number of arguments // a3: code entry to call // t3: copy end address Label copy; __ bind(©); __ lw(t0, MemOperand(a0)); // Adjusted above for return addr and receiver. __ Subu(sp, sp, kPointerSize); __ Subu(a0, a0, kPointerSize); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(t3)); __ sw(t0, MemOperand(sp)); // In the delay slot. // Fill the remaining expected arguments with undefined. // a1: function // a2: expected number of arguments // a3: code entry to call __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); __ sll(t2, a2, kPointerSizeLog2); __ Subu(a2, fp, Operand(t2)); // Adjust for frame. __ Subu(a2, a2, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + 2 * kPointerSize)); Label fill; __ bind(&fill); __ Subu(sp, sp, kPointerSize); __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a2)); __ sw(t0, MemOperand(sp)); } // Call the entry point. __ bind(&invoke); __ Call(a3); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Ret(); // ------------------------------------------- // Don't adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ Jump(a3); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_MIPS